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ABSTRACT In recent years, the evolution of demand-side management techniques has ushered in
substantial improvements for distribution systems. Among these advancements, the Transactive Energy
System (TES) emerges as a promising innovation, empowering end-users by facilitating surplus
generation/demand trading within local energy markets. However, in contrast to the wholesale electricity
markets of conventional grids, TES integrates a significant share of small-scale prosumers and highly
variable intermittent Distributed EnergyResources (DERs), introducing elevatedmarket uncertainties. In this
conditions the economic stability of TES hinges on active and credible participant engagement. The central
challenge lies in addressing uncertainties surrounding the energy requirements of community participants
and incentivizing their involvement. To address these challenges, this paper introduces a novel market
clearing strategy based on credit ratings. This strategy aims to mitigate uncertainties while motivating
credible participants through substantial savings on their electricity bills. Further this paper presents final
demand response consideration, among a group of participants in a TES using an auction-theoretic approach
which increases monetary gains. The effectiveness of this proposed methodology is validated through
comprehensive case studies involving multiple households within a community. The results are highly
promising, with participating households realizing monthly savings of 17.18%, 16.11%, 20.7%, and 23.22%
on their electricity bills when compared to the latest transactive energy exchange method. These tangible
outcomes underscore the significant positive impact achievable through the implementation of our proposed
market clearing approach and demonstrate the substantial increase in monthly savings for participants across
various scenarios.

INDEX TERMS Credit rating, demand response management, energy trading, smart grid, transactive energy.

ABBREVIATIONS
BCS Buyer Credit Score.
CEE Community Energy Expert.
DSO Distributed System Operator.
INSLs Interruptible and Non Schedulable Loads.
IREMS Intelligent Residential Energy Management

System.
LTES Locality Transactive Energy System.
MDL Maximum Demand Limit.
NSL Non Schedulable Loads.
NINSLs Non-Interruptible and Non-Schedulable

Loads.

The associate editor coordinating the review of this manuscript and

approving it for publication was Akin Tascikaraoglu .

NISLs Non-Interruptible Schedulable Loads.
P2P Peer-to-Peer.
PIL Power Injection Limit.
RPG Renewable Power Generation.
RTP Real Time Pricing.
SCS Seller Credit Score.
SLs Schedulable Loads.

NOMENCLATURE
Sets and Indices
Am Data Set of SLs.
Ani,b Data Set of buyer i upto nth interval.
Anj,s Data Set of seller j upto nth interval.
Bm Data Set of NSL.
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Cm Data Set of NINSLs.
i Buyer.
j Seller.
M Set of participants.
N Set of intervals.

Parameters
λnig,b Utility buying price in nth interval.
λnjg,s Utility selling price in nth interval.
ψi,b Power extraction limiting factor.
ψn
j,s Power injection limiting factor.
ϒ Priority factor.
σ ni Scaling factor.
CCSni,bt Desired credit score.

Variables:
λni,b Bidding price of ith buyer in nth interval.
λsitavg Market clearing price.
λnj,s Offred price of jth seller nth interval.
APni,b Actual ith buyer power in nth interval.
APnj,s Actual jth seller power in nth interval.
CSni,b Credit score of buyer i in nth interval.
CSnj,s Credit score of seller j in nth interval.
Mn
b Total number of buyers in nth interval.

Mn
s Total number of sellers in nth interval.

n Market interval.
Pni,b Modified maximum power bid of ith buyer in nth

interval.
Pnj,s Modified maximum power offer of jth seller in

nth interval.
Rni,b Coated bid power by buyer i in nth interval.
Rni,b Coated offer power by seller j in nth interval.
SPni,b Scheduled ith buyer power in nth interval.
SPnj,s Scheduled jth seller power in nth interval.
Un
i,b Variance value of buyer i in (n− 1)thinterval.

Un
i,b Variance value of seller j in (n− 1)th interval.

V n
i,b Variance value of buyer i in nth interval.
V n
j,s Variance value of seller j in nth interval.
Xi,b Calculated data value of buyer i in nth interval.
Xnj,s Calculated data value of seller j in nth interval.
yni,b Cleared power bid of ith buyer in nth interval.
ynj,s Cleared power offer of jth seller in nth interval.
Zni,b Credible factor of buyer i in nth interval.
Znj,s Credible factor of seller j in nth interval.
CCSni,b Calculated credit score of ith buyer in nth

interval.
CCSnj,s Calculated credit score of jth seller in nth

interval.

I. INTRODUCTION
In the 21st century, the evolving paradigm of electronics,
computing, and communication technologies allows us to
convert the traditional electric power system into a smart

grid [1]. In smart grid, power system operations are effi-
ciently monitored and managed by intelligent electronic
equipments featured with a bidirectional cyber-secure com-
munication facility. Demand-Side Management (DSM) is
an evolution strategy used by numerous utilities to balance
generation and demand in the context of smart grid [2],
where utilities use incentives and penalties to force the energy
consumers to change or lower their demand.

A. BACKGROUND AND MOTIVATION
The Demand Response (DR) program [3] is a creative
component of DSM that allows customers to lower their
electricity rates. As part of DSM scheme, few utilities
currently use Maximum Demand Limitations (MDL) and
Real-Time Pricing (RTP) to minimize the grid peak-to-
average ratio [4]. Consumers will be penalized under the
MDL approach if their energy use exceeds the utility’s
predetermined limit. Presently, utilities are increasingly
focusing on Renewable Power Generation (RPG) units as an
alternative for regulating the rising energy demand caused
by the depletion of traditional resources and the rise in
electricity use. However, these RPG units have several
installation and operational constraints. Hence, utilities must
be upgraded to handle the unpredictable nature of renewable
energy resources. On the other hand, utilities are constantly
encouraging the end users to install small-scale RPG units
in order to promote self-sustainability and reduce electricity
bills [5].

In the growth of smart grid, the Home EnergyManagement
Systems (HEMS) successfully regulates both smart and
non-smart residential appliances, as well as power generation
from RPG units, to save electricity bills [6]. Further, end-
users are encouraged to barter excess power generation to
utilities in exchange for substantial incentives, and these users
are referred to as prosumers [7]. In general, prosumers want
to export excess energy into the grid during peak periods
to maximize electricity bill savings. However, utilities are
encountering significant operational challenges as a result of
the increased penetration of small-scale prosumers. Hence,
utilities are implementing Power Injection Limits (PIL) to
regulate the prosumers grid integration. Any surplus power
generated by a prosumer over the PIL should be stored
in an energy storage devices [7] or dissipated through
dump load. This restriction will indirectly limit RPG units
installation. To overcome the PIL constraint, end users opt
to engage in the Peer-to-Peer (P2P) energy market, where
theymay share their excess generationwith neighboring users
for a higher return than the utility. P2P provides several
advantages, including high integration of economically
feasible distributed green energy sources, energy storage
devices, mobile energy storage devices in the form of electric
vehicles, cost-effectiveness, quality electricity, and educating
customers about demand response schemes [8]. Participants
in P2P energy trading may default quoted energy, owing
to fluctuations in electricity prices and human greed [9].
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FIGURE 1. Conceptual model of a transactive energy connection setup.

