
Received 6 October 2023, accepted 20 November 2023, date of publication 23 November 2023,
date of current version 29 November 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3336287

Remote Labs Meet Computational Notebooks:
An Architecture for Simplifying the Workflow of
Remote Educational Experiments
OSWALDO VANEGAS-GUILLÉN 1,2, (Member, IEEE), PABLO PARRA-ROSERO 3,
JAVIER MUÑOZ-ANTÓN1, JOHANNA ZUMBA-GAMBOA 4, AND CARLOS DILLON 5
1Department of Energy Engineering, School of Industrial Engineering, Universidad Politécnica de Madrid, 28006 Madrid, Spain
2Department of Information Technologies, Faculty of Mathematical and Physical Sciences, Universidad de Guayaquil, Guayaquil 090514, Ecuador
3Industrial Processes Research Group (GIPI), Universidad Politécnica Salesiana, Guayaquil 090101, Ecuador
4Department of Computational Systems, Faculty of Mathematical and Physical Sciences, Universidad de Guayaquil, Guayaquil 090514, Ecuador
5Department of Computer Science, Universidad Politécnica Salesiana, Guayaquil 090101, Ecuador

Corresponding author: Oswaldo Vanegas-Guillén (oswaldo.vanegasg@ug.edu.ec)

This work was supported in part by Universidad de Guayaquil under Grant FCI-007-2021; in part by the Industrial Processes Research
Group (GIPI), Universidad Politécnica Salesiana del Ecuador; and in part by the Department of Energy Engineering, School of Industrial
Engineering, Technical University of Madrid.

This work involved human subjects or animals in its research. Approval of all ethical and experimental procedures and protocols was
granted by the Human Research Ethics Committee of the University of Guayaquil, and performed in line with the Organic Law of Personal
Data Protection of Ecuador.

ABSTRACT Online laboratories and computational notebooks have established themselves as essential tools
in the fields of engineering and science education, significantly enhancing the teaching and learning expe-
rience. Despite the benefits of remote laboratories, and although architectures, models, and tools have been
proposed to facilitate the work involved in their implementation, challenges remain in the development life-
cycle. This paper proposes a novel architecture that simplifies the development and management of remote
experiments using a publisher-subscriber communication paradigm to securely and efficiently integrate
WebAssembly computational notebooks. This approach eliminates the need for additional infrastructure
for communication at the lab stations. It also avoids the need for servers to deploy notebooks, because all
operations, calculations, and data processing run locally in the user’s web browser. To achieve this, a remote
laboratory management system (RLMS) interoperable with virtual learning environments was designed and
implemented, including notebook-based authoring, learning scenarios, and grading tools. As a case study,
remote experiments were developed to characterize and evaluate the performance of heat exchangers using
a thermal fluid systems test bench built for this project. Several quality criteria categorized into technical,
educational, and adaptability groups were quantitatively evaluated using the responses of 70 participants
from two different universities. The analysis highlighted both the advantages and challenges of the proposal,
with a significant emphasis on interaction, scalability, reusability, interoperability, and accessibility. The
results confirmed the effectiveness of the notebooks in each phase of the remote experiments, demonstrating
an increase in students’ active and autonomous participation and exploration.

INDEX TERMS Architecture, computational notebook, engineering education, online experimentation,
online laboratory, remote laboratory, thermal fluids.

The associate editor coordinating the review of this manuscript and

approving it for publication was Nikhil Padhi .

I. INTRODUCTION
The onset of the COVID-19 pandemic catalyzed a signifi-
cant development in infrastructure and technologies aimed at
remote access to learning and research resources, including

132496

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0003-4284-3412
https://orcid.org/0000-0003-1596-3961
https://orcid.org/0000-0001-5733-5678
https://orcid.org/0000-0002-4805-4898
https://orcid.org/0000-0002-9864-9857


O. Vanegas-Guillén et al.: Remote Labs Meet Computational Notebooks

remote laboratories, which still bring a number of challenges
that are not present when accessing other types of digital-only
resources online, such as accessibility, resource usage, and
security, among themain ones [1]. A remote laboratory is a set
of devices arranged to perform experiments at a distance by
monitoring and controlling these devices over a network, usu-
ally the Internet [2]. Remote labs offer a practical way to gain
hands-on and real-world experience [3], [4], which provides
students with the experimental work they need to succeed
in engineering, science, and technology learning [1], [4].
Remote labs are an evolving technology [2] that has proven
to potentially offer benefits such as availability, observability,
accessibility, shareability, safety, resource optimization, and
cost advantages [4], [5].
Resource constraints are a common factor in education

in numerous regions worldwide. Remote laboratory systems
require not only resources to acquire equipment, but also
infrastructure, development, and maintenance, which tend
to increase as more users are able to access the system.
Ultimately, all of these factors translate into difficulties for
developers and lab administrators in providing experiments
to lab users.

To develop remote laboratories, various approaches or
models can be followed, with Laboratory as a Service (LaaS)
[2] being the most common, which is also the one used by
the IEEE Standard for Networked Smart Learning Objects for
Online (IEEE Std 1876-2019) [1]. With the LaaS approach,
labs must develop infrastructure to be offered through ser-
vices and functionalities through a lab server, which requires
access to a public Internet protocol (IP) address to offer the
lab through the Internet. This can represent limitations for
many laboratories with limited network infrastructure and
development resources, apart from problems with institu-
tional security protocols and policies [6], [7]. Alternatives
to the self-managed lab server have been presented, such as
the Laboratory Infrastructure as a Service (LIaaS) model [8]
with its Experiment Dispatcher, or the NCSLab [9], [10],
[11] with its Experiment Server. However, even though these
architectures do not require local infrastructure with public
access to offer the laboratory resources, it is still necessary
to abstract laboratories as servers, a service logic must be
managed, and the lab still must be adapted to be compatible
with these servers. Similarly, resources for teachers and lab
administrators to create, design, reconfigure, and re-engineer
educational experiments [12] are generally unavailable. The
educational nature of these experiments requires the sessions
be supplemented with educational resources. This is usually
intended to be solved with the integration of remote labora-
tories within virtual learning environments (VLE); however,
this integration does not guarantee that appropriate learning
resources will be provided to assist students in performing
the required activities of the experiment. Although certain
tools can be used to assist in the creation of experiments, they
are external tools that are not integrated into the flow of the
rest of the system, thus complicating the workflow for the

experiment author. This lack of authoring tools for remote
laboratory systems was documented in [12].

