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ABSTRACT Decentralized identities return control of identities to the identity owners. Although current
work enhances the privacy of these publicly stored identities using encryption and zero-knowledge proofs,
decentralized identities can still be abused due to the following problems:
• identity holders, e.g., blockchain peers, can profile identity owners by looking at ‘‘who is reading which
identity data’’, and

• identity verifiers, e.g., applications and websites, learn private data about owners, like their monetary
values and previous transactions during the identity linking.

In the worst case scenario, the identity holders and verifiers collaboratively profile users to learn more
information. As a practical solution, we introduce the notion ofDouble Blind Proofs of Existence (DBPoE),
which shows that an opened DID is committed in one of the constant-sized multi-generator Pedersen
commitments (33 Bytes at 128-bit security), and nothing else. Hence, our DBPoE double-blinds identity
holders and identity verifiers to mitigate private information leakage. Equally importantly, our multi-
generator commitment-based DBPoE is more resistant to graph analysis than other one-of-many proofs,
e.g., ring signatures, which we show mathematically using the maximal flow problem. Our DBPoE protocol
has a size complexity of O(log2(N ) + m) when the real commitment is hidden in N commitments and m
generators are used, e.g., when m = 4, a DBPoE of 1000 commitments is only 3 KB.

INDEX TERMS Decentralized identities, blockchain, privacy-preserving cryptography.

I. INTRODUCTION
Many privacy policies state that users’ data will be shared
with ‘‘our affiliates and other trusted businesses or persons’’
but do not explicitly state with whom. This simple statement
takes away users’ privacy entirely and creates a legal
loophole in what data holders can do with their users’ data.
Unfortunately, these types of data sharing have become a
common practice, not only in social media platforms but also
in sensitive applications like banking and healthcare systems.

Many examples show that buyers can deanonymize
them [1], [2] even though the aggregated or anonymous data
were shared. It is noteworthy that these cases [1], [2] were
only identified because the datasets were public. There is no
way to verify whether so-called anonymization is sufficient
or not when the data selling happens in private.

The associate editor coordinating the review of this manuscript and

approving it for publication was Wei Huang .

Many privacy enthusiasts promote user-controlled data
management as a countermeasure since users take action and
try to protect their data without relying on central authorities.
Decentralized Identity Management (DIM): The first step

to the user-controlled data management is decentralized
identity management [3], [4], [5], [6], [7], [8] where users
control their identity information, and these identities are
stored in decentralized storage rather than a centralized
authority, e.g., blockchain network. A decentralized identity
has an identifier called DID (Decentralized Identifier) and an
identity document containing more details about the identity.
We separate participants in DIM according to their roles.
• Identity Owner – The identity belongs to the owner.
An identity owner can be an individual, an organization,
or even a physical object.

• Identity Vendor (Issuer) – While some DID details
could be self-issued, other details may be issued by an
external party, e.g., a social media platform that issues
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FIGURE 1. An example of traditional DIM.

usernames or a vehicle department that issues licenses.
Sometimes, a DID document can combine multiple
attributes issued by different vendors.

• IdentityHolder – The entity who holds identities and/or
identities’ proofs of existence, e.g., an identity registry
or a blockchain network.

• Identity Verifier – The entity who verifies the follow-
ing: (1) the existence (2) the ownership, e.g., a website
that verifies identities for log-in.

Traditional Decentralized Identity Management: In DIM,
the protocol works as follows. First, identity owners
• decide what to include in their DID document,
• secure the DID documents, e.g., using encryption or
zero-knowledge proofs for sensitive information, and

• send the secured identity or its short proof to the holder.
Since this immutable storage is expensive, owners may
store short proofs of the secured identity like certificates,
hashes, or commitments and keep the secured identity with
them. Later, the owners can use these identities for other
applications by simply showing the identity and its existence
records on blockchains or registries to identity verifiers.
Therefore, the identity owner can decide what information
to reveal, to whom, and when. For example, as shown in
Figure 1, Bob registers his DID in a commitment Com2.
Later, he can use DID to create an account on a website.
For that, Bob sends a proof of existence PoE along with
Com2 and DID. Then the website checks if
1) Com2 is in the blockchain,
2) DID is in Com2 via PoE (existence), and
3) Bob owns DID via PoE (ownership).
Many DID proposals rely on blockchain networks as

their identity holders due to their availability and trustless
immutability. However, this transparency creates new ways
to profile and gain private information about identity owners.
In this paper, we address the following two privacy issues by
introducing Double Blind Proof of Existence.

1) Identity Holders like blockchain peers gain infor-
mation from who reads which data. For example,
when the website reads Bob’s DID, the blockchain
peer could derive that Bob is a user of the website

(Figure 1). This unintended information gain is an issue
for blockchains as well sincemany users do not maintain
their blockchain copy but rely on resourceful peers [9],
[10], [11] via application interfaces. Those peers gain
a significant amount of private data about users and
their activities. Similar to centralized identity holders,
these user data are also shared with third parties, e.g.,
‘‘we process and collect may be transferred between
companies, Services, and employees affiliated with us
as a normal part of conducting business’’. Even though
these resourceful peers use anonymizing techniques,
deanonymization could be possible [1], [2].

2) Identity verifiers, e.g., websites, individuals’ applica-
tions, or organizations’ clients, learn more information
about individuals and organizations when DID are
directly published on the blockchain or linked to the
blockchain, e.g., previous transactions, monetary values,
or relations to others [12], [13], [14], [15], [16], [17],
[18]. From Figure 1, the website learns that Bob owns
200 coins.

In short, encrypting data, zero-knowledge proofs, or pri-
vate information retrieval cannot solve the above-mentioned
privacy issues. Also, these two problems must be solved
simultaneously since both roles (blockchain peer/database
and identity verifier) may be played by the same entity or
they share data.

More importantly, these solutions must be affordable
and should not overload the database or the blockchain;
otherwise, solutions become impractical due to the cost
(storing data on blockchains is expensive), and may not be
affordable to identity owners, eventually forcing them to use
cheap yet no-privacy solutions which turn owners into their
products.

A. OUR CONTRIBUTION
We propose the notion of Double Blind Proofs of Existence
(DBPoE) to prove the existence of a hidden DID in
hiding commitments without directly showing where it
is to mitigate private information leakage. Our DBPoE
implementation on SECP256k1 Elliptic Curve Library is
public on https://github.com/DData-core/secp256k1-did.

More formally, our special DID commitments with Double
Blind PoEs provide the following properties.
• Hiding Succinct Decentralized Identifiers: Our
constant-sized commitments can hold many DIDs while
hiding them with a secret key. More precisely, we use
m-generator Pedersen commitments, e.g., when m = 3,
C = gkhf(DID)11 hf(DID)22 ∈ G is a Pedersen commitment
of two DID documents when the secret key k ∈ Zq,
and g, h1, h2 are nothing-up-my-sleeve generators of
multiplicative group G of prime order q. Here, f () turns
a DID document into an element of Zq.

• Double Blinding Proof of Existence (from the Zero-
Knowledge Argument): DBPoE only shows that the
disclosed DID document is committed in one of the
given commitments without revealing
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– in which commitment it is residing,
– which generator was used to commit, and
– other DID documents of the same commitment.
Hence, DBPoEs mitigate the discovery of the corre-
sponding commitment in the long term, even if verifiers
share/sell DBPoE data with each other. We discuss the
graph analysis and why our system is more resistant
to them than other one-of-many proofs due to the
multi-generator commitments in Section V.
Our DBPoE is built from modifying Groth-Kohlweiss
Protocol [19] for multi-generator commitments. The
asymptotic size complexity of our DBPoE is only
O(log2(N )+m) when N is the number of commitments
and m is the number of generators.