Since the electricity markets are typically forward markets
uncertainty in distributed renewable energy output and
demand may result in real-time default energy behavior [10].
This might result in the failure of P2P whole electrical market
[11]. Consider the following scenario: a prosumer agrees to
commit a given quantity of energy for a particular period and
receives money from the seller for that energy. However, it is
conceivable that the actual energy supplied to the buyer is less
than the amount committed. Similarly, buyer consumption
power may differ from what was negotiated. Such a market
result will obviously be sub-optimal and unfit for market
sustainability. As a result, establishing a solid credit rating
system is necessary for regulating unpredictable energy
behavior. A credit rating, in the context of our research, refers
to an assessment and evaluation of participants’ performance
and reliability within the transactive energy market based
on their energy behavior. It quantifies the extent to which
participants adhere to their energy agreements and fulfill
their scheduled energy commitments. In this work Fig. 1
represents a conceptual model illustrating the setup of an
electrical connection within the transactive energy system.
It showcases the key components and their interconnec-
tions, providing a visual representation of the underlying
infrastructure.

B. RELEVANT LITERATURE REVIEW
Numerous efforts were dedicated to crafting cost-effective
and proficient energy trading mechanisms within the market
in [12], [13] and [14]. One approach involved a distributed
energy management system that promoted collaboration
between energy suppliers and users, aiming to enhance soci-
etal well-being [15]. Haghifam et al. introduced a Stackelberg
game-based approach for optimizing the participation of
multiple stakeholders in the day-ahead energy market [16].
In another study, Bhattacharya et al. conducted an in-depth
analysis of the impact on unit energy prices when participants
exhibit enhanced flexibility [17]. Further, Gokcek et al.
presented an innovative dual bidding strategy that effec-
tively incorporates considerations for both intra and inter-
community-based energy trading [18]. Azim et al. demon-
strated a peer-to-peer energy trading system using a coalition
graph and local voltage management [19], while Wang and
Huang explored the promotion of active energy trade through
a coalition-forming incentive mechanism based on Nash
bargaining theory [20]. Kareem et al. introduced a Multi-
Settlement quasi-ideal P2P trading framework that integrates
bilateral contracts, a double-auction Vickrey-Clarke-Groves
(VCG) mechanism, and trading functionalities with the main
grid [21]. The VCGmechanism promotes truthful bidding by
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participants and eliminates market power exercise. However,
this framework lacks the budget balance property. In another
approach, Zhenwei et al. proposed a high-efficiency and
incentive-compatible P2P energy trading mechanism within
a blockchain environment [22]. This mechanism offers
efficiency and incentives but faces scalability challenges that
need to be addressed for broader implementation. To tackle
the budget deficit issue in P2P energy trading, Lazaros
et al. proposed an incentive-compatible mechanism that
combines the VCG method with a post-budget redistribution
scheme [23]. This approach aims to partially recover budget
deficits and enhance the overall incentive compatibility
of the system. Baroche et al. utilized externally allocated
grid-related charges [24]. Furthermore, Bokkisam et al.
introduced a periodic iterative double auction strategy with
demand response in the transactive pooled market [25].
In a recent study, Arun et al. emphasized strategies focused
on the supply-to-demand ratio to enhance market liquidity
for residential-based TES [26]. However, concerns arose
regarding the uncertainty and default behavior associated
with energy sharing, potentially undermining the energy
market [27]. To address these concerns, Yang et al. proposed
a priority order based on prosumers’ credit rating points,
giving priority to excellent prosumers [28]. However, in this
paper, the author suggested directly assigning a credit score
to prosumers, which could potentially result in high credit
rating prosumers being prioritized in peer matching. This
raised concerns about missed opportunities for low-cost
energy offers or bids, leading to potential decreases in
social welfare. In [29], the authors introduced an intriguing
concept called theMarket Reputation Index (MRI) for sellers,
where higher MRI sellers received bigger rewards during
market clearing. This proposal held promise for enhancing
market dynamics and promoting efficiency. However, the
author’s suggestion of using a uniform weighting factor
raised questions about the optimal implementation of this
reward mechanism. Khorasany et al. suggested prioritizing
peer matching based on trade partner reputation and distance
but did not provide a precise mathematical approach, making
the recommendation insufficiently feasible [30]. In another
study [31], a method for calculating the net reputation value
(NRV) or MRI was proposed, but it was considered unfair
to penalize customers with strong credit points for failing
to meet requirements. Other approaches included trading
priority values based on reputation and selling price [32], and
credit scores for sellers determined using logistic regression
and default energy behavior [33]. Xia et al. developed a
pricing strategy for output energy when low liquidity was
present but mainly focused on flexible reserve resources [34].
In another study, a fuzzy-based multi-objective programming
model was developed [35] to effectively handle uncertainties
associated with demand and capacity in renewable distributed
generation sources. Zhang et al. suggested a demand response
technique to mitigate uncertainty, but controlling loads in
real-time could compromise market players’ comfort and

autonomy [36]. Azim emphasized, ‘‘It is crucial to develop
a comprehensive strategy addressing uncertainty and default
behavior in reputation assessment and calculating prosumer
credit ratings based on energy behavior and uncertainties.
Establishing a trustworthy system or index to track and assess
prior performance is essential for fostering trust and ensuring
the integrity of the transactive energy market. Improv-
ing the effectiveness and reliability of peer-to-peer (P2P)
energy trading requires addressing uncertainty, developing
specific calculation methods, and implementing a robust
reputation evaluation system’’ [11]. Additionally, Frei stated
that ‘‘market liquidity also significantly impacts transactive
energy markets, facilitating ease, efficiency, and successful
transactions between participants’’ [37]. Furthermore, Kuno
emphasized that ‘‘Higher liquidity brings benefits such as
increased market participation, improved price discovery,
and enhanced market efficiency’’ [38]. Prosumer groups
with similar generation and demand profiles often have
high absolute net demand, leading to the exportation or
importation of energy from the grid, as highlighted in
previous research [7]. In a more recent study, Arun stated
that ‘‘The quantity of energy exchanged among prosumers
directly impacts the reduction in the electricity bill’’ [39].
This underscores the need for a proper method to increase
market liquidity.