The main objective of this study is to present a remote
lab architecture called RemoteLabo, which facilitates the
process of integrating, creating, publishing, and communi-
cating educational experiments powered by computational
notebooks. This architecture has two main aspects to allow
this facilitation. First, it decouples the communication mech-
anism of remote labs from the lab station itself, eliminating
the interdependence between the lab station and the client
[13], which simplifies the integration and communication
of labs for developers and administrators who do not need
to develop communication servers or manage services at
the lab station but only communicate the equipment data.
Second, it was designed to integrate computational note-
books as a tool for facilitating the entire lifecycle of an
experiment for administrators and teachers. Aspects such as
interactivity [14], replicability [15], shareability [14], [16],
and their explorative nature make notebooks potential tools
for creating educational remote lab experiments [17], [18].
For this workflow, an RLMS is proposed and implemented
with tools for the development lifecycle of experiments pow-
ered by computational notebooks for teachers and students.
The RemoteLabo architecture is designed to integrate both
the proposed approaches, computational notebooks, and its
decoupled communication that links labs with notebooks
in a secure manner. The present work is substantiated by
the previous authors’ experiences in the TermoLabo project
[19], a remote lab system for the teaching of thermal flu-
ids. To evaluate the proposed architecture, experiments were
implemented on a thermal fluid systems test bench as lab
station involving students and teachers from two courses
at two universities. The tool used for the evaluation was
adapted from the UNE 71362:2020 standard [20], which
provides a model for evaluating the quality of digital educa-
tional materials. The evaluation criteria covered educational,
technological and accessibility aspects. The results obtained
favor the proposed architecture, underlining its potential in
the educational field.

The rest of the paper is organized as follows: Section II
reviews the state of the art of remote laboratories and their dif-
ferent approaches and architectures. Section III describes the
architecture of RemoteLabo, how its approach facilitates lab
admin and developer work, and how it is designed to integrate
computational notebooks. Section IV presents computational
notebooks as tools for remote educational experiments. Here,
we detail the workflow of the RemoteLabo experiments, from
lab integration to the grading of experiment assignments
by the teacher. Section V shows the implementation of the
proposed architecture and a case study of a thermal fluid lab
station that uses the authoring system to create its experi-
ments. Section VI evaluates technological, educational, and
accessibility aspects on students and teachers and shows the
results of the evaluation and its analysis. Section VII presents
the conclusion, and Section VIII discusses future work.

VOLUME 11, 2023 132497



O. Vanegas-Guillén et al.: Remote Labs Meet Computational Notebooks

FIGURE 1. General architecture of a remote lab system integrated into a virtual learning environment (VLE): lab layer, communication layer, and
application layer. In the case of LaaS, the lab communication responsibility is part of the lab computer.

II. BACKGROUND AND RELATED WORKS
To understand the general structure and functionality of
remote laboratory systems we can represent them in a general
architecture with three layers: laboratory layer, communi-
cation layer, and application layer, as illustrated in Fig. 1.
We can identify these three basic layers in every remote
laboratory system, but each specific architecture implements
various approaches according to its requirements, using
specific technologies, and composing the logical layers as
needed.

A. LAB LAYER
The Lab Layer comprises various physical laboratories con-
nected to the system. The key components of a physical
laboratory are the collection of laboratory equipment and the
lab computer. In this study, we refer to this setup as a lab
station [21], which contains the physical elements required
for the execution of an experiment [21]. The lab station is also
referred to by various other names, such as experiment rigs
[22], test rigs [3], [9], or merely remote laboratory [1]. The
control of the equipment is commonly provided by the control
software that runs the lab computer [23]; however, some
experiments might also require a dedicated controller. As a
result, some architectures unify the roles of the controller and
the lab computer, commonly referred to as the lab server [1] or
simply the controller [21], [22], whereas other architectures
explicitly separate the controller from the lab server [3], [9],
[10], [24].

B. COMMUNICATION LAYER
The communication layer plays a key role in remote lab
systems by connecting the lab station to the final user. For this
layer, most remote lab systems use a client-server approach
[22] to communicate the lab station with the user. In this
approach, the lab computer becomes a server, commonly
named ‘‘lab server’’ which exposes the lab resources to
the outside world [1]. The lab server commonly has three
responsibilities: being connected to the lab equipment and
controlling it through software [23], running the experiment
logic [25], and communicating the lab resources outside [1].

The Laboratory as a Service (LaaS)model [23] proposed to
deliver the lab resources as well-defined services that enable
interoperability [1], [2]. These services are exposed on the lab
server, and the client can access the experiments to consume

these services. The IEEE 1876-2019 standard defined an
online lab following LaaS, with the help of metadata for
standardization and interoperability.

Although approaches other than LaaS have also been
taken, such as the already named Experiment Dispatcher
and NCSLab, a further approach is to completely prescind
from the laboratory server and use another mechanism,
instead of the client-server approach, for the communication
of the lab station. A widely used alternative model is the
publish–subscribe communication paradigm, which allows
distributed, asynchronous, and fully decoupled communica-
tion between communicating entities [26], [27]. In publish–
subscribe communication, message consumers subscribe to
events that interest them, and message producers publish
events anonymously and asynchronously [28]. Subscribers
are notified of events that match their interests and receive
the data associated with the event [26], [28]. A dispatcher,
commonly called a broker [29], is responsible for message
forwarding. When a lab server is responsible for lab commu-
nication, it forms a part of the communication layer. On the
other hand, if the responsibility for the lab station communi-
cation is passed to an external entity, such as to the broker in
the publish-subscribe approach, the communication layer is
completely independent of the lab layer.