• Unforgeable Ownership with PoE: A valid PoE can
be only created if the creator knows the corresponding
secret key of the commitment. Hence, PoEs cannot be
forged even if the attacker knows all hidden DIDs. Thus,
the applications can verify the authenticity of the owner
by including a time-based or random challengemessage,
and the same DID can be used many times with fresh
challenge messages.

B. PRACTICAL USE OF DBPoE
DIM has a wide range of architectures to fit into different
applications. Here, we narrow them down to two types:
identities for organizations and individuals. Organizations or
public figures publish identities for their clients or audiences,
while individuals only want to share their identities with
necessary parties like websites or applications. Due to these
different objectives, we propose two DBPoE-based DIM
solutions and explain them with two case studies. As a
solution to our third case study, we show how these two
DBPoE-based DIM solutions can coexist to build a DIM
suitable for many applications.

1) CASE STUDY: DBPoE-BASED SELF-SOVEREIGN
IDENTITIES TO REPLACE FEDERATED IDENTITIES
Many Internet users have roughly 60-150 different digital
identities. Federated Identity Management (FIM) [20], [21]
was introduced to make identity management easy for users
by allowing them to reuse an identity issued by a reputable
vendor, e.g., reusing a social media profile or email. However,
this simplicity comes at the cost of privacy since the vendor
can trace user activities across multiple applications.

Why blockchain-based DIM? Many free account appli-
cations like shopping websites or social media require users
to have some form of legitimacy, like an email address
or a phone number, to prevent attackers from overloading
the system with fake accounts. DIDs can replace these
federated identities since blockchains add amonetary-based
legitimacy to self-issued identities with immutability. Note
that this kind of monetary legitimacy can only be bought with
decentralized systems since if the user pays someone or some
organization for identities, users’ applications will contact
the centralized entity, and all user activities are again visible

FIGURE 2. Cost-effective and double-blind Decentralized Identities from
multi-generator commitments. Here, DID1 and DID2 cannot be linked
together or to the commitment com2 when they do not have any linkable
information even if Website 1 and Website 2 collaborate with each other.

to that centralized entity. Hence, blockchain-based DID is a
better option to reduce the number of fake accounts while
giving control to the identity owners, not to a centralized
vendor as explained in [22], [23], and [24].

Issues with blockchain-based DIM. While this setup
solves the centralized tracing, it creates the previously
mentioned problems.
• Many users (e.g., mobile applications) do not keep
their own blockchain copy but rely on resourceful peers
via application interfaces. Hence, peers learn identity
owners’ activities when applications or DID verifiers
request DIDs from those peers.

• A blockchain includes other data like monetary values
or relations to other identities. The application or DID
verifiers learn the user’s data on the blockchain when a
user shares DID directly.

DBPoE-based Solution. We propose off-chain DBPoE-
based DIM for individuals where multiple DIDs of the same
identity owner are hidden in a multi-generator Pedersen
commitment. Later, the identity owner can open one of the
DIDs to an identity verifier by sendingmultiple commitments
with an offline DBPoE to prove that the opened DID is in one
of the commitments.

We modify the previous example in Figure 1 with our
DBPoE solution (see Figure 2). Here, Bob stores two DIDs
with no linkable information in com2. Then, he sends
DIDs and their double-blind DBPoEs with commitment sets,
including com2, to websites to create accounts. Once the
websites receive DBPoEs, they verify the existence and
ownership using these shared commitment sets. However,
unlike traditional DIM, they can not identify the exact
commitment even if the websites share information. Thus,
Bob can hide how many coins he has. Also, a website’s
blockchain peer(s) only sees that the website is reading
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multiple commitments and cannot exactly identify which
commitment’s owner is a user of that website.1

These multi-generator Pedersen commitments are only
33 bytes, and our DBPoE has logarithmic size complexity.
Hence, the identity owners can use large commitment sets at
an affordable price to gain more privacy, e.g., storing a 33-
byte commitment only costs ≈ 0.01 USD in Ethereum, and
an offline DBPoE of 1000 commitments is only 3 KB.

2) CASE STUDY: DBPoE-BASED DECENTRALIZED IDENTITY
FOR SOFTWARE INTEGRITY
Software companies issue certificates to prevent malicious
changes to the software during communication. These
certificates’ signatures can be used as legal evidence against
the company in case of malicious activity.

Why Blockchain-based DIM? Providing software
integrity is one of the exhaustively discussed use cases
of blockchains [25], [26]. Once the company self-issues
an identity or obtains an identity from traditional PKI
(Public Key Infrastructure), they share the certificate on a
public website or individually with clients. However, unlike
traditional PKI, publishing their identities on immutable
blockchains makes double identities visible to everyone.
Hence, users can see if the company is trying to be malicious
to a target, e.g., the company targets Alice with malicious
software but shares proper software with others. Also, the
company can identify if someone tries to pretend to be
them with similar information. These features are difficult
to achieve in traditional PKI but easy with blockchain-based
PKI due to the immutability and transparency.

Issues with blockchain-based DIM. However, directly
publishing certificates creates the following problem.
• Software buyers learn the company’s previous transac-
tions, monetary values, or relations to others through the
blockchain history [12], [13], [14], [15], [16], [17], [18].

DBPoE-based Solution. We propose a layer 3 decentral-
ized registry DBPoE-based DIM where the blockchain(s)
holds hiding commitments, but the registry dedicated to
identities holds certificates through DBPoE. As a result,
the certificates are public, but they are not linked to any
blockchain account. For organizations, publishing DBPoE is
more expensive than for individuals’ offline communication;
however, it also gives them visibility with more privacy and
security.

3) CASE STUDY: DBPoE-BASED METAVERSE IDENTITIES TO
SOLVE INTEROPERABILITY
Metaverses [27] interconnect many different Internet appli-
cations and websites. The biggest issue of metaverses is
interoperability since it is not secure or private to share
everythingwith a centralized vendor. Still, wewant to connect
all metaverse builders to give the best user experience. For
example, users can build their own 3Dhomes andworkplaces,

1We only assume the application layer anonymity in this paper, not the
network or the physical layer anonymity.

shop at a digital shopping mall, and play video games
using the same account. These applications, i.e., 3D homes,
shopping websites, and video games, may be from different
vendors, but the user’s identity information, like the username
and the avatar, has to be shared.

Why Blockchain-based DIM? Blockchains provide the
transparency and immutability we need for self-issued iden-
tities with monetary-based legitimacy. Hence, Blockchain-
based DIM can bring different entities together without a
centralized authority. Many metaverse projects are currently
building DIM solutions for identities and also for NFT
(Non-Faungible Tokens) to connect with content creators
(prefer [27], [28] for more details).

Issues with blockchain-based DIM. However, directly
publishing identities creates the following privacy issues.
• Blockchain peers who sell APIs to applications or
websites learn user activities by looking at who is
reading which identities.

• Also, those applications and websites learn users’ mon-
etary values and previous activities on the blockchain
when the user links the DID.

DBPoE-based Solution. Metaverse identities can belong
to individuals or organizations (or public figures). Individuals
do not need publicity, while organizations must publish
their identities. Hence, we propose a layer 3 decentralized
registry where identities can be confidential or public.
All public identities with DBPoEs are published on the
layer 3 decentralized registry, and owners share confidential
identities with a DBPoE directly with applications, as shown
in Figure 3.