C. PROBLEM DESCRIPTION AND METHODOLOGY
The previous research studies lacked a specific calculation
method for a credit-based transactive energy market. Addi-
tionally, the existing demand response strategies have not
yielded a substantial increase in market liquidity. Moreover,
these studies failed to introduce the concept of final
demand response as a means to effectively enhance market
liquidity. Most of the existing literature relied on the default
energy concept, which assumes that the actual supplied
energy is less than the scheduled energy. However, in real-
time, the supplied energy can be more. Furthermore, the
assessment of participants’ credit rating was not conducted
continuously within each time interval. The priority order
of peer matching based on credit rating could potentially
reduce social welfare. In order to tackle these gaps, a peer-
to-peer electricity trading model is proposed, integrating
credit management rooted in participants’ uncertain energy
patterns, alongside a conclusive demand response technique
aimed at reducing the overall net demand. In the proposed
auction method, end users are assigned a credit rating
based on the scheduled energy and actual energy in each
trading interval. To maintain participants’ credit ratings and
adjust bids or offers accordingly, the Community Energy
Expert (CEE) is introduced as a common portal. The
credit management aspect of our model penalizes uncertain
energy behavior, aiming to minimize uncertainties in the
electricity market. Additionally, power exchange limits are
proposed based on the credit score of prosumers. Users with
a low credit rating will face appropriate penalties, which
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TABLE 1. Important references related to research gap.

supplement the power exchange limit and help mitigate the
uncertainty. Furthermore, the feasibility of the proposed P2P
electricity trading mechanism is verified by using multiple
households with different scenarios. All participants in the
Local Transactive Energy System (LTES) are assumed to be
equipped with an intelligent residential energy management
system, enabling profitable energy trading with others.
In this work, Table 1 illustrates the proposed approach
in comparison to existing approaches while referencing
important literature related to the research gap.

D. CONTRIBUTIONS
In this study, significant contributions are presented with the
objective of enhancing the local transactive energy trading
system. It begins by introducing a comprehensive framework
designed to incorporate a demand response strategy based
on locality net demand. This innovative framework enhances
market liquidity and energy transactions among participants
within localized areas. Furthermore, this study introduces an
efficient credit rating management system, complete with
a specific calculation method. By assigning credit ratings
based on scheduled energy and actual energy consumption
within each trading interval, it establishes a robustmechanism
for evaluating and managing participant credibility, ensuring
trust among participants and reliability in energy trading.
Additionally, this research introduces a novel market clearing
strategy that considers participants’ credibility scores. This
innovative approach to market clearing aims to optimize
overall social welfare within localities. By factoring in partic-
ipants’ credit ratings when determining market outcomes, the
proposed strategy encourages responsible energy behavior
and discourages unreliable trading practices. Consequently,

it significantly contributes to the stability and effectiveness
of the local transactive energy market. To further validate
these contributions, the research also conducts a comparative
analysis of the proposed method with existing transactive
energy market clearing mechanisms, providing valuable
insights.

The major contributions of the paper are as follows:

1) Development of a framework for the local transactive
energy system, incorporating a demand response strat-
egy based on locality net demand. This framework
facilitates lucrative energy transactions among locality
participants.

2) Introduction of an efficient credit rating management
system that considers participants’ uncertainty in energy
trading behavior. This system will track the energy
trading history of participants.

3) Incorporating power exchange limits based on par-
ticipants’ credibility scores into the market clearing
mechanism, with the aim of reducing uncertainty from
a behavioral perspective in energy trading.

4) Validating the effectiveness of the proposed method-
ology involved conducting several case studies with
multiple household participants within a LTES.

E. PAPER ORGANIZATION
This paper follows a structured approach, beginningwith Sec-
tion II, which introduces a locality-based transactive energy
system architecture. Section III outlines the mathematical
models for each sub-system within the transactive energy
system. In Section IV, a detailed description of the transactive
energy tradingmechanism is provided. Section V presents the
simulation results derived from various case studies. Finally,
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Section VI summarizes the study’s conclusions, emphasizing
the significant findings.

II. ARCHITECTURE OF LOCALITY TRANSACTIVE ENERGY
SYSTEM (LTES)
Fig. 2 depicts the architecture of the proposed LTES,
which involves utility providers, CEE (Community Energy
Expert), and trading participants (prosumers and consumers).
LTES allows participants to exchange their net demand
(the difference between electricity demand and generation)
with neighboring participants at the market clearing price,
offering an alternative to relying solely on utility providers
to minimize electricity bills. CEE acts as a network
operator, retail electricity broker, and mediator of the local
electricity market. The participants’ household appliances
are categorized into three types based on interpretability
and schedulability: Non-Interruptible and Non-Schedulable
Loads (NINSLs), Interruptible and Non-Schedulable Loads
(INSLs), and Schedulable Loads (SLs). NINSLs, such as
televisions, home theaters, home decorators, fans, lights,
mobile and laptop chargers, provide immediate service
upon activation. INSLs consist of temperature-controlled
appliances that maintain the operating temperature around
a user-defined setpoint value. If the actual temperature
deviates beyond themanufacturer’s tolerance limit, the INSLs
consume their rated power to reduce the difference. Examples
of INSLs include air conditioners, refrigerators, and space
heaters. SLs have specific time frames for completing tasks
and include appliances like washing machines, dishwashers,
well pumps, plug-in hybrid electric vehicles (PHEVs), and
food grinders. Modern SLs employ artificial intelligence
systems to predict the necessary intervals for completing
tasks based on initial conditions, such as the water level
in the overhead tank for smart well pump operation or the
weight of clothes in a smart washing machine. SLs can be
further categorized as Non-Interruptible SLs (NISLs) and
Interruptible SLs (ISLs). NISLs operate continuously once
activated, while ISLs can operate continuously or discontin-
uously within a given time span. Residential consumers have
shown increasing interest in installing small-scale RPG units,
such as solar PV systems and small wind turbines, to achieve
self-sustainability and reduce electricity bills. Additionally,
many consumers favor energy storage devices like batteries
to address the intermittent nature of RPG and provide backup
power. In this study, a residential building equipped with
solar PV and small wind power generation is considered, and
the battery backup manages the intermittency of renewable
energy resources (RER).