C. APPLICATION LAYER
The user accesses the laboratory from the application layer.
In a simple scenario, the application layer can consist
uniquely of the experiment application that users interact with
to perform the experiment [1]. This application could be a
local installable one or, more commonly, a web application
accessed from a web browser [2]. Users interact with the lab
station through the experiment user interface (UI), which is a
graphical interface with visual elements with which the user
can interact to monitor and control the laboratory equipment.
These interactions are transmitted to the lab station thanks to
the Lab Client, which provides data to users as they require it,
and sends the user control commands to the lab station [24],
[30], [31].

With respect to the deployment of the experiment app,
three main scenarios are possible, as depicted in Fig. 2.
In Fig. 2(a), the lab client program and experiment UI are in
the same program, which runs in the browser. This is the least
common and scalable scenario. In Fig. 2(b), the lab client

132498 VOLUME 11, 2023



O. Vanegas-Guillén et al.: Remote Labs Meet Computational Notebooks

FIGURE 2. Deployment cases of the experiment app.

and the experiment UI are separated. Only the experiment
UI runs on the web browser and communicates with the lab
client through an API provided by the latter. In Fig. 2(c), they
remain separated, as in (b), but now both run in the browser.
Because of the decoupling of the lab client and the experiment
UI, both Fig. 2(b) and (c) have more flexibility. In both cases,
the experiment can be provided by the same server that also
provides the lab client but could also be provided by an
external entity, such as an experiment repository. In Fig. 2(a),
as the lab client forms part of the same code as the Experiment
UI, the creator of the latter must also implement the required
code of the former. In Fig. 2(b) and 2(c), lab client becomes
completely independent from any particular experiment UI,
all types of experiment UIs can be adapted to communicate
with the same client through an API.

Another key element in the application layer of modern
remote laboratory systems is the remote laboratory manage-
ment system (RLMS), also known as Remote Laboratory
Broker, or Online Laboratory Management System (OLMS)
[6], [21]. The RLMSwas born of the necessity of centralizing
the management and communication of remote laboratory
stations. Every lab station requires a group of management
tasks to be used properly, such as the administration of lab
resources, the time management of the resources being used,
or the authentication and authorization of lab users [32]. The
RLMS brings a common framework to lab stations [8], [33],
in which they can delegate responsibility for the development
and deployment of these features and tools to the RLMS.
This reduces the effort of development [8], [32] because
every lab station integrated with an RLMS automatically has
the management features and tools provided by it [32] and
only concentrates on the development of experiment-related
features [8]. The RLMS concentrates, manages, and shares
lab stations [4] and their experiments [21]. This allows the

formation of repositories [1] or hubs of experiments (as
shown in Fig. 2) from different institutions around the globe
from which users can choose and practice.

The main role of RLMS, which gives it its name, is the
management of lab stations and experiments. However,
RLMS also hosts the experiment app [22], as illustrated in
Fig. 3. For lab station management, the administrator can
access the manager module through the UI. In order for
the lab station to be integrated into and managed by the
RLMS, the lab administrator uses the API provided by the
RLMS [8]. RLMSs can also provide development tools to
facilitate the integration process [32]. It is common that the
management communication uses the HTTP protocol while
the experiment communication, performed by the experiment
app, uses a near real-time communication protocol, typically
transported over WebSocket as recommended by [1] and as
used by [34] and [35].

Remote educational experiments are carried out within
a learning context. Experiments is the name given to the
learning activity made with labs acting as learning objects
[1]. A learning object is defined as an entity that can be
used for educative purposes. Reference [1] provides recom-
mendations for integrating online laboratories, which act as
learning objects, in learning environments. These learning
environments are provided neither by the lab station nor
by the RLMS, since learning is outside their scope [33],
but by specialized systems for these purposes, called vir-
tual learning environments (VLE). Because remote labs do
not provide an environment for learning, it is necessary to
integrate them into VLEs [33] to provide pedagogical value
[1]. This integration between the learning environment and
remote laboratory experiments is a typical feature assigned
to RLMSs [33]. Once integrated into a VLE, RLMS can
benefit from the educational context to improve students’
and teachers’ learning experiences. Users that come from the
VLE can be identified without needing any extra registration
because VLEs provide this information, which can also be
used to personalize the experiment UI [30]. One of the most
used technologies for RLMS-VLE integration is the Learning
Tools Interoperability (LTI) specification [36], which enables
the integration of educational applications, called tools, into
VLEs. With LTI, students can also submit and be graded on
assignments, all from within the RLMS. Once integrated the
experiment and used from a VLE, Student’s behavior and
actions are invaluable sources of feedback for technical and
pedagogical purposes. The Experience API (xAPI) [37] is the
technology recommended by [1] for tracking learning activ-
ities. Using xAPI, RLMS can monitor student behavior and
actions during the experiment activity. These records are used
for two main purposes: Learning analytics (for educational
purposes), and user experience feedback (for more technical
purposes).

For the creation of experiments and their content two kinds
of tools are used: programming tools and authoring tools.
Programming tools deal with code and commonly require
technical knowledge for their usage.

VOLUME 11, 2023 132499



O. Vanegas-Guillén et al.: Remote Labs Meet Computational Notebooks

FIGURE 3. General overview of an RLMS integrated into a VLE. The student accesses the experiment through a learning activity added
by the course teacher.

An example of a widely used programming tool is
Node-RED, which allows the creation of programs using
drag-and-drop nodes and has also been used to create exper-
iment UIs [38]. On the other hand, authoring tools allow
for the creation of resources in environments that commonly
require less technical knowledge than programming tools.
One common approach is to use programming tools for the
creation of the experiment UI and authoring tools for the
creation of the learning content of the experiment UI. There
are also authoring tools specifically designed for composing
experiments, that is, experiment authoring tools. These tools
can be optional features of RLMSs [21], and their capabilities
vary between tools. An important example of an experiment
authoring tool is Easy Java/JavaScript Simulations (EjsS)
[39], [40], which was developed as a modeling and authoring
tool for science simulations and evolved as a tool capable of
creating experiment UIs for remote laboratories using web
technologies. However, there is a type of tool that has the
capacity to merge in the same environment the capabilities
of both programming and authoring tools, as well as a high
potential to be used as learning objects; we are referring
to computational notebooks.