FIGURE 3. Solving interoperability of metaverses when public DIDs and
confidential DIDs coexist.

a: ROAD-MAP
We discuss preliminaries, including multi-generator com-
mitments and argument of zero-knowledge, in Section II.
DID documents, DID cores, and what to commit from DID
documents are explained in Section III. Then, we show how to
create a double-blind PoE for commitments without directly
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opening DIDs in Section IV. Why DBPoE is stronger than
other one-of-many proofs against graph analysis is explained
in Section V. Then, we evaluate the performance of DBPoE
implementation in Section VI. Finally, we discuss DBPoE
solutions, related work, and future work in Section VII.

II. PRELIMINARIES
A. NOTATION
We use ‘‘:=’’ and ‘‘=:’’ for assigning, e.g., a := b means
that a was assigned to b. For a cyclic group G = ⟨g⟩, g
denotes a generator of G. Zq = Z/qZ is a ring of modular
integers in the range [0, q − 1] for modulus q. Bold letters
like a denote vectors of n elements such that a = [ai]ni=0 =
{a0, a1, .., an−1}. m

$
←−M denotes that m is drawn uniformly

at random from a set M. ϵ(λ) = 1/o(λc) is a negligible
function ∀c ∈ N. We use pp, λ, and A for public parameters,
security level, and p.p.t. adversaries, respectively.
Definition 1 (Discrete Log Problem): For G = ⟨g⟩ of

prime order q, AdvDLG for an adversary A is defined as,

AdvDLG,A := Pr[y ?
= gx | y

$
←− G, x

$
←− A(y)].

TheDL problem is (τ, e)-hard ifA(τ, ε) runs it at most τ times
and AdvDLG,A ≤ ε.
Definition 2: (Decisional Diffie-Hellman (DDH) Log

Problem) For G = ⟨g⟩ of prime order q, AdvDDHG,A ≤ ϵ(λ)
for an adversary A is defined as,

2

∣∣∣∣∣∣12−Pr
x ?
= x ′

∣∣∣(a, b, c) $
←− Z3

q; (y0, y1) := (ab, c)

x
$
←− [0, 1], x ′

$
←− A(ga, gb, gyx )

∣∣∣∣∣∣ .
B. PEDERSEN COMMITMENTS
The original Pedersen commitments [29] and their security
properties are explained here. Let COM be the Pedersen
commitment scheme [29], defined as follows,

• COM.set(λ) : return pp = (G, g, h, q) ▶ where G =
⟨g⟩ = ⟨h⟩ is a group of prime order q ∈ {0, 1}λ, and the
discrete logarithms of g and h relative to each other are
unknown — they are ‘‘nothing-up-my-sleeve’’ (NUMS)
group generators.

• COM.cmt(pp, v, k) : return C = gkhv ∈ G ▶ commits
value v and key k

• COM.opn(pp,C, v, k) : C ?
= gkhv ∈ G ▶ opens

commitment C

COM have the following security properties. Here, we use
Vpp for the value space.
Definition 3 (Completeness): When pp ← COM.set(λ),

COM for any λ is complete if

Pr

[
COM.opn(pp,COM.cmt(pp, v, r), v, r)

∣∣v← Vpp
r ← Zq

]
= 1.

Definition 4 (Hiding and Binding): For any p.p.t. adver-
sary A, COM is hiding and binding if,

AdvHIDCOM=

∣∣∣∣∣∣∣∣∣∣∣
Pr

b
?
=b′

∣∣∣∣
(v0, v1)

$
←−Vpp, b

$
←−{0, 1}

r
$
←− Zq

C←COM.cmt(pp, vb, r),

b′← A(pp,C, v0, v1)

−
1
2

∣∣∣∣∣∣∣∣∣∣∣
≤ϵ(λ)

AdvBNDCOM=Pr

 v0
?
̸= v1∧

gr0hv0 ?
=gr1hv1

|(v0, r0, v1, r1)←A(pp)

≤ϵ(λ).

We recollect the security theorem of [29] here.
Theorem 1: 2-generator Pedersen commitments are com-

plete, perfectly hiding, and computationally binding if the DL
problem and DDH problems are hard.

C. MULTI-GENERATOR PEDERSEN COMMITMENTS
Instead of original Pedersen commitments, we use
m-generator commitments where m could be larger than 2.
When m = 2, this protocol is equivalent to the original
Pedersen commitments. This m contributes to the privacy
against graph analysis in our DBPoEs. Hence, how to selectm
and its impact will be explained in Section V. Let COM be a
m-generator Pedersen commitment scheme.

• COM.set(m,λ) : return pp = (G, g, (h1, .., hm−1), q) ▶
where G = ⟨g⟩ = ⟨ht ⟩ for any t ∈ [1,m− 1] is a group
of prime order q ∈ {0, 1}λ, and g and (h1, .., hm−1) are
NUMS group generators.

• COM.cmt(pp, v1, ..vm−1, k): return C=gk
∏m−1

t=1 hvtt ∈G
• COM.opn(pp,C, v1, ..vm−1, k) : C

?
= gk

∏m−1
t=1 hvtt ∈ G

Multi-Generator Pedersen commitments have the follow-
ing security properties.
Definition 5 (Completeness): When pp ← COM.set(λ),

COM for any λ is complete if v← Vm−1pp and

Pr[COM.opn(pp,COM.cmt(pp, v, r), v, r)|r ← Zq]=1.
Definition 6 (Hiding and Binding): COM is hiding and

binding if AdvHIDCOM,A = ϵ(λ) and AdvBNDCOM,A = ϵ(λ) for any
p.p.t. adversary A, when,

AdvHIDCOM =

∣∣∣Pr
b ?
= b′

∣∣∣∣
(v0, ̸=v1) ∈ V2×m−1

pp ←A(pp)

b
$
←−{0, 1}; r

$
←− Zq

C←COM.cmt(pp, vb, r),

b′←A(pp,C, v0, v1)

−1
2

∣∣∣

AdvBNDCOM=Pr



v0
?
̸=v1∧

gr0
m−1∏
t=1

h
v0,t
t

?
=

gr1
m−1∏
t=1

h
v1,t
t

∣∣ (v0, r0
v1, r1

)
←A(pp)
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Theorem 2: Multi-generator Pedersen commitments are
complete, perfectly hiding, and computationally binding of
the DL and DDH problems are hard for each generator.

D. ZERO-KNOWLEDGE ARGUMENT
Our DBPoEs are arguments of zero-knowledge. An argu-
ment of zero-knowledge can cryptographically prove some
statement without revealing any other information. In our
case, the statement proves that an identity exists in the
given commitments without revealing other identities, the
index of the commitment, the index of the generator, etc.
In general, the interactive version of our protocol contains
three algorithms: the setup set which produces a Common
Reference String (CRS) pp, the interactive prover P , and the
interactive verifier V . Each interaction between P and V of
inputs s and t is denoted as tr = ⟨P(s),V(t)⟩, which can
be 1 if V accepts; otherwise, 0. We call a relation R is a
polynomial-time-decidable ternary relation of pp ∈ {0, 1}∗,
a witness w ∈ {0, 1}∗ of a statement u ∈ {0, 1}∗ such that
(pp, u,w) ∈ R. From this, we can define a CRS-dependent
language L = {x|∃w : (pp, x,w) ∈ R} to be the set of
statements that have a witness in R. We formally define the
Argument of Knowledge below.
Definition 7 (Argument of Knowledge): A protocol (set,

P,V) is called argument of knowledge for relation R if it
is complete (Definition 8), sound (Definition 10), and has
computational witness-extended emulation (Definition 9).
Definition 8 (Completeness): (set,P,V) is complete if

Pr

[
(pp, u,w) ∈ R∨

⟨P(pp, u,w),V(pp, u)⟩ ?=1

∣∣(u,w)←A(pp)] = 1

when pp := set(1λ) and for any p.p.t. adversary A.
Definition 9 (ComputationalWitness-Extended Emulation):

Let A1 and A2 be interactive non-uniform p.p.t. adver-
saries. The protocol (set,P,V) has computational
witness-extended emulation if there is an p.p.t. emulator E
for all deterministic polynomial time prover P ′ such that the
following holds∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr

A1(tr)
?
= 1

∣∣ pp := set(1λ)

(u, s)← A2(pp)

tr := ⟨P ′(pp, u, s),V(pp, u)⟩


−Pr

A1(tr)
?
= 1 ∧ tr ?