In the LTES, participants share their generation offers or
demand bids prior to the trading period in order to obtain
economic benefits. However, the CEE adjusts the submitted
bids according to power exchange limits derived from
credit ratings. Subsequently, the CEE optimally calculates
the market clearing price and facilitates the settlement of
transactions between participants. In the restructured energy
market, the role of CEE is taken over by a Distributed

System Operator (DSO), which is a non-profit market
operator and part of the DSO that integrates local distributed
energy resources, implements demand response measures to
improve LTES reliability, and controls energy prices. The
proposed LTES operates as a real-timemarket, enabling more
end users to participate with reduced uncertainty regarding
energy behavior. To support participants in making profitable
trades, an intelligent residential energy management system
is installed at the end user’s premises. The credit rating-based
LTES process is illustrated in Fig. 3. as a flow diagram.

A. CREDIT RATING SYSTEM
The proposed LTES categorizes participants as sellers (with
excess generation) and buyers (with surplus demand) based
on their quoted trading demand. To establish a credit rating-
based LTES, two performance indices are introduced: Seller
Credit Score (SCS) and Buyer Credit Score (BCS). The
SCS is computed by comparing the quoted trade generation
with the actual energy delivered during the trading interval.
Similarly, the BCS is determined by comparing the quoted
demand with the actual energy consumed during the trading
interval. The SCS reflects the participants’ ability to uphold
their committed generation supply in agreement with the
energy delivered, while the BCS indicates their ability to
maintain energy consumption in line with the agreed demand.

Accurate calculation of the credit scores involves assigning
appropriate weighting factors, which consider both past
credit scores and the scores from the current trading
interval. These weighting factors are determined to ensure
the maximum likelihood estimation, thereby justifying the
precise calculation of the credit scores. The mathematical
explanation of this weighting concept will be elaborated in
the upcoming section.

III. MATHEMATICAL MODELING OF CREDIT RATING
BASED LTES
A. UTILITY MODEL
The utility is regarded as a static participant. Furthermore, the
utility can behave as a seller (net demand > 0) or buyer (net
demand ≤ 0) dependent on the locality net demand (buyers
demand - sellers generation). In general, utilities buy surplus
generation from LTES at predetermined energy rates. This
pricing structure is known as the Feed-in-Tariff (FiT) scheme
[8]. Similarly, the utility sells the energy to LTES at the retail
price. Let us assume thatλnU ,b andλnU ,s are the utility’s buying
and selling prices for trading interval n, respectively. Further,
these prices will remain same for the duration of the trading
interval.

B. PARTICIPANT MODEL
Nowadays, residential buildings are outfitted with a variety of
electrical gadgets to help residents do their tasks quickly and
conveniently. LetM = [1, 2, . . .m] is a set of players willing
to participate in the LTES and the set of trading interval over
a given period is taken as N = [1, 2, . . . , n]. Participants
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FIGURE 2. Proposed LTES architecture.

can forecast their expected net demand (expected demand
- expected generation) pattern for the upcoming intervals

based on end-user behavior dynamics, energy consumption
history data, and CEE forecasted weather data. Let pdnm,SLs,
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FIGURE 3. LTES flow mechanism.

pdnm,INSLs, pd
n
m,NINSLs and ndnm indicate the power demand

(kW) of SLs, INSLs, NINSLs and aggregated demand of the
participant m ∈ M during the trading interval n ∈ N , respec-
tively. These variables can be computed using (1)-(4) [7].

pdnm,SLs =

Am∑
a=1

(
Sna,SL ∗ Pna,SL

)
∀m ∈ M ∀n ∈ N (1)

pdnm,INSLs =

Bm∑
b=1

(
Snb,INSL ∗ Pnb,INSL

)
∀m ∈ M ∀n ∈ N (2)

pdnm,NINSLs = αn
Cm∑
c=1

APDnc,NINSL ∀m ∈ M ∀n ∈ N (3)

tdnm =
[
pdnm,SLs + pdnm,INSLs + pdnm,NINSLs

]
(4)

where Am,Bm and Cm are the available number of SLs,
INSLs, and NINSLs in the considered residential building,

respectively. The Pna,SL and Pnb,INSL are represented as the
rated power of SL and INSL, respectively. In equation (3) αn

is a user defined factor and APDnNINSL is the average power
demand of NINSL in similar days over the used defined past
weeks. The SnSL and SnINSL are the operating status of SL and
INSL, respectively. When the appliance is turned ON, the
operating status is presumed to be 1, otherwise it is 0. The
symbols pgnm,PV , pg

n
m,WIND, and tg

n
m represent the generated

electric (kW) from the participant m’s photovoltaic (PV)
system, wind-based electricity generator, and the combined
renewable energy generation, respectively. These variables
can be computed using (5)-(8) [7]. The aggregated demand
and generation will be used to calculate the net demand of
participant m for the interval n as expressed in (9).

pgnm,PV = FCPSTC

(
GnAVG
GnSTC

) (
1 +

(
T nC − TSTC

)
αC
)

(5)
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T nC = T nAVG +

(
NOCT − 20

0.8

)
∗ GnAVG (6)

pgnm,WIND = 0.5ρAw
(
vn
)3

∗ CP (7)

tgnm=
[
pgnm,PV + pgnm,WIND

]
∀m ∈ M , n ∈ N (8)

ndnm =
[
tdnm − tgnm

]
∀ m ∈ M , n ∈ N (9)

In the equation,Fc andPSTC represent the de-rating factor and
nominal power (in kWp) under the Standard Test Condition
(STC) of the PV array, respectively. The variables GnAVG, T

n
C ,

and T nAVG correspond to the average solar radiation (kW/m2),
temperature of the PV cell (◦C), and averaged ambient
temperature (in ◦C) during interval n ∈ N , respectively.
GSTC represents the solar radiation at the STC (1 kW/m2),
TSTC denotes the STC temperature (25◦C), αC represents
the temperature coefficient of the PV cell, and NOCT
signifies the normal operating cell temperature (48◦C). The
variables Aw and ρ denote the swept area (m2) and air density
(kg/m2) of the wind turbine, respectively. The variable vn

represents the wind velocity (in m/s), and Cp corresponds
to the maximum power coefficient. Market players have the
option to forecast their own generation using the day-ahead
weather forecasting information provided by either TESO’s
or any third-party models. Generally, methods like artificial
neural networks (ANN) are used in weather forecasting [7].
The participants in this work employ a dynamic bidding
strategy, which involves determining their bidding quantities
and prices using various self-analysis methods, as mentioned
in reference papers [39] and [40]. These approaches leverage
data from the utility or third-party sources to inform their
decision-making process. It is worth noting that the bidding
strategy in this study is user-defined, enabling participants
to customize and modify their strategies according to their
specific requirements and preferences. The objective function
of participant m ∈ M is defined as

min
N∑
n=1

(λnmp[OD
n
m − OGnm] − (ndnm − [ODnm − OGnm])λ

n
u)

(10)

subject to following constraints

Snsl =

{
1 ∀n ∈ [esl, fsl] ∀sl ⊂ SLs
0 else

(11)

fsl∑
q=t

Sqsl = cqsl ∀sl ∈ SLs ,∀n ∈ [esl, fsl] (12)

fsl−esl−dsl+l∑
x=0

esl+dsl+x−l∏
y=esl+x

[Sysl ⋆ pssl] = pssl (13)

The variable ODnm denotes the optimal demand energy
provided by the utility, whereas ODng represents the optimal
generation energy provided by the utility. The variable λnmp
signifies the expected unit energy price provided by the utility
in the market clearing process. Furthermore, ndnm corresponds
to the net demand of participant m during the nth time interval.