D. NOTEBOOKS
Computational Notebooks [15] or ‘‘Interactive Notebooks’’
[41], are interactive, literate programming documents [42]
designed to integrate code, visualizations, text, and other
rich media to support the construction and sharing of com-
putational and interactive narratives [16]. Despite having
been born in a scientific computing context [16], [43], [44],
notebooks expanded outwards this scientific root, becom-
ing interdisciplinary and ubiquitous [14], and experiencing
a renaissance in recent years [15], [45]. Computational note-
books are used in many areas, such as industry, education,
data science, computer science, and machine learning [14],
[46]. Notebooks are executed and created using software
applications that take on the role of notebook authoring tools.
It is common to refer not only to the notebooks themselves,
but also to these software applications as computational

notebooks [46], [47]. Examples of these applications include
Mathematica,1 Apache Zepellin,2 and Jupyter Notebook.3

Interactivity is the key feature of notebooks. Notebooks are
considered interactive applications rather than just conven-
tional documents [14], [48], [49]. Furthermore, rather than
just authoring tools, notebook environments are also pro-
gramming tools and environments [50]. The type of software
built with notebooks is meant to be shared with other users
rather than deployed in the traditional software lifecycle [14].
Notebooks encourage interactive computation, in which the
user interacts iteratively with the program [14], [47] in an
explorative conversation, making hypotheses and analysis,
thinking, modifying, and repeating [15]. Notebooks present
a sandbox for exploration and experimentation, where goals
are not required to be predefined, as they are discovered while
iteratively gaining understanding [14].
Computational Notebooks are becoming a standard not

only for research, but also for the teaching community.
Every named aspect of notebooks can also be leveraged
in education. The interactive nature of notebooks has the
potential to engage students [15], allowing them to enhance
the learning process and their experimental skills [17], creat-
ing a student-centered, technology-rich learning environment
[51]–an approach that shifts the traditional paradigm of edu-
cation, which often focuses on the teacher as the primary
source of knowledge. Instead, it places the student at the cen-
ter of the learning process, allowing, and encouraging active
participation, exploration, and autonomy in learning. Com-
putational notebooks are used to create interactive guides,
tutorials, manuals, textbooks, and worksheets [15], allowing
teachers to illustrate abstract concepts using virtual demon-
strations and interactive resources.

Notebook interactivity is powered by code, which students
can execute and modify in the same environment. Code is
required for many processes in engineering learning; func-
tions, formulas, and models can be explored through code,

1https://www.wolfram.com/mathematica/
2https://zeppelin.apache.org/
3https://jupyter.org/

132500 VOLUME 11, 2023



O. Vanegas-Guillén et al.: Remote Labs Meet Computational Notebooks

FIGURE 4. General overview of the RemoteLabo architecture, integrated into a VLE. The three main tools for experiments communicate with the pub-sub
broker and are powered by computational notebooks.

generating new insights with data and visuals. All academic
fields necessitate code to collect and analyze data [16].
Computational notebooks are one of the main tools used to
learn how to solve complex problems with a programming
language, thus reinforcing computational thinking [52], the
thought processes to solve problems as computer science does
[53]. Computational thinking is a relevant skill for profession-
als in all domains [52] and is no longer exclusive to engineers
and computer science students [53]. Teachers can also require
students not only to apply code to solve specific problems but
also to explain that code, with the help of the rich content
available in notebooks [50]. These notebooks with explana-
tions can become computational essays that incorporate code
to support their theses [50]. Notebooks are used in various
pedagogical scenarios and fields [48], [53], with different
applications and systems involving student and teacher col-
laboration [54], used to create educational web apps [48], and
research web apps [49].
Since its inception, there has been a relationship between

computational notebooks and laboratories. Computational
notebooks appeared as digital laboratory notebooks to sup-
port the laboratory workflow [15], [16], [50]. In terms of
remote labs, although scarce, there are studies implementing
computational notebooks for remote equipment or as support
for this remote working. In [17] and [18], remote laboratories
used notebooks to interact with remote equipment. In [55],
notebooks were used as auxiliary tools in a digital twin
laboratory. ‘‘IoT Notebooks’’ are proposed in [47], whose
back-end part can detect, identify, and connect to physical IoT
devices.

Jupyter [16] is an open-source project that develops an
environment of products around notebooks, with Jupyter
Notebook as the core product [14]. Jupyter Notebook is
Jupyter’s document format and notebook environment, which
is considered the standard and most commonly used compu-
tational notebook for education and research [15], [46], [54].
The open nature of Jupyter allows the possibility of extending
the software base capabilities [15] but also manipulating
the notebooks themselves with custom tools, given the open
nature of the document format [14], which is stored in plain
JSON format. JupyterLab4 is a new-generation notebook user
interface based on the classic Jupyter Notebook [14]. Jupyter-
Lite is a ready-to-be-used distribution of JupyterLab that runs
entirely in the web browser [56]. This distribution provides
a lightweight computing environment that can be accessed
quickly without the need to set up any server or install
dependencies on the user’s device. This is possible owing to
WebAssembly,5 an open technology that makes it possible to
run in the browser code of programming languages not made
for the browser. To execute code in a conventional Jupyter
environment, the code of the user is passed to the server,
which executes the code using specialized processes called
kernels [14] and then returns the response to the user [15].
In JupyterLite, this process is performed entirely within the
user’s browser.