= 1
∣∣ pp := set(1λ)

(u, s)← A2(pp)

(tr,w)← EO(pp, u)



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ ϵ(λ).

for an Oracle O = ⟨P ′(pp, u, s),V(pp, u)⟩, and allows to
rewind the protocol to any point and continue with new
random coin tosses for the verifier.
Definition 10 (n-Special Soundness): Let there be an effi-

cient extraction algorithm X that can compute the witness
from n ‘‘valid’’ transcripts, [(xi, si)]ni=1 such that ∀xi ̸= xj
when i ̸= j with the same initial message a of the prover. Then
(set,P,V) is n-special sound if X outputs a valid witness

forR such that AdvKSDK,A is,

Pr

[
(pp, u,w) ?

= R
∣∣(u, a, [(xi, si)]ni=1)←A(pp)
w← X (u, a, [(xi, si)]ni=1)

]
= 1− ϵ(λ)

when pp := set(1λ) and for any p.p.t. adversary A.
This special-soundness guarantees that a transcript can be

only created by a prover who knows the witness.
In this paper, we are more interested in non-interactive

protocols where only the last transcript is exchanged between
the prover and the verifier. To simulate them cryptograph-
ically, we turn into the public coin argument of special
honest verifiers where all messages from verifiers are chosen
from a public uniformly random tape independently from
the prover’s messages. In other words, there is a simulator
that can simulate the whole argument if the verifier knows
random challenges in advance. We define the public coin
zero-knowledge argument below.
Definition 11 (Public Coin Argument of Zero-Knowledge):

Public coin argument of zero-knowledge of (set,P,V) is
a special honest verifier zero-knowledge argument if there
exists a p.p.t. simulator S such that∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr

(pp, u,w)∈R
∧A1(tr)

?
= 1

∣∣ pp := set(1λ)

(u,w; ρ)← A2(pp)

tr :=⟨P ′(pp, u,w),V(pp, u; ρ)⟩


−Pr

(pp, u,w) ∈ R
∧A1(tr)

?
= 1

∣∣ pp := set(1λ)

(u,w; ρ)← A2(pp)

tr ← S(pp, u; ρ)



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ϵ(λ)

for non-uniform p.p.t. adversaries A1 and A2.
In real-life, applications are secured from these arbitrary

verifiers in the CRSmodel using standard techniques like [30]
with a small overhead.

E. GROTH-KOHLWEISS PROTOCOL
Our DBPoE protocol is an improvement of Groth-Kohlweiss
proofs [19] that allows proving that one-out-of-many com-
mitments have a value of ‘‘0’’ with a logarithmic sized
complexity, i.e., the communication cost is O(logN ) when
there are N commitments. We explain the interactive
Groth-Kohlweiss protocol in Figure 4. Let δi,j be 1 if i = j;
otherwise, 0. Also, il presents the lth bit of i < 2n such that
i0 is the least significant bit of i. Let n be ⌈log2(N )⌉. For any
j ∈ [0,N − 1] and [al]nl=0, we can precompute the following
polynomial coefficients [[pi,l]nl=0]

N
i=0 such that

∀i ∈ [0,N ) : Pi[X ]

=

n∏
l=0

(δil ,jlX + (−1)δ0,il al)

= δi,jXn +
(
pi,n−1Xn−1 + ..+ pi,1X1

+ pi,0
)

(1)

The core of the protocol is that polynomials’ Xn coefficient
will be non-zero if and only if i = j. Using this,
Groth-Kohlweiss protocol proves that there is a ‘‘0’’ value
commitment without revealing its index j.
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FIGURE 4. Groth-Kohlweiss protocol [19]: Proving one commitment has a value ‘‘0’’ out of N commitments.

DBPoE should be unmalleable, i.e., they have the
quasi-unique response property, that is, given an accepting
proof, an adversary cannot find a new valid response for the
same initial message a and challenge x as follows.
Definition 12: (Quasi-Unique Response) The protocol of

(set,P,V) has quasi unique responses if for any p.p.t.
adversary A if

Pr

 V(pp, u, x, s)∧
V(pp, u, x, s′) = 1∧

s ̸= s′

∣∣∣ pp := set(1λ)

(u, a, x, s, s′)← A(pp)

 ≤ ϵ(λ)

Theorem 3: Groth-Kohlweiss protocol is complete and
provides zero-knowledge argument (see [19]).
Theorem 4: Non-interactive Groth-Kohlweiss protocol

that replaces verifier’s challenges with random-oracle
challenges is complete, has quasi unique responses, and
provides public coin zero-knowledge argument.

III. DID CORES AND INTERNET PERSONAS
This section explains what to include in a DID commitment
and why an identity owner may need to maintain separate
DID documents.

First, we have to identify what should be embedded in
commitments. A decentralized identity is associated with a
DID document, e.g., the following is an example ofW3CDID
standardization version 1 [31].
{ "@context " : [
‘ ‘ h t t p s : / /www.w3 . org / ns / d i d / v1 ’ ’ , \ l d o t s
]
‘ ‘ i d " : " d i d : example :123456789 abcde fgh i ’ ’ ,

" v e r i f i c a t i o nMe t h o d " : [ {
" i d " : " d i d : example :123# _Qq0UL2Fq651Q0Fj \ l d o t s " ,
‘ ‘ t yp e " : " JsonWebKey2020 ’ ’ ,
‘ ‘ c o n t r o l l e r " : " d i d : example : 123 ’ ’ ,
" publ icKeyJwk " : {

‘ ‘ c r v " : " Ed25519 ’ ’ ,
" x " : "VCpo2LMLhn6iWku8MKvSLg \ l d o t s " ,
‘ ‘ k t y " : "OKP’ ’ ,
" k i d " : " _Qq0UL2Fq651Q0Fjd6TvnY \ l d o t s "
}
} , {
‘ ‘ i d " : " d i d : example :123456789 a b c d e f g h i # keys −1 ’ ’ ,
‘ ‘ t yp e " : " Ed25519Ver i f i c a t i onKey2020 ’ ’ ,
" c o n t r o l l e r " : " d i d : example : pq r s tuvwxyz \ l d o t s " ,
" pub l i cKeyMu l t i b a s e " : " \ l d o t s "
} ] ,
}

Each DID document contains a Decentralized Identifier
(DID), a cryptographically generated self-issued identifier
that does not require centralized authority. For example,
did:example:123456789abcdefghi and did:web:example.com
are two DIDs that use a static identifier and a website name
for unique identification, respectively.

In general, DID documents contain essential data like
associated public keys, personal claims, and assertions of
verifiable credentials. However, not all data are required to
commit to the commitment. For example, some personal
claims may not be required for all identity verifiers. Still,
if we directly commit the entire DID document, it must be
presented when we open the commitment. Also, knowing
some associated public keys, but not all, may be sufficient
to authenticate the users and their verifiable claims through
a time-stamped signature. Hence, the DID document’s data
required for a particular identity verifier is called DID-
core, e.g., the previous DID document could also be the
DID core of did:example:123456789abcdefghi#keys-1 for
a website. Therefore, we commit hashes of DID cores
in Pedersen commitments, which we call DID commit-
ments. Since we use m-generator Pedersen commitments,
a single DID commitment can hold at most (m − 1)
DID cores.
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A. INTERNET PERSONAS AND ANONYMITY
A DID document holds personal information about a person,
especially with verifiable credentials. For example, the
following is a verifiable credential (verifiable university
certificate) issued for did:example:123456789abcdefghi.