The objective function relies on several factors, including
the operating status (ON/OFF) of schedulable loads, the
market-clearing price, and the net demand of the participant.
Moreover, we utilize the variables esl , fsl , and pssl to represent
the starting time interval, dead time interval, and preemptive
status of a particular schedulable load sl belonging to the set
SL. The variable S tsl indicates the on/off status of sl during the
time interval n, where n belongs to the set N . Furthermore,
cqsl denotes the remaining intervals required to complete the
task associated with sl within the interval n ∈ [esl, fsl].
Equation (13) represents a preemptive constant specific to
the schedulable loads in the set SLs.

In the case where the net demand ndnm ≥ 0 during interval
n ∈ N , the participant considered as a buyer. Conversely,
if ndnm < 0, the participant functions as a seller. The
bidding and offering prices are represented as λnm,b and λnm,s,
respectively.

λnm,b =

{
λnU ,buy ≤ λnm,b ≤ λnU ,sell if ndnm ≥ 0

0 else
(14)

λnm,s =

{
0 if ndnm ≥ 0
λnU ,buy ≤ λnm,s ≤ λnU ,sell else

(15)

where exporting utility energy cost is λ
buy,n
U and importing

utility energy cost is λsell,nU , respectively. After determining
the price and predicting their future time interval net demand
profile, all participants’ complete data sets are sent to the
CEE. The participant m ∈ M , sending data set is specified
as

T nm
1
= [NDnm;BPnm;OPnm] ∀m ∈ M (16)

For each participant m ∈ M , the sets NDnm, BP
n
m, and OP

n
m

represent the initial net demand, bidding price, and offering
price, respectively. After obtaining the transmission data set
from all participants, CEE calculates the locality net demand
and broadcasts it to all participants. The receiving data set of
participant m ∈ M is defined as follows.

Rnm
1
= [LNDnk ] ∀m ∈ M (17)

Here locally net demand for the k th beneficial choice in the nth

interval is denoted by LNDnk . Upon receiving the data set from
the CEE, each participant employ an optimization algorithm
[39] to optimize electricity bills and achieve demand response
(DR) using dynamic price signals. The participants then
transmit their updated information to the CEE through a
revised transmitting data set. The revised transmitting data
set is specific to participant m from the set M and includes
the updated net demand, bidding price, and offering price.
This process of the locality net demand response strategy is
repeated a finite number (k) of times, as determined by the
CEE based on the forward market structure. The final data
set for participant m ∈ M is represented as T nm:

T nm
1
= [N̂D

n
m; B̂P

n
m; ÔP

n
m] ∀m ∈ M (18)
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Here, N̂D
n
m, B̂P

n
m, and ÔP

n
m are the updated sets of net

demand, bidding price, and offering price for participant m ∈

M , respectively. These updates reflect the optimized choices
made by participants to ensure efficient energy consumption
and cost savings.

C. CEE MODEL
CEE is a centralized market operator whose duties include
forecasting meteorological data, building communication
networks, disseminating information to participants, deciding
internal market clearing prices, and maintaining the real-time
power balance in the community micro grid. The market
clearing price and quantities in the market time-line are
calculated in this study using a linear optimization technique.
In order to monitor the negotiation between buyers and
sellers, the CEE serves as an interface. The LTES receives
simultaneous submissions of all generating offers and
demand bids. As a result, nobody is aware of other people’s
bids or offers.

D. CREDIT RATING BASED DOUBLE SIDE AUCTION
MODEL
In the proposed distributed electric energy trading platform,
a credit rating based double side auction model ensures
fair and efficient energy trading while preventing malicious
quotations from prosumers that could disrupt the market. The
double side auction model, a well-established mechanism
in various trading scenarios, involves simultaneous bidding
from both buyers and sellers in a transparent manner. Prior
to each round of transactions, the trading platform displays
the highest reference price and the lowest reference price.
Participants are only allowed to trade with other prosumers
if their quoted price falls within these reference price limits.
This mechanism helps maintain order and fairness in the
distributed power trading market. It’s important to note that
the utility energy tariff in each time interval serves as the
boundary limit for the price quotations of participants.

All participants in an LTES are driven to minimize
their utility bill by sharing excess generation or demand
with other participants. However, the success of LTES is
solely dependent on the magnitude of the locality’s net
demand. A positive net demand value indicates that LTES
has excess demand that must be drawn from the utility
grid, whereas a negative net demand value indicates that
LTES has excess generation that must be fed to the utility
grid. Participants in this proposed real-time LTES have finite
beneficial alternatives provided by CEE to rearrange the
operating pattern of their household appliances within a
certain time frame. As a result, depending on the quantity
and sign of locality net demand, players may actively modify
their net demand. Eventually, the CEE will use appropriate
market clearing mechanisms to maximize participants social
welfare. As a consequence, the individual participant’s profit
and LTES’s self-sustainability will be strengthened. The
uncertainty in users’ energy usage will have a detrimental
influence on LTES social welfare and stability. Hence, in the

proposed LTES, power injection limits are recommended for
sellers and power extraction limits are proposed for buyers
depending on the credit ratings of individual participants.
Further, these limits will force the participants to reduce the
uncertainties. This scenario is analytically expressed as a
linear optimization problem. The goal of the optimization
process is to establish a single market-clearing price and
the best demand-generation plans for each time period. The
mathematical representation of the objective function is given
in (19).

max
λni,b,λ

n
j,s,y

n
i,b,y

n
j,s

Mn
b∑

i=1

λni,by
n
i,b −

Mn
s∑

j=1

λnj,sy
n
i,s (19)

s.t.
Mn
b∑

i=1

yni,b −

Mn
s∑

j=1

ynj,s = 0 (20)

0≤yni,b≤p
n
i,b i = 1, . . . ,Mn

b (21)

0≤ynj,s≤p
n
j,s j = 1, . . . ,Mn

s (22)

where λni,by
n
i,b and λnj,sy

n
i,s indicate the revenue of the buyer

and seller, respectively. The relationship between demand
and generation is described as an equality constraint in (20).
Furthermore, in (21) and (22), the limitations for buyer
demand and seller generation are described as boundary
constraints. Here pni,b and p

n
j,s are maximum power constraints

of buyer and seller respectively.
The quantity of modified demand and generation depend-

ing on credit rating during a trading period n are represented
as pni,b and p

n
j,s, respectively, and will be calculated using (23)

and (24).

pni,b = ψn
i,bR

n
i,b (23)

pnj,s = ψn
j,sR

n
j,s (24)

Here Rni,b and Rnj,s represent the participants’ quoted bid
and offer during a trading interval n. CEE will assign ψn

i,b
and ψn

j,s as power extraction and power injection restriction
factors to individual participants depending on their uncertain
energy behavior. The steps involved in the computation of
these factors will be discussed in the upcoming subsection.