4https://github.com/jupyterlab/jupyterlab
5https://webassembly.github.io/spec/core/

VOLUME 11, 2023 132501



O. Vanegas-Guillén et al.: Remote Labs Meet Computational Notebooks

III. RemoteLabo ARCHITECTURE
The architecture of RemoteLabo is the cornerstone on
which the functionalities of the system rest. Its main goals are
the conception of an environment in which experiments are
treated as first–class citizens for the system, and to provide
a mechanism to optimally communicate these experiments.
RemoteLabo’s architecture aims to achieve these goals with-
out neglecting the commonly desired remote lab quality
attributes, such as accessibility, shareability, security, main-
tainability, scalability, interoperability, and optimization of
resources and costs. A remote laboratory system requires the
synergic work of various subsystems developed by different
entities, which are integrated to effectively communicate the
lab stations with students from different VLEs. To fulfill these
goals, we established the following group of requirements to
meet:

A. RemoteLabo’s ARCHITECTURE OVERVIEW
– Lab stations without servers: Lab administrators should
be able to integrate and communicate with the lab station
without building or operating infrastructure. For this, the
role of communication commonly assigned to the lab
server must be assigned to an external entity.

– Experiment authoring Tool: Teachers and lab adminis-
trators should be able to create and modify experiment
user interfaces from a familiar computational notebook
environment, in a collaborative way, integrated into the
same remote lab system.

– Experiment capabilities: Created experiments should be
able to connect in real-time with different lab stations
and enrich the experiment activities with the required
pedagogical content within the experiment.

– Experiment Learning Scenario: Students should be able
to perform all the experiment activities without leaving
the learning scenario or changing the context.

– Experiment Grading Tool: Teachers should be able to
establish assignments for experiment sessions accord-
ing to the experiment goals, and review and provide
feedback on these student assignments. Students should
also be able to review both the grade and the teacher’s
feedback from the virtual learning environment.

To address these requirements, RemoteLabo’s architecture,
illustrated in Fig. 4, implements two key solutions: the imple-
mentation of the publish-subscribe communication model
for decoupling communication from the lab station, and the
integration of computational notebooks to allow an entire col-
laborative lifecycle of experiments in which admin, teachers,
and students are involved. Both the solutions are detailed
below.

B. PUBLISH–SUBSCRIBE COMMUNICATION FOR
REMOTELABS
To facilitate the communication of lab experiments, Remote-
Labo proposes to separate the communication responsi-
bility from the lab station using the publish–subscribe

FIGURE 5. Experiment communication scheme: Signals are sent to the
RLMS for registration. Once registered, the corresponding signal
metadata is relayed to the experiment tools, allowing the lab client to
manage signals in real-time communication.

communication paradigm. The publish–subscribe paradigm
is used for near real-time communication with minimal laten-
cies [13]. Unlike the HTTP protocol used in web services,
which is synchronous and used for 1-to-1 communication,
the asynchronous publish–subscribe model is optimal for the
one-to-many communication [34] required for remote lab
systems, as one lab station publishes data to many users,
and users can also publish data to the lab station and receive
immediate feedback on their interactions with lab equipment
and procedures. In contrast to the request/response approach
of the client–server architecture, in the event–driven approach
of publish–subscribe [57], the lab station can transmit data
without waiting for a request by users [29], whereas they can
receive data without continually requesting it. Lab stations
can also react to data from users only when they arrive,
without the need to continually check for it.

The main effect achieved by implementing the publish-
subscribe model is the elimination of the interdependence
between the lab station and client [13], and there is no
direct communication between the lab and RLMS. In other
words, the lab station controller is a black-box system for
the RLMS [22]. With this approach, RemoteLabo follows
a basic principle for RMLS interoperability: The RLMS
should know only the minimum of the lab station design
[58]. This separation removes the responsibility of imple-
menting communication logic for the lab station and reduces
the complexity of the code and the requirements required
for interconnecting the lab. This allows for the independent
development of both the components. Because both are con-
nected to the broker, they do not need to know each other
to communicate [29]. Every part publishes or subscribes
according to its role and permissions, and without requir-
ing knowledge of the mechanism of the other part. A lab
station does not need to develop servers or manage ser-
vices, which relieves the lab equipment of the computational
work required to run and expose computational services [58].
To transmit the lab station data, administrators only need
to use a publish-subscribe client with a security certificate

132502 VOLUME 11, 2023



O. Vanegas-Guillén et al.: Remote Labs Meet Computational Notebooks

obtained from RemoteLabo, which will grant the communi-
cation. Lab administrators do not need to manage security
at this level because only certificate-authorized entities have
access to the broker. The lab administrator is free to choose
where and how to deploy the client program that connects
to the RemoteLabo communication layer, along with the
corresponding internal validations and security measures for
their equipment. As with any other approach, the cyber and
physical security of the lab station and its equipment is the
responsibility of the lab administrator. Aspects such as the
validation of the signal and rules according to the input are
expected to be implemented in the lab station. RemoteLabo
is agnostic to the logical location of computing that powers
these services, which can run in a self-managed infrastructure
or in the cloud.

The RLMS centralizes lab stations, their experiments,
signals, and functionalities. Lab station signals can be auto-
matically or manually registered from the RLMS lab admin
panel. To monitor them, all the signals that the RLMS
receives from the lab station are automatically registered
along with their corresponding identification and data type.
To control signals, the lab administrator can indicate to the
system which of the registered signals from the registered
ones are of control or register a new one. From the RLMS
lab admin panel, lab administrators can establish settings
related to signals such as limits or alarms. Optionally, lab
admins can register lab station functionalities that the user
can activate using the same communication mechanism. All
registered signals and functionalities will be available for the
experiment authors to create experiment UIs connected to lab
stations.

C. INTEGRATED COMPUTATIONAL NOTEBOOKS
RemoteLabo uses computational notebooks, specifically
Jupyter Notebooks, as the fundamental tool to develop and
use experiment UIs. RemoteLabo implements three main
tools to manage experiments: for experiment creation, the
experiment authoring tool; for experiment usage by students,
the experiment learning scenario; and for experiment grading
by the teacher, the experiment grading tool. The former two
tools communicate with the remote lab station; experiment
creators set up and test the communication, and students use
that communication, whether in real-time or batch mode.
Fig. 5 illustrates the communication process for both tools.
Owing to the decoupling of the experiment UI from the lab
client, these tools can easily communicate with lab stations.
The experiment creator connects the created experiment to
the lab client, without technical procedures, using the exper-
iment authoring tool. In doing this, communication is set up
for when the students use the newly created experiment in
the learning scenario. Note that while using these tools, the
messages from the lab stations containing the signal data
do not pass by the RLMS back-end but are communicated
directly from the communication layer to the experiment UI
running inside the user device.