{ "@context " : [
‘ ‘ h t t p s : / /www.w3 . org / 2 0 1 8 / c r e d e n t i a l s / v1 ’ ’ , \ l d o t s
] ,
‘ ‘ i d " : " h t t p : / / un i . edu / c r e d e n t i a l s / 3732 ’ ’ ,
" t yp e " : [
‘ ‘ V e r i f i a b l e C r e d e n t i a l ’ ’ ,
‘ ‘ U n i v e r s i t yD e g r e eC r e d e n t i a l ’ ’
] ,
‘ ‘ i s s u e r " : " h t t p s : / / un i . edu / i s s u e r s / ’ ’ ,
‘ ‘ i s s u a n c eDa t e " : "2010−01−01T19 : 2 3 : 2 4Z ’ ’ ,
" c r e d e n t i a l S u b j e c t " : {
‘ ‘ i d " : " d i d : example :123456789 abcde fgh i ’ ’ ,
" d eg r e e " : {
‘ ‘ t yp e " : " Bache lo rDegree ’ ’ ,
‘ ‘ name " : " Bache l o r _o f _Sc i en c e_and_Ar t s ’ ’
}
} ,
" p r oo f " : {
‘ ‘ t yp e " : " Ed25519Signa tu re2020 ’ ’ ,
‘ ‘ c r e a t e d " : "2022−02−25T14 : 5 8 : 4 3Z ’ ’ ,
‘ ‘ v e r i f i c a t i o nMe t h o d " : " h t t p s : / / un i . edu / i s s u e r s / # key−1 ’ ’ ,
‘ ‘ p r oo fPu r po s e " : " a s s e r t i o nMe thod ’ ’ ,
" p roo fVa lue " : " \ l d o t s "
}
}

While these types of verifiable credentials may link digital
identities to the real world, many DIDs may represent an
online persona without any links to the physical world.
In fact, due to the excessive information selling between
applications, one may use multiple internet personas to create
boundaries and limit tracing. For example, an individual may
use different internet personas for work, personal browsing,
or different social media platforms. Hence, it is common to
have multiple DID documents with different DID identifiers
with no unique identifiers.

Recall that multi-generator DID commitments with
DBPoE give the same privacy as a commitment of a
single DID core. In other words, a verifier cannot link
two DID cores together even if they are committed in the
same DID commitment if there are no unique identifiers
between DID cores. Hence, this property is cost-effective for
identity owners and promotes privacy-enhancing techniques
for individuals rather than cheap yet no-privacy solutions.

IV. DOUBLE BLIND PROOFS OF EXISTENCE
In this section, we explain how to commit DID cores in
a way that one DID core can be opened without revealing
anything other than the statement, ‘‘the opened DID core is
committed in the commitments’’, which hides the secret key,
other DID cores of the owner’s commitment, the index of the
particular DID commitment, or even the index of the DID
core. We call this zero-knowledge opening, Double Blind
Proofs of Existence (DBPoE) of a decentralized identity.

The protocol works as follows (see Figure 5). First, the
identity owner publishes the DID commitment, e.g., as a
blockchain transaction or registers the commitment in the
DID registry. When the identity owner decides to use one
of the DID cores in the commitment, he/she sends the

commitment to the identity verifier V , mixed with other
commitments. Then, V sends a challenge message w to the
identity owner. After that, the owner sends a DBPoE of
DID core DC to V , which V verifies against the challenge
message w. This challenge may contain application names
or timestamps to recognize the identity owner and prevent
reusing the DBPoE of other applications or old DBPoEs
(see Figure 5).
The owner does not need the openings of other commit-

ments to create a DBPoE; hence, the real DID commitment
can be hidden in others’ DID commitments. In that way,
1) commitment holders, i.e., blockchain peers and database

owners, can not directly identify identity owners’
applications or services, and

2) identity verifiers, i.e., applications or services, are
unable to trace identity owners’ activities on the
blockchain.

Note: These types of one-out-of-many proofs are sus-
ceptible to graph analysis in the long run, especially when
many DIDs use the same applications or the applications
exchange/sell DBPoE data with each other. In the next
section, we explain how our DBPoE counter-protects against
graph analysis for long-term use with m-generator Pedersen
commitments even when identity verifiers collaboratively try
to discover the real DID commitment.

Let DBPoE be the DBPoE protocol.
• DBPoE.prove(pp, [Ci]Ni=1, jN , jm, k, [DCt ]

m−1
t=1 ,w) :

return π or error ⊥ ▶ create a Double Blind PoE π to
show that DID core DC is committed in one of [Ci]ni=1.

• DBPoE.verify(pp, [Ci]Ni=1, π,DC,w) : return 0/1 ▶
verify whether DCi is committed in [Ci]Ni=1 or not.

The DBPoE protocol between the prover P (identity
owner) and the verifier V is explain in Figure 5.
Expected Security Properties: We expect DBPoE to be

complete, Existentially Unforgeable against Chosen Chal-
lenges (EUF), and to have the argument of zero-knowledge.
Definition 13 (Completeness): DBPoE is complete for

some N ∈ N and m ∈ N if, equation (2) as shown at the
bottom of the next page.

We expect PoEs to be unforgeable such that even though
the adversary knows the DID core, they should not be able
to forge another proof for a fresh challenge. We focus on the
strong unforgeability where the adversary can request many
challenges for the same DID commitment set from the Oracle
5. The adversary’s goal is to generate a fresh pair of proof and
a challenge that the oracle has not returned. Otherwise, PoE is
unforgeable, or applications can check the existence of DID
cores soundly with fresh challenges. The complete definition
is stated below.
Definition 14 (Existential Unforgeability Against Chosen

Challenge Attacks (EUF) :) DBPoE is unforgeable against
chosen challenges ifAdvEUFDBPoE = Pr[GameEUFDBPoE(1

λ,N )] ≤
ϵ(λ) when N is size of the commitments.

GameEUFPoE(1
λ, n) :

pp := COM.set(1λ)

k
$
←− pp ▷ generate random key
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FIGURE 5. Double blind proof of existence protocol.

[Hash(DC)t ]
m−1
t=1 ← A(pp) ▷ get DID core from A

jN
$
←− [1,N ] and jm

$
←− [1,m− 1] ▷ indices

CjN := COM.cmt(pp, k, [Hash(DC)t ]
m−1
t=1 ) ▷ the commitment

[Ci]Ni=1,i̸=jN
$
←− pp ▷ collect other commitments

Q = {} ▷ query table
▷ A requests multiple queries from Oracle 5

{π ′,w′} ← A5(·)(pp, [Ci]Ni=1) ▷ A generates a proof

return {π ′,w′}
?
̸∈ Q∧DBPoE.verify(pp, [Ci]Ni=1, π,DC,w) ?=1

Oracle 5[Ci]Ni=1,jN ,jm,k,[DCt ]
m−1
t=1 ,Q(w) :

π := DBPoE.prove(pp, [Ci]Ni=1, jN , jm, k, [DCt ]
m−1
t=1 ,w)

Q = Q ∪ (π,w)

We expect the argument of zero-knowledge in Definition 7
to achieve ‘‘double blind’’ property for our DBPoE such
that the statement only says that ‘‘the opened DID core is
committed in one of the given commitments’’. Hence, the
adversary can not figure out the real commitment and the
generator more than the probability of 1/N and 1/(m − 1),
respectively, when the DID commitment set size is N , and m
generators are used.