E. COMPUTING PARTICIPANTS’ CREDIT RATING
In the proposed LTES, the notations CCSni,b and CCSnj,s are
taken as Calculated Credit Score (CCS) for buyer i and
seller j during trading interval n, respectively. The CCS for
any trading interval n can be mathematically computed with
due consideration to the previous interval CCS and present
interval credit points as shown in (25) and (26).

CCSni,b = Zni,bCS
n
i,b +

(
1 − Zni,b

)
CCS(n−1)

i,b (25)

CCSnj,s = Znj,sCS
n
j,s +

(
1 − Znj,s

)
CCS(n−1)

j,s (26)

where CSni,b and CSnj,s be the nth trading interval credit
score for buyer i and seller j, receptively. Zni,b and Znj,s
are represented as credible factor for buyer i and seller
j, receptively which are expected to satisfy the boundary
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constraints such as 0 ≤ Zni,b ≤ 1 and 0 ≤ Znj,s ≤ 1. The
value of the credibility factor shows the importance of the
current interval credit score (CS) when compared to the end
user’s previous CSS. Furthermore, these credible factors will
be estimated using the maximum likelihood estimate [41],
yielding a weightage balance ofCSni,b andCCS

(n−1)
i,b for buyer

and CSnj,s and CCS
(n−1)
j,s for the seller. These credible factors

can be expressed mathematically as given in (27) and (28).

Zni,b =
V n
i,b

Un
i,b + V n

i,b
(27)

Znj,s =
V n
j,s

Un
j,s + V n

j,s
(28)

where V n
i,b and V n

j,s are the variances of participants

energy data {X1
i,b, . . . .,X

(n−1)
i,b } ∈ An−1

i,b for buyer and
{X1

j,s, . . . .,X
(n−1)
j,s } ∈ An−1

j,s for seller, respectively. Further,
these variances are computed without considering the current
interval energy data. Similarly, Un

i,b and Un
j,s represent the

variance of participants energy data {X1
i,b, . . . .,X

(n)
i,b } ∈ Ani,b

for buyer and {X1
j,s, . . . .,X

(n)
j,s } ∈ Anj,s for seller, respectively.

Further, these variances are computed by considering the
current interval energy data.

V n
i,b = Var

(
An−1
i,b

)
(29)

V n
j,s = Var

(
An−1
j,s

)
(30)

Un
i,b = Var

(
Ani,b

)
(31)

Un
j,s = Var

(
Anj,s

)
(32)

The computed variances of participant data (Xni,b, X
n
i,s)

illustrate the dynamics of electricity trading involving
participants and the utility. The presence of uncertainties in
trading electricity among participants necessitates a priority
mechanism to minimize penalties. To address this, the
introduction of a priority factor becomes pivotal, enabling
adjustable weightage as decided by CEE. The mathematical
modeling of the suggested computation are expressed in (33)
and (34).

Xni,b = ϒPnit,bλ
n
itavgt + Pnig,bλ

n
ig,bt (33)

Xnj,s = ϒPnjt,sλ
s
jtavgt + Pnjg,sλ

n
jg,st (34)

where Pnit,b and Pnig,b are the ith buyer participant’s buying
power through P2P energy trading and Peer-to-Grid (P2G)
scheme, respectively. λnitavg and λnig,b are the P2P average
market clearing unit cost and P2G grid selling price, recep-
tively. Similarly, Pnjt,s, P

n
ig,s, λ

n
jtavg and λnig,s are expressed as

the jth seller participant’s selling power through P2P scheme,
P2G scheme, P2P average market clearing unit cost and
P2G grid buying price, respectively. Since the high demand
intervals will have more impact on credit score variations, the
average unit cost of participants has given more importance
to compute the energy data. Further, CEE will decide the
priority factor ϒ to trade the energy among end users

compared to grid. The current interval credit score of buyer
(CSni,b) and seller (CS

n
i,b) can be computed mathematically by

using (35) and (36), respectively.

CSni,b =



APnj,s
SPnj,s

100 if 0 ≤ APnj,s ≤ SPnj,s(
2 −

APnj,s
SPnj,s

)
100 if 2SPnj,s ≥ APnj,s > SPnj,s

0 otherwise

(35)

CSnj,s =



APnj,s
SPnj,s

100 if 0 ≤ APnj,s ≤ SPnj,s(
2 −

APnj,s
SPnj,s

)
100 if 2SPnj,s ≥ APnj,s > SPnj,s

0 otherwise

(36)

where APni,b and RP
n
i,b are the i

th buyer’s actual demand and
P2P stated demand in real time, receptively. Similarly, APnj,s
and SPnj,s are the j

th seller’s actual surplus generation and P2P
agreed generation.

F. POWER EXCHANGE LIMITING FACTORS
The mathematical modeling of power exchange limiting
factors is based on the proportional relationship between the
credit rating difference and the desired or target rating. The
actual credit rating for a buyer can be denoted as CCSni,b,
while the target credit rating is represented as CCSni,bt .
Similarly, for a seller, the actual credit rating is given by
CCSnj,s, and the target credit rating is denoted as CCSnj,st .
The calculation of the nth interval power injection limit
takes into account the credit score of the (n − 2)th interval,
considering its significance in addressing time complexity
within real-time market situations. This concept can be
succinctly expressed as follows:

ψn
i,b = 1 − σ ni ⋆

(CCSni,bt − CCSn−2
i,b )

CCSni,bt
(37)

ψn
j,s = 1 − σ nj ⋆

(CCSnj,st − CCSn−2
j,s )

CCSnj,st
(38)

Here, the σ ni and σ nj represents a scaling factor that
determines the magnitude of the power exchange limiting
factor. The larger the scaling factor, the higher the penalty
for larger deviations from the target credit rating. The term
(CCSni,bt − CCSn−2

i,b ) represents the difference between the
target and actual credit ratings for buyer. If the actual rating is
equal to the target rating, then power exchange limiting factor
is one.