Both tools form part of the RemoteLabo RLMS and fea-
ture a customized Jupyter Lab embedded in an IFrame. Web
browsers offer the Channel Messaging API,6 which allows
the communication of, among other scenarios, a webpage
and its embedded IFrame, assuming that both are previously
programmed for this. This API allows both parts of the tool
(IFrame and the rest of the tool) to communicate immediately
without leaving the browser. The lab client is abstracted and
exposed in a user-friendly way to the experiment UI authors
through the Channel Messaging, which takes the role of the
API that intercommunicates the decoupled lab client and
UIs. The authoring tool offers the author this API to allow
visual and interactive elements to effectively monitor and
control the lab station. It enables the creation of pedagogically
self-contained experiments without the implementation of the
lab client or knowledge of the lab client’s operation, which
opens the possibility that users without technical knowledge
can create new experiment UIs and easily access the lab client
to communicate the experiment UI with the lab station.

D. VLE INTEGRATION AND USERS ACCESS
The RemoteLabo RLMS integrates into VLEs, using LTI to
receive teachers and students with their learning context with-
out requiring any registration step, and using xAPI to support
learning analytics. RLMS uses a group of services to offer
all its functionalities. RemoteLabo uses a role-based access
control [59]. The user authentication process follows a differ-
ent flow for each user role: lab administrators, teachers, and
students. RemoteLabo also adds the role of the system admin-
istrator, which is the user with the highest permissions and the
responsible for the system itself. System administrators and
lab administrators are not affiliated with an institution from
the system perspective and have higher permissions in the
system than teachers and students. Because the experiment
users interact with real equipment, mere authentication is not
sufficient. It is needed a system of authorization that consid-
ers several factors to allow users to access experiments, such
as the time the lab station is available, the role and schedule
of the user, and permissions to control or just monitor lab
equipment. From the data that LTI provides from the VLE,
the authentication, and authorization of teachers and students
are automated in a completely transparent way for the users,
which are automatically signed up for the first time they visit
RemoteLabo from their virtual learning environment and are
directly logged in on subsequent visits.

IV. NOTEBOOKS POWERED REMOTE EXPERIMENTS
Along with its architecture, the main contribution of Remote-
Labo is a workflow for the entire lifecycle of remote
educational experiments. Every step of this workflow allows
the experiment to evolve into collaborative environment
where lab administrators and teachers can actively partic-
ipate, reuse, and improve them with the help of Jupyter

6https://html.spec.whatwg.org/multipage/web-messaging.html#channel-
messaging

VOLUME 11, 2023 132503



O. Vanegas-Guillén et al.: Remote Labs Meet Computational Notebooks

FIGURE 6. The workflow of RemoteLabo experiments, from the registration of the remote lab and creation of the
experiment, through the execution of the experiment by students, to the grading of the assignment by the teacher.

Notebooks and all the capabilities it offers for teaching.
Two modules are the main elements of this workflow: the
experiment authoring tool and the experiment learning sce-
nario, which were already mentioned. While the architectural
aspects of these tools were yet detailed from a global system
perspective, here we detail ethe reasoning behind them, their
role in this workflow, and how this complete workflow, along
with the already presented architecture fulfills the functional
requirements for RemoteLabo.

A. EXPERIMENT WORKFLOW
The entire workflow of an experiment, depicted in Fig. 6,
begins prior to its actual creation, when the lab station to
which it belongs is registered in the RemoteLabo RLMS
by the lab administrator. Lab registration requires essential
lab station data, such as name and operating time, as shown
in Fig. 7(a). The lab admin can also optionally modify the
inferred data type and set the limits of the signals that the
RLMS receives from the lab station. After registering and
integrating a lab station, with the help of the experiment
authoring tool, the lab administrator creates an experiment
for it, which is stored as regular Jupyter Notebook files in a
private repository of the lab station. The experiment becomes
publicly available just once the lab administrator publishes
it, which makes a copy of the experiment files in a public
repository where all the experiments are made available for
use by teachers, as depicted in Fig. 7(b). As lab stations, every
teacher of the system has a personal private repository for
storing private versions of the public experiments. Teachers
can freely obtain a personal copy of any public experiment
and modify it as desired, thus saving these versions in their
private repository. These modifications are only available
for the teacher and do not affect the public experiment or
private experiment versions of other teachers. A teacher can
have a private version of every public experiment and can

make modifications to it. Teachers can collaborate with lab
administrators proposing for any experiment their private
modifications to be integrated into the public experiment. Lab
administrators manage the private lab station repository and
decide how to update the public experiments belonging to
their lab station. Lab admins can make modifications without
having to publish them, as these modifications are stored in
the private repository of the lab station and copied to the
public repository just once explicitly done by the lab admin-
istrator. A public experiment can receive a proposal from a
teacher and the lab administrator decides whether to accept
or reject the changes. If accepted, the updated experiment
becomes the new public version that all teachers receive
when copying it to their personal repository. All private
changes that teachers make in their repositories persist unless
they explicitly delete their private experiment or revert their
modifications by copying again from the public experiment.
By doing the latter, teachers can obtain the last public version
of the experiment but lose their private version. However, lab
administrators and teachers can always download a copy of
their experiments. This collaborative environment facilitates
fixing errors in the experiment code or text, improving aspects
of the experiment, or customizing them for specific courses
or uses.