A. OUR PROPOSAL
Our PoE proposal allows to commit multiple DID cores
within the same DID commitment and only reveals the
following zero-knowledge argument, ‘‘The opened DID core
exists in the DID commitment set, and nothing else’’.
Our interactive protocol is stated in Figure 6, and the
non-interactive protocol used for GitHub Implementation is
stated below.

1: ▶ Creates a PoE for the jmth DID core of CjN =

COM.cmt(pp, k, [DCt ]
m−1
t=1 ) when the verifier’s challenge is w

and DID commitment set is [Ci]Ni=1.
2: DBPoE.prove(pp, [Ci]Ni=1, jN , jm, k, [DCt ]

m−1
t=1 ,w) :

3: Here, ▶ δi,j = 1 if i ?
= j; otherwise, δi,j = 0.

4: c = Hash([Ci]Ni=1)
5: For t = [0,m− 1) :
6: dt = Hash(DCt ) ∈ Zq; yt ← Zq;
7: For t = [0,m− 1) :
8: Yt =

∏m−1
t ′=1,t ′ ̸=t h

yt′
t ′ ∈ G

9: x0 ← Hash([Ci]Ni=1, [Yt ]
m−1
t=1 ,w, c, djm ) ∈ Zq

10: For t = [0,m− 1) :
11: et = x0dt + yt ∈ Zq
12: Arrange N × (m− 1) commitments as follows:
13: For i = [0,N ) : For t ∈ [0,m− 1) :
14: C ′m×i+t=(Ci)

x0h
(−x0djm )
t Yt

(∏m−1
t ′=0;t ′ ̸=t h

−et′
t ′

)
∈G

15: n = ⌈log2(N × (m− 1))⌉
16: j = jNm+ jm ▷ index of the ‘‘0’’ commitment
17: For l = [0, n) :
18: rl , al , sl , vl , ρl ← Zq
19: Find coefficients [[pi,l ]

N−1
i=0 ]n−1l=0 when

20: δi,jXn +
∑n−1

l=0 pi,lX
l
=
∏n−1
l=0

(
δil ,jlX + (−1)δ0,il al

)
21: Jl = COM.cmt(jl , rl )
22: Al = COM.cmt(al , sl )
23: Bl = COM.cmt(bl , vl ) when bl = jl × al
24: Dl =

(∏N (m−1)−1
i=0 (C ′i )

pi,l
)
× COM.cmt(0, ρl )

25: x←Hash(x0, [C ′i ]
N (m−1)
i=0 , [Jl ,Al ,Bl ,Dl ]nl=0,w, c, dj)∈Zq

26: For l = [0, n) :
27: fl = jlx + al ∈ Zq
28: zal = rlx + sl ∈ Zq; zbl = rl (x − fl )+ vl ∈ Zq
29: zd = (kx0 )xn +

∑n−1
l=0 ρlxl ∈ Zq

30: π = ([Jl ,Al ,Bl ,Dl , fl , zal , zbl ]
n
l=0, zd , [Yt , et ]

m−1
0=1 )

31: ▶ Verify a proof for the DID core DC
32: DBPoE.verify(pp, [Ci]Ni=1, π,DC,w) :

33: ([Jl ,Al ,Bl ,Dl , fl , zal , zbl ]
n
l=0, zd , [Yt , et ]

m−1
t=0 ) := π

34: c = Hash([Ci]ni=0)
35: d = Hash(DC)
36: x0 ← Hash([Ci]Ni=0, [Yt ]

m−1
t=0 ,w, c, d) ∈ Zq

37: Arrange N × (m− 1) commitments as follows:
38: For i = [0,N ) : For t ∈ [0,m− 1) :
39: C ′m×i+t = (Ci)x0h

(−x0d)
t Yt

(∏m−1
t ′=0;t ′ ̸=t h

−et′
t ′

)
∈ G

40: n = ⌈log2(N × (m− 1))⌉
41: x0 ← Hash([Ci]Ni=0, [Yt ]

m−1
t=0 ,w, c, d) ∈ Zq

42: x←Hash(x0, [C ′i ]
N (m−1)
i=0 , [Jl ,Al ,Bl ,Dl ]nl=0,w, c, d)∈Zq

43: Return 1 if the followings are equal, otherwise, return 0.
44: For l = [0, n) :
45: J xl Al

?
= COM.cmt(fl , zal )

46: J x−fll Bl
?
= COM.cmt(0, zbl )

47:
∏N (m−1)−1
i=0 (C ′i )

∏n−1
l=0 (δl,il x−fl )

∏n−1
l=0 D

−xl
l

48:
?
=COM.cmt(0, zd )

Pr

DBPoE.verify(pp,

[Ci]Ni=1, π,DCjm ,w)

∣∣CjN := COM.cmt(pp, k, [DCt ]
m−1
t=1 ])

π := DBPoE.prove(pp, [Ci]Ni=1,

jN , jm, k, [DCt ]
m−1
t=1 ,w)

 = 1 (2)
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FIGURE 6. Interactive protocol of double blind proofs of existence.

B. SECURITY PROOFS
Theorem 5: The interactive DBPoE protocol is complete

and provides the argument of knowledge, including special
soundness and computational witness-extended emulation.
Theorem 6: The non-interactive DBPoE protocol is com-

plete, Existential Unforgeable against Chosen Challenge
Attacks (EUF), and provides the public coin argument of
knowledge of special honest verifiers, including special
soundness and computational witness-extended emulation.

1) COMPLETENESS
Here, we show that the arrange commitment set includes a
zero value commitment in the (jN ∗ m+ jm)th index.

C ′jN ∗m+jm

= (CJN )
x0h

(−x0djm )
Jm YJm

 m−1∏
t ′=1;t ′ ̸=Jm

h
−et′
t ′


= (CJN )

x0h
(−x0djm )
Jm

m−1∏
t ′=1,t ′ ̸=jm

h
yt′
t ′

m−1∏
t ′=1;t ′ ̸=Jm

h
−(dt′x0+yt′ )
t ′

= (gk
m−1∏
t ′=1

h
dt′
t ′ )

x0h
(−x0djm )
Jm

 m−1∏
t ′=1,t ′ ̸=jm

h
−(dt′x0)
t ′


= gkx0

Hence, we claim the correctness according toGroth-Kohlweiss
Protocol [19].
Lemma 1: DBPoE has public coin argument of knowl-

edge when solving DDH problem is intractable, and
Groth-Kohlweiss protocol has public coin argument of
knowledge (see Appendix A).
Lemma 2: Let Oracle 5 be separated into three oracles

Y for computing Yt values, H0 for x0 values, and G for
Groth-Kohlweiss protocol. Assume that a p.p.t. adversary
makes qy queries to Y , qg queries to G, qx0 queries to
the random oracle H0. The adversary’s advantage is at
most

AdvEUFDBPoE ≤ Adv
quasi−u
DK,A + AdvDDHG,A

+ O
(
qy
q
+
qy(qy + qx0 )

q2

)
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during time t ′ = O(t + poly(qy + qx0 + qg)) when solving
DL problem requires at least time t. The proof is explained in
Appendix B.

We claim that Theorem 5 is valid due to the completeness
of DBPoE, Lemma 1, and Lemma 2.

V. DBPOE AGAINST THE GRAPH ANALYSIS OF
COLLABORATING VERIFIERS
One-of-many proofs are subjected to graph analysis, where
the collaborating verifiers try to figure out the exact
commitment or at least try to narrow down the space of
possible commitments. In this section, we explain the best
practices and why our DBPoEs are more resistant to those
graph analyses than other one-of-many proofs with examples.