IV. TRANSACTIVE ENERGY TRADING METHODOLOGY
A. EXISTING ENERGY TRADING APPROACH
Fig.4a provides a visual representation of the sequential
procedures entailed in enabling energy trading through
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FIGURE 4. Conceptual comparison of TES framework (a) Existed. (b) Proposed.

FIGURE 5. Participant one day offer/bidding (a) Power. (b) Price.

established methodologies. The process commences with
the Distribution System Operator (DSO) initiating their
engagement in the market, thereby attracting participants
with self-interest in energy trading. Subsequently, each
participant engages in resolving an optimization problem
aimed at minimizing their projected electricity expenses,

which are contingent on day-ahead utility pricing. This
optimization process often encompasses adjustments to the
operational schedules of specific appliances through a variety
of optimization algorithms. Following the completion of
the optimization tasks, all market participants proceed to
update their transmitted datasets, subsequently transmitting
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FIGURE 6. Participants offered/bidding uncertainty range. (a) Case study
1-3. (b) Extended case study.

them back to the DSO. Once the DSO has received the
final datasets from all participants, it proceeds to compute
the market-clearing quantity and corresponding price. Any
surplus energy not cleared by end-users is routed to the utility
at predefined rates, and this data is subsequently disseminated
to all participants.

B. PROPOSED ENERGY TRADING APPROACH
Figures 3 and 4b illustrate the sequential steps involved
in facilitating energy trading within the LTES. Initially,
the LTES opens the market for participation, attracting
self-interested participants who wish to engage in energy
trading. All the participants simultaneously transmit their
data sets to CEE. Once the CEE receives data from
all participants, it initializes the iteration count (k) and
broadcasts the net demand information to all participants.
Upon receiving this net demand data, the IREMS of each
participant solves an optimization problem to minimize
their expected upcoming electricity bill. This optimization
may involve adjusting the operating intervals of certain
appliances (represented as SLs) using a binary genetic
algorithm (BGA) [40]. After the optimization process, all the
market participants update their transmitting data sets and

transmit them back to the LTES. Participants then await the
updated net demand data. This iterative process continues
until the convergence criterion is met. The iteration process
terminates either when the community generation is nearly
fully utilized for community demands or when the maximum
number of iterations, determined by the LTES, is reached.
Upon receiving the final data set from the participants, the
CEE modifies it by multiplying the power exchange limits,
which are determined based on the credit scores calculated in
the previous interval. Subsequently, the CEE calculates the
market-clearing quantity and price by solving optimization
problem defined in (19)-(22). Uncleared energy among end
users is exported to the utility at predefined prices, and this
dataset is broadcasted to the participants.

V. CASE STUDY
In this section, the feasibility and performance of the
proposed LTES are validated by various case studies with ten
residential end users as participants.

A. SIMULATION SETUP
The details of different type of household appliances along
with power rating, and renewable generation are taken from
[40]. The utility defined energy selling and buying prices
are taken from [39]. In order to have efficient trading, the
duration of trading interval for the proposed LTES is assumed
to be 15 minutes. The individual participants generation and
demand pattern of a particular day is depicted in Fig.5a.
Further, the offer and bidding price of the participants is
illustrated in Fig. 5b. In the proposed research, the initial
default energy behavior of participants over a month is
taken randomly because it depends on person greediness,
stochastic generation and demand which is shown in Fig.6a.
MATLAB is used with the following computer configuration
to develop and analyze the entire community’s transactive
energy market: 16 GB of RAM with a 3 GHz Intel Core
i5 CPU.

B. CASE STUDY ENVIRONMENT
This section presents the simulation environment of various
case studies to compare the performance of the proposed
credit based TEM with different TEM available in the
literature. Four case studies are presented in this work:
Case-I-Ten prosumers with uncertainty energy behavior;
Case-II-Five prosumers and Five consumers with uncertainty
energy behavior; Case-III-Ten prosumers with uncertain
energy behavior and two final demand response choices.
Extended Case Study-Ten prosumers with more uncertain
energy behavior than Case-III and two final demand response
choices. Each case study takes into consideration the
following scenarios:

1) Participants in P2G scheme with utility predefined
electricity selling and buying prices.

2) Participants in P2P energy trading without credit rating
based LTES.
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FIGURE 7. Participants monthly electricity bill. (a) Case-1 (b) Case-2 (c) Case-3 (d) Extended case study.

3) Participants in P2P energy trading with credit
rating-based LTES and utility-set power injection/
extraction restrictions.

4) Participants in P2P energy trading with credit rating
based LTES and TEM-set import/export restrictions.

5) Participants in P2P energy trading with priority based
LTES by considering the credit rating.

In the proposed case studies, the penalty unit price for
participants energy uncertainties are listed in Table. 2.
Further, the utility related charges for scenario 2 to 5 are
considered as 0.01$/kWh [24] and the value of priority factor
(ϒ) is taken as 2. To simplify the computational processes and
provide the participants with greater flexibility in deciding
power exchange limits, a classification system based on credit
scores has been implemented. The participants are divided
into seven grades, as outlined in Table 3. For instance, Grade
A comprises participants with credit scores between 91 and
100. In this scenario, the highest value in the credit score
range is employed for calculating power exchange limits.In
the case study environment, the limits assigned to buyers are
determined using (37), while the limits assigned to sellers are
calculated using (38). The scaling factors σ ni and σ nj are both
set to one in this calculation. Furthermore, the desired credit
rating values (CCSni,bt , CCS

n
j,st ) are set as 100. These values

are generally determined by the CEE considering the reserve
capacity and the necessary level of uncertainty mitigation.

TABLE 2. Considered penalty price for uncertainty in energy.

TABLE 3. Participant classification by credit score.

Similar considerations are applied to participants in the other
grades, leading to the determination of appropriate power
exchange limiting factors. These factors define the maximum
power injection limit (ψn

j,s) for sellers and the maximum
power extraction limit (ψn

i,b) for buyers.

C. TRANSACTIVE ENERGY MARKET ENVIRONMENT IN
CASE STUDIES
The proposed market is a forward market in which a day
is split into 15-minute intervals, resulting in 96 slots every
day. Further, the LTES participants are supposed to be
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TABLE 4. Comparing the monthly uncertainty energy under various scenarios in case I and case II.