Teachers can use any experiment from their personal repos-
itory in any course. To do this, the teachers first create
a RemoteLabo activity in the virtual learning environment
where they can select any experiment in the public repository.
Here, teachers can choose between using the public version
of the experiment or their private version if it exists. They can
also choose to modify the experiment in place when selecting
one.Whenmodifying experiments, teachers can freely access
them and run tests at any time, disregarding that the lab station
is unavailable because the transmitted data are emulatedwhen
teachers modify experiments. This allows teachers to work on
their experiments without interrupting the availability of the

132504 VOLUME 11, 2023



O. Vanegas-Guillén et al.: Remote Labs Meet Computational Notebooks

FIGURE 7. Registration of a lab station in the RLMS. On the registration page (a), the lab administrator adds the signals and sets up the cameras. Once
registered, the lab is ready to host a new experiment (b).

lab station equipment. However, before the course can use
the experiment, the teacher must schedule the corresponding
lab station for the required period. When students enter the
environment to perform the experiment, the corresponding
version will be downloaded to the experiment learning sce-
nario, within which the student will perform the experiment
interacting with actual real-time data coming from the lab
equipment. If the experiment requires it, at the end of the
session, students can upload their sandbox notebook for
the teacher to review it, grade it, and commenting it using
RemoteLabo’s experiment grading tool.

B. JUPYTERLITE INTEGRATION
RemoteLabo not only embeds a Jupyter Notebook in these
tools but also performs seamless integration at both the UI
and functional levels. To achieve this integration Remote-
Labo uses two resources: the previously mentioned Channel

Messaging API and the system of extensions of Jupyter.
The messaging API can receive all the actions that the user
performs in the UI and communicate them to the JupyterLite
extensions of RemoteLabo. The extensions can communi-
cate with the internal APIs of JupyterLite and control the
internal behavior and functionality of the notebooks, such
as running code, running a cell, opening a new notebook,
or modifying the appearance of the notebook UI. This also
works the other way around: JupyterLite can send any type of
message from the extensions to the external UI that contains
it. This bidirectional communication allows the experiment
learning environment and the experiment authoring tool to
take advantage of the JupyterLite capabilities, in an efficient
way, without leaving the browser.

The main effects of this integration are the customization
of the notebook UI, management of the notebook content,
and communication of the notebook with the lab station. The
regular notebook user interface is customized for integration

VOLUME 11, 2023 132505



O. Vanegas-Guillén et al.: Remote Labs Meet Computational Notebooks

FIGURE 8. UI of the authoring tool. Here, the lab guide (1), the sandbox (2), and the lab interface (3) are created in their respective tabs. The sidebar
allows the experiment author to select the required signals (A) from the remote lab for the experiment, and the required cameras (B). The top bar allows
the author to publish the experiment (C), go to the experiment gallery (D), or preview how students will see the current experiment (E).

with the rest of the RemoteLabo interface and to restrict some
of the default notebook functionalities that are incompatible
with the RemoteLabo workflow. This is achieved through an
extension that adapts the user interface to the intended note-
book usage. Related to notebook content management, the
tool is responsible for saving and retrieving notebook content
from the corresponding repositories. When saving, the con-
tent of the notebook is sent from the JupyterLite notebook to
the tool that stores the content in the repository. During load-
ing, the required content is retrieved from the repository and
passed to JupyterLite. By default, JupterLite stores notebook
files locally in the browser, but RemoteLabo stores all files
online in the repositories using the described mechanism.
Each time a user accesses a notebook, a temporary file is
created and populated with the contents of the appropriate
notebook files from the correct notebook repository. This is
an automated and transparent process needed every time a
teacher or lab administrator creates or edits an experiment and
every time a student enters the experiment learning scenario.
Consequently, although the notebooks run entirely on the
user’s device, the user does not depend on any device to
access their experiments; they can start editing an experiment
on a device and later continue on another device. However,
the key feature of the JupyterLite integration in RemoteLabo
is the ability to communicate the JupyterLite notebook with
lab stations in real-time and securely. The architecture of
this communication is described in the architecture section.
A corresponding extension is in charge of making this data
available to notebook users. As the data arrives it is instantly
made available to the notebook to be used with any library or
function that the notebook can run.

C. AUTHORING TOOL
Experiments are created using the experiment authoring tool,
as illustrated in Fig. 8. The RemoteLabo experiments are
made of three main elements whose content is created here:
The lab guide, the sandbox, and the lab interface. These three
elements are createdwithin JupyterLite Notebooks, which are
integrated into the tool flow. The roles of these three elements
are as follows:
Lab Guide: Provides students with the theoretical context

they need and guides them through the steps to successfully
complete the different activities of the experiment. Here, lab
administrators and teachers can create and compose a great
variety of rich content thanks to Jupyter Notebooks: text
formatted with the convenient Markdown format; show code
inline or in blocks in any programming language; LaTeX
for mathematical notation; embedded multimedia such as
image, video, audio, and even content in HTML and CSS,
which opens many possibilities for the format and style of
the content. As it is a regular Jupyter Notebook, it can include
the result of a code snippet as content, for example, a table,
plot, or graphics. The author can test any code in the notebook
and verify the results before publishing the guide. The cells
of Jupyter Notebooks allow authors to segment the content as
they consider it appropriate, easing the creation of different
parts of the guide.
Lab Interface: Responsible for displaying the interactive

visual elements with which students will interact with the
lab station through remote monitoring and control of the lab
equipment. Here, authors can use the entire notebook possi-
bilities to create multiple types of interactive elements for the
representation of the lab equipment and their signals, such as

132506 VOLUME 11, 2023



O. Vanegas-Guillén et al.: Remote Labs Meet Computational Notebooks

FIGURE 9. The learning scenario UI, consisting of the lab guide (A), the sandbox notebook (C), the lab interface (E), and the lab cameras (F). Each panel
has a bar that allows the user to resize and move it according to their preferences. The lab guide has a navigation bar (B) that allows the user to move
between the different sections of the guide, search for text, and control the size of the text. The sandbox notebook has a control bar (D) inspired by the
vanilla JupyterLab control bar.

plots, interactive diagrams, buttons, sliders, and so on. These
interactive elements are created through languages supported
by JupyterLite, the most used being the Python language.
JupyterLite supports a series of libraries that facilitate the
creation of graphical and visualization libraries with which
student can interact, such as IPyWidget, a very common
Python library for the creation of interactive control in Jupyter
Notebooks. Teachers can link the data coming from the lab
station with these interactive elements and send the control
actions of students to the lab station because of the previously
described communication possibilities of these RemoteLabo
tools.
Sandbox: As its name suggests, it is a space for students to

practice on their own. With the help of the lab guide and the
lab station monitor and control possibilities provided by the
lab interface, students can experiment at their own pace and
be guided by the teacher through predefined steps in the same

space. This is the only element shown to students as a Jupyter
Notebook. Here lab administrators and teachers can prefill
cells with text and code to assist student activities. In this
notebook, students can retrieve data from the lab station and
use it for analysis, extraction of information, or plotting, all
within the same notebook to perform the activities required
by the experiment.