A. BEST PRACTICE 1: SAME COMMITMENT SET FOR THE
SAME DID
We start with the best practices of creating DBPoEs for the
sameDID core. For example, simple analysis would be where
a verifier(s) know two DBPoEs of two commitment sets such
that (DC, π1,C1) and (DC, π2,C2) for the same DID core
DC. In this case, the verifier(s) can narrow down the possible
commitment space to (C1

⋂
C2) with the hypothesize that the

DID core is only committed once due to the financial reasons.
Hence, the best practice is to use the same commitment set.
In other words, the owner shares the commitment set at the
beginning with the verifier and only sends DBPoEs after
that. This reduces the communication complexity of sending
commitments as well.

B. BEST PRACTICE 2: LARGE COMMITMENT SETS
AGAINST THE EXCLUSION ATTACKS
In DBPoE and other one-of-many proofs, the probability of
the opened value being in a particular commitment is 1/N
if there are N number of commitments in the set C. Hence,
if the verifier(s) knows N ′ number of commitments C′ out
of C, they can narrow down the possible commitment set to
(C \ C′), and the probability increases to 1/(N − N ′).
Hence, it is important to include many commitments to
the set to increase commitments unknown to the verifier(s).
Fortunately, the size complexity of our DBPoE is logarithmic
to N ; hence, many commitments can be included efficiently.
DBPoE vs. Other One-of-Many Proofs:
The verifier(s) can narrow down the possible commitment

set by turning it into the maximal-flow problem [32], [33],
[34], [35], [36] when they know many one-of-many proofs
and their commitment sets, which we call graph analysis. Let
us explain the graph analysis of other one-of-many Proofs,
e.g., ring signatures [37], [38], [39], [40], [41] or confidential
digital asset protocols [42], [43], using a sample analysis.
Let there be [C1,C2,C3] and DID cores’ commitment sets;
(DC1, [C1,C2]), (DC2, [C1,C2]), and (DC3, [C2,C3]). Once
we turn the data into a maximal-flow problem (by setting
the flow between any vertices into 1), the graph looks like
in Figure 7. There are only two solutions to the problem
as illustrated in Figure 12. From the solutions, we can see

FIGURE 7. Converting other One-of-Many proof data to maximal-flow
problem.

FIGURE 8. Converting our DBPoE data to maximal-flow problem when
m = 3 (two value generators).

that C3 is the commitment of DC3 (the probability is 1 in
Table 2). Similarly, the verifiers can considerably narrow
down the possible commitments when they have access to
large data sets (e.g., collaborating verifiers) even though the
commitment set is considerably large in one-of-many proofs.

As discussed before, DBPoEs usemulti-generator commit-
ments. Hence, DBPoE are more resistant to graph analysis
than other one-of-many proofs. For example, if we use the
same data for our DBPoE protocol even with m = 3 (means
two value generators), the flow capacity of a commitment
to the drain increases to 2 from 1 as explained in Figure 8.
Hence, there are seven solutions as shown in Figure 13, and
we cannot identify DC3’s commitment unlike in other one-
of-many proofs. Suppose we update m to be m = 4 (three
value generators). In that case, the probabilities are equal to
the initial probabilities, and the graph analysis does not gain
any information as shown in Table 5.

TABLE 1. Initial one-of-many data probabilities.

TABLE 2. One-of-many data probabilities after the maximal-flow
solutions.
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TABLE 3. Initial DBPoE data probabilities.

TABLE 4. m = 3: DBPoE data probabilities after the maximal-flow
solutions.

TABLE 5. m = 4: DBPoE data probabilities after the maximal-flow
solutions.

C. BEST PRACTICE 3: LARGE M AND N AGAINST GRAPH
ANALYSIS
We can mitigate graph analysis by increasing the m and
N altogether, i.e., the number of possible DID cores in a
N commitments is N × (m − 1). Also, as we saw in the
graph analysis example, the edge between the drain to each
commitment increases to (m−1). Hence, increasingm and N
mitigates these graph analyses. In other words, verifiers need
more information and more processing time for these attacks
[37], [38], [39], [40], [41]. Since the size complexity of our
DBPoE isO(log2 N +m), computing DBPoE for large N and
m is efficient and private.
In the next section, we show how DBPoE size, generation

time, and verification time change with N and m.

VI. PERFORMANCE EVALUATION
We implement the DBPoE protocol using SECP256k1
Elliptic Curve Library (public on https://github.com/DData-
core/secp256k1-did ). This section evaluates DBPoE sizes,
generation times, and verification times for different N
and m values. Note that all times are measured on i7-
1065G7 CPU at 1.30GHz as single thread programs.
Our DBPoE’s asymptotic time complexity is O(Nm) for
DBPoE generation and verification. Figure 9 and Figure 10
show DBPoE generation time and verification times for
different N and m values, respectively. The asymptotic size
complexity is O(log2(N ) + m), and the sizes are shown
in Figure 11 for different N and m values. Due to these
short sizes, e.g., a DBPoE of 1024 commitments (m =

4) is only 3KB, DBPoE can be efficiently transferred to
verifiers.

FIGURE 9. Generation time vs. N and m.

FIGURE 10. Verification time vs. N and m.

FIGURE 11. DBPoE Size vs. N and m.

VII. DISCUSSION AND RELATED WORK
The need for decentralized identities or user-controlled
identities [6], [44], [45], [46] became essential with misuses
of identities like selling them to third-parties and the
incidents of de-anonymization of anonymous data set [1],
[2]. As it appears, the first problem of decentralized identity
management is standardization. The World Wide Web
Consortium (W3C), with the collaboration of an international
community group, released the first version of DID v.1 [31].
The released draft contains methods of primitive identity
management and the standards for advanced features like
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selective disclosable identities based on BBS+ signatures
[47]. In selective disclosable identities [48], the users can
decide what to disclose from a DID Document and to whom;
hence, disclosed data and their proofs can be seen as an
advanced form of DID cores. Therefore, identity owners can
use DBPoE for selective disclosable identities by updating
DID cores with relevant proofs, which gives more privacy
with double-blinding.

Note: There are many advanced zero-knowledge protocols
[43], [49] that are not standardized by [31] but can be used
to improve the privacy of decentralized identities other than
the protocols based on BBS+ signatures [47]. DBPoE is also
generally compatible with those protocols since the DID core
can be modified according to their proofs.

TABLE 6. DIM Solutions and their DBPoE Compatibility. Here, ‘‘✓∗’’
means that the native blockchain is only suitable for offline-DBPoEs.

Blockchain-based decentralized identity platforms like
[10], [50], [51], [52], [53], [54], [55], [56], [57], [58],
and [59] were introduced to bring decentralization and
immutability of blockchains to identity management. While
some of them rely on Public blockchains like Ethereum [60],
others build special identity blockchains like Hyperledger
Indy [50]. However, they still need to address the privacy
issues we address in this paper, that is, how to protect
privacy from identity holders and identity verifiers, especially
when they collaborate to profile users. Hence, these current
implementations can benefit from our efficient DBPoEs to
improve user privacy at a little cost. In Table 6, we state
current DIM solutions and whether they are compatible with
DBPoE or not. Here, ‘‘✓∗’’ means that the native blockchain
is only suitable for storing multi-generator commitments due
to the cost of storing data, and the DBPoE should be shared
offline. For example, according to the current prices, storing
a 33-byte commitment roughly costs 0.01 USD on Ethereum.
Hence, we believe that the affordability of our DBPoE
solutions can improve Decentralized Identity Management
for day-to-day use.