TABLE 5. Demand response strategy with net LTES net demand (kW).

rational, as stated in [24], i.e., always making the best
decisions objectively, and non-strategic. The market offering
and bidding power began five minutes before the actual
energy trading period. Prosumers first disclose their surplus
demand or generation to CEE. The CEE computes the
community net demand (demand - generation) using the
quoted demand of individual prosumers and disclose it to all
prosumers in the community. Within the first two minutes,
all prosumers have two beneficial options with a one-minute

time frame to rearrange their loads based on community
net demand. Prosumers send their final bids to CEE, which
then adjusts them according to individual credit ratings.
This approach uses the latest credit rating as a reference
for setting power limits. CEE has further optimized market
clearing and communicates successful bids and offers to all
participants. Finally, the uncleared prosumers’ generation
or demand will be shared with the grid at utility stated
pricing.
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TABLE 6. Comparing the monthly electricity bill with the previously proposed mechanisms in case-III.

TABLE 7. Comparing the monthly uncertainty energy under various
scenarios in extended case study.

D. COMPARATIVE ANALYSIS
1) CASE STUDY-I
In this study, the credit rating based LTES is validated
by considering ten residential end users as energy trading
participants. However, participants demand response in two
beneficial choice is not taken into account. Hence, the
offers/bid quoted by the participants at the starting of the
trading is considered as final values to clear the energy
market.

The simulation findings shown in Fig. 7a demonstrate that
the participants’ electricity bills are lower in scenario 3 when
compared to other scenarios. Furthermore, in scenario 3, the
monthly participant power uncertainty is greatly decreased,
as seen in Table. 6. Although the power uncertainties in
scenarios 4 and 5 are lower than in scenario 2, the reductions
in participants’ electricity costs are not great. In the proposed
method, that means in scenario 3, locality total monthly
electricity bill savings are 17.18% compared to scenario 2,
which represents the conventional transactive energy method.

2) CASE STUDY-II
The deployment of in-house renewable energy-based power
generation will only be determined by the user’s wealth and
the available space at the installation location. Some users
may be unable to afford it. The suggested LTES technique
encourages these users to trade their demand for a lower price
than utility. In this case study, 50% of the participants (P1,
P2, P3, P4, and P5) are considered as residential prosumers,
while the remaining 50% (P6, P7, P8, P9, and P10) are
considered as residential customers in order to validate the
credit rating based LTES. However, participants’ demand
response in two beneficial choices is ignored. The simulation
findings in Fig. 7b show that scenario 3 have lower electricity
bills than all other scenarios. Furthermore, it reduces the
prosumer’s monthly uncertain energy, as shown in table 5.
Despite the fact that there is less uncertainty in scenarios 4 and
5 than in scenario 2, the electricity bills are nearly same to
that in scenario 1 since the utility and LTES impose equal
penalties. Based on the results, when comparing scenario
3 with scenario 2, the total locality’s monthly electricity bill
savings is 16.11%.

3) CASE STUDY-III
This case study assumes that all prosumers have two
beneficial choices for rescheduling their loads within a
time frame of one minute for each option. Further, the
net demand of community will be announced by utility to
increase the economic benefit of participants. In order to
have better view of study, Table 5 illustrate the changes
in participants quoted demand with respect to the demand
response economic choices. It is presumed that all the
participants has similar demand response strategies to alter
their demand pattern. CEE will clear the energy market
based on the quoted demand of individual participants and
computed credit rating of them. The monthly electricity
bills of the participants are computed for different scenarios
and depicted in Fig. 7c. According to the results, scenario
3 provides a lower electricity bill than the other scenarios.
Further, the uncertainties are reduced in scenario 3 by
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rejecting the set of offers and bids based on the credit
ratings. However, scenarios 4 and 5 give lower electricity
bills compared to scenarios 1 and 2 without rejecting any set
of the offers or bids. Based on the results, when comparing
scenario 3 with scenario 2, the total monthly savings on the
electricity bill for the locality is 20.07%. Additionally, the
proposed method is compared with existing mechanisms in
the literature related to demand response-based transactive
energy market clearing mechanisms, as presented in Table 5.
In this comparison, the P2G market clearing mechanism
is considered from reference [39], the Average Market
Clearing (AMC) Strategy, and the Generation-to-Demand
Ratio (GDR) based market clearing strategy are considered
from reference [26], the Periodic Iterative Double Auction
(PIDA) clearing mechanism is considered from [25], and
the Vickrey Clarke Groves (VCG) mechanism is considered
from [21]. According to the results, the proposed method is
consistently offering lower electricity bills compared to all
other existing mechanisms. In this study, a novel demand
response strategy is being introduced to increase market
liquidity, which specifically reducing electricity bills. In the
GDR strategy, sellers are benefiting during high-demand
periods, while buyers are benefiting during low-demand
periods. The PIDA strategy is providing lower electricity
bills for participants who are rescheduling loads based on
the prices declared by the CEE. The VCG mechanism is
yielding lower electricity bills for high marginal contribution
players. In addition, within the proposed method’s credit
rating priority approach, credible players experience higher
monetary gains in scenario 3 when compared to all other
methods.

4) EXTENDED CASE STUDY
The case study - III is extended for diverse uncertainty
energy behavior in participants’ demand and generation as
shown in Fig. 6b to further demonstrate the efficacy of
the suggested methodologies. Table 7 shows the monthly
aggregated uncertainty for various scenarios and Fig. 7d
also depicts the participants’ monthly electricity bills. The
observations indicate that scenario 3 resulted in a lower
electricity bill than the other scenarios. Based on the results,
scenario 3 represents a monthly saving of 23.22% in the total
locality electricity bill compared to latest transactive energy
method scenario 2.

VI. CONCLUSION
In this paper, the key issue in locality transactive energy
market such as participants uncertain energy behavior is
addressed. The proposedmethodology assists the participants
to reduce their uncertain energy behaviors based on the credit
score. The CEE computes the individuals’ credit score with
due consideration to the deviation in LTES quoted demand
and actual demand. CEE optimally cleared the energy market
in a way beneficial to all LTES participants. Further, the CEE
penalizes the participants for their default energy behavior.
The effectiveness and efficiency of the proposed credit

rating-based locality transactive energy market are validated
through various case studies. A comparative analysis is
performed with due consideration to the various power
injection and extraction limits imposed by transactive energy
market operators and utility to demonstrate the necessity
of uncertainty demand or generation mitigation. One key
aspect of the suggested technique is that it may eliminate
participants who do not lower their energy uncertainty as
early as possible. As a result, participants are self-motivated
to minimize their default energy behavior to enhance their
electricity bill savings. Simultaneously, the proposed P2P
energy market’s reliability and sustainability would also be
enhanced. Future research will be able to analyze the power
quality and stability issues related to energy default behavior.
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