The lab administrator or teacher is free to create or modify
the content of the experiment in the preferred order. Every
element of the experiment is created in its corresponding
tab, which deploy an independent notebook for every case.
At the sidebar, the author can add the desired signals of
the lab station and the desired cameras to the experiment.
The resources are only those available from the specific lab
station where the experiment will run. The cameras can be
previewed by the author in real-time. The selected signals will
be available for use in the sandbox and in the lab interface

VOLUME 11, 2023 132507



O. Vanegas-Guillén et al.: Remote Labs Meet Computational Notebooks

to feed the interactive elements of the GUI. These signals
are retrieved simply by using their names, as with any other
common Python variable, owing to the work made for the
integration depicted previously. The signal variables contain a
data structure with telemetry packed into arrays. In the exper-
iment shown in Fig. 8, given the signals added, the teacher
will be able to access two temperature signals from the lab
interface code, and the students will be able to use them to
experiment within their sandbox. At the top bar, authors can
return to the gallery of their private experiments or create
a new one. From the top bar, the author can also publish
their work or previews at any time on how students will view
the experiment in their learning scenario. The next section
describes this scenario, where the experiment elements are
displayed to students.

D. LEARNING SCENARIO
All elements created in the authoring tool are displayed in a
unified environment called the learning scenario, as shown in
Fig. 9. This is an environment designed to engage students
in performing experiments through an active approach that
encourages discovery and experimentation. All the content
created and added for the experiment in the authoring tool is
displayed here, each one in a panel, forming a layout that can
be customized by the user. Despite all three elements of the
experiment being created and stored as Jupyter Notebooks,
they are displayed in different ways, according to the intended
goal of every element.
Lab Guide Panel: The Learning Scenario takes the rich

content of the lab guide notebook and converts it to HTML
to be rendered as Web-native content. It also automatically
performs tasks to improve the student experience, such as
generating a table of contents that the student can easily
navigate. This table of contents and other tools are available
in a toolbar that also allows the user to navigate through the
guide, increase or decrease the font size, and search for text.
Sandbox Panel:As indicated, the sandbox panel is the only

panel that displays a Jupyter Notebook to students. This is in
keeping with its purpose as a computational notebook is an
effective tool for exploration, discovery, and experimentation.
Rather than a customized toolbar, this panel is a regular
Jupyter Notebook that also has access to the signals coming
from the lab station.
Lab Interface Panel: The lab interface panel along with

the cameras panel is the most direct contact that the user has
with the lab station. This panel runs the lab interface notebook
created in the authoring tool and displays it as an interactive
web application. This is accomplished by automatically exe-
cuting the code in the notebook and hiding everything in the
notebook except the results of the code, leaving only the pro-
grammed interactive user interface visible for monitoring and
control. Monitoring is available to all participants, but control
is limited to the teacher and students who have received this
permission.

FIGURE 10. The grading tool user interface.

When multiple cameras are available, the camera panel
offers controls to switch between them. By default, this panel
is floating over the other panels. All panels are contained
within a movable and resizable window that the student can
reorder at desire. The controls from the windows allow the
user to maximize a panel to occupy the entire screen, restore
it to its previous size, and hide and unhide every panel. When
a panel is hidden, a side tab indicates this and allows the user
to click on it to reappear the panel. At the top bar, students can
monitor the remaining time of the experiment andmanage the
time format and time notification. Before ending the session,
the students, if it is the case, must upload their sandbox
notebook for the teacher to evaluate. If the session ends before
the work is uploaded, it is automatically executed.

E. GRADING TOOL
Teachers can set an assignment for each experiment, in which
case, a button will be available to upload the work made in
the sandbox panel from the experiment learning scenario.
Teachers have access to the grading tool, an environment
for grading, and providing feedback on the students’ exper-
iment work, as illustrated in Fig. 10. Once students upload
their work, the teacher can review each assignment using
the grading tool, where all the works from an experiment
session are listed. Every work is shown as an executable
notebook along with fields to grade and provide feedback to
the student, such as comments or the rubric of the experiment.
Teachgers can freely run notebook cells but cannot modify
the original student work. This comment and grade are auto-
matically synchronized with the students’ grade books in the
virtual learning environment thanks to LTI. Any subsequent

132508 VOLUME 11, 2023



O. Vanegas-Guillén et al.: Remote Labs Meet Computational Notebooks

modification of this feedback will also be synchronized with
the VLE’s grade book.

V. IMPLEMENTATION AND STUDY CASE
A. RemoteLabo IMPLEMENTATION
To implement RemoteLabo, the architecture proposed in
Section III and the experimental workflow from Section IV
were used. The system consists of a thermal fluid system
test bench, an RLMS, and a VLE, where remote experiments
were deployed to obtain the characteristics and performance
of various types of heat exchangers for courses related to ther-
mal and fluid engineering. AWS services are used to deploy
back-end services for time optimization and robustness.

1) COMMUNICATION LAYER
The Message Queuing Telemetry Transport (MQTT) [60]
protocol was chosen for the pub-sub communication imple-
mentation. Web Real-Time Communication (WebRTC) [61]
was used for video streaming from the lab station. TheMQTT
protocol is one of the most widely used publish-subscribe
protocols [27], [29], [57] and is also used for remote
laboratories [6], [35], [38]. It is a lightweight and easy-to-
implement [57] real-time messaging protocol that is suitable
for resource-constrained situations. MQTT manages publi-
cations and subscriptions over channels called topics, which
follow a hierarchical structure. When the