One-of-many proofs like ring signatures [37], [38], [39],
[40], [41] or confidential digital asset protocols [42], [43] are
common protocols that provide double-blinding properties
for different applications, e.g., [61] and [62]. In general, they
are allowed to hide something within a set. However, unlike

these protocols, theDBPoE protocol is built to resist the graph
analysis of malicious collaborating verifiers who share data,
similar to what happens to decentralized identities. DBPoE
protocol overcomes these attacks by using multi-generator
commitments, as explained in Section V. We state the related
work of DBPoE protocols and their complexities in Table 7.
As shown in the table, the DBPoE protocol can commit
many DIDs in a single commitment yet be more resistant
to graph analysis than any other one-of-many proofs. Our
DBPoE-based DID solutions are more affordable and private
for regular use.

TABLE 7. Other one-of-many proofs vs. DBPoE protocol.

VIII. CONCLUSION
This work proposes the notion of Double Blind Proofs
of Existence (DBPoE) for decentralized identity solutions
to improve the privacy of decentralized identities against
identity holders and identity verifiers since blockchain peers
or applications that share data with others can profile users,
learn private information, and deanonymize the pseudonyms
of blockchain users. Due to the complexity of logarithmic
size, current decentralized identity solution platforms can
benefit from this double-blind PoE protocol to give their
users more affordable privacy. Our main objective is to
improve decentralized identities for regular use. Technical
improvements like DBPoE with logarithmic size complexity
can motivate researchers and application developers to
use Decentralized Identity solutions for regular use, e.g.,
to replace federated identities or use as interoperable
metaverse identities that connect identity holders in a trustless
manner.

APPENDIX A
PROOFS OF PUBLIC COIN ARGUMENT OF KNOWLEDGE
We prove Lemma 1 in this section. We separate our DBPoE
protocol into two sections: arranging the new commitment
set and using Groth-Kohlweiss protocol that shows that
there is a ‘‘0’’ value commitment. Since we have proven
the completeness in Section IV, we directly move to the
soundness of DBPoE.

A. (N + 2)-SPECIAL SOUNDNESS
For the first section, witness is the simulated [yt , dt =
Hash(DCt )]

m−1
t=0 . To prove the special soundness of the
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FIGURE 12. Graph analysis of other One-of-Many proof data from
maximal-flow problem.

first section, let the initial message be a = ([DC]m−1t=0 ,

[Ci]Ni=1, [Yt ]
m−1
t=1 ) and the adversary has access to

• (x0, [et ]
m−1
t=0 ) and (x ′0, [et ]

m−1
t=0 ) such that et =

x0Hash(DCt )+yt and e
′
t = x ′0Hash(DCt )+ yt .

The adversary can compute the simulated hashes of DID
cores since for each t , dt ← (et − e′t )/(x0 − x ′0) ∈ Zq or
the adversary has to break DL problem of the generators to
find another dt set that returns Yt .

For the second section, we refer to [19] (pages 9-10), which
shows that (n + 1) queries are sufficient to extract a valid
witness. Altogether, we claim that DBPoE provides (n+ 2)-
Special Soundness from Definition 10.

B. SPECIAL HONEST VERIFIER ZERO-KNOWLEDGE
We start with the first section where the adversary gets
challenge x0 in advance for known (DC, [Ci]Ni=1). The

adversary first picks jm
$
←− [1,m − 1] and [et ]

m−1
t=1 )

and [DCt ]
m−1
t=1,t ̸=jm

) uniformly at random and then computes
[Yt ]

m−1
t=1 such that

Yt =
m−1∏

t ′=1,t ′ ̸=t

h
et′−x0Hash(DCt′ )
t ′ ∈ G (3)

due to DDH problem. Now, the adversary has witnesses
([DCt ]

m−1
t=1 )) for the first section of the protocol. Hence, the

adversary can move to proof of Groth-Kohlweiss protocol
(see page 10 in [19]) for the new commitment set [C ′l ]

N (m−1)
l=1

such that

C ′m(i−1)+t = (Ci)x0h
(−x0djm )
t Yt

 m−1∏
t ′=1;t ′ ̸=t

h
−et′
t ′

 ∈ G.

Therefore, we can claim DBPoE protocol has Special Honest
Verifier Zero-Knowledge (from Definition 11).

Finally, we claim that Lemma 1 is correct due to DBPoE
being complete, (2(m − 1) + (n + 1))−special sound, and
special honest verifier zero-Knowledge.

APPENDIX B
PROOFS OF UNFORGEABILITY
We separate DBPoE computation of Oracle5 inGameEUFDBPoE
of Definition IV into three Oracles; Y , H0, and G. For any
input [yt ]

m−1
t=0 , Oracle Y computes;

Y : Yt =
m−1∏

t ′=1,t ′ ̸=t

hyt′ ∈ G

and saves queries and their outputs inQy such thatQy = Qy∪

([yt ]
m−1
t=0 , [Yt ]

m−1
t=0 ). Oracle H0 computes the hash challenge

x0 for any input ([Ci]Ni=0, [Yt ]
m−1
t=0 ,w, c, d) such that

H0 : x0← Hash([Ci]Ni=0, [Yt ]
m−1
t=0 ,w, c, d) ∈ Zq.

Oracle H0 also keeps queries and outputs such that Qh =

Qh ∪ (x0, ([Ci]Ni=0, [Yt ]
m−1
t=0 ,w, c, d)). Oracle G computes the

non-interactive Groth-Kohlweiss proofs of the rearranged
commitments against any (x0, [C ′i ]

N (m−1)
i=0 ) and saves them in

Qq ∪ ((x0, [C ′i ]
N (m−1)
i=0 ), π). In other words, for each query,

Oracle 5 runs calls Y ,H0, and G once.
Let there be a p.p.t. adversary who makes qy number of

queries to Oracle Y , qg number of queries to Oracle G, and
qx0 queries to the random oracleH0.

A. CASE 1
In the initial case,Amakes at most qy queries toY . The game
terminates with 1 if output [Yt ]

m−1
t=0 was queried for a different

input previously such that [yt ]
m−1
t=0 ̸= [y′t ]

m−1
t=0 and

Yt =
m−1∏

t ′=1,t ′ ̸=t

hyt′ =
m−1∏

t ′=1,t ′ ̸=t

hy
′

t′ ∈ G.

Here, the probability of A winning the game is Pr1 ≤ qy/q
since A can be simulated to solve DL problem between the
generators.

B. CASE 2
In this case, we assume that A makes at most qx0 queries
to H0 with inputs it received from Y . The game returns 1 if
output x ′0 = x0 was queried previously for a different input
or Y terminates with 1. At this stage, each input is no longer
uniformly random because A can modify inputs. However,
there will be at least one almost uniformly random string in
[Ci]Ni=0, [Yt ]

m−1
t=0 due to DDH problem. The probability of A

winning the game is Pr2 ≤ AdvDDHG,A + qy(qy + qx0 )/q
2.

C. CASE 3
Now, we let the adversary to make qq queries to G. Each
of these queries triggers a query to Y and H0. The game
returns 1 if the output was queried for different inputs or any
of the oracles returns 1. The probability of G terminating is
Pr3 ≤ Adv

quasi−u
DK,A since A can be simulated to break the

quasi-uniqueness of non-interactiveGroth-Kohlweiss proofs.
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FIGURE 13. Graph analysis of our DBPoE data from maximal-flow problem.

Hence, we see that AdvEUFDBPoE ≤ Adv
quasi−u
DK,A + AdvDDHG,A +

O(qy/q + qy(qy + qx0 )/q
2), and conclude that Lemma 2 is

valid.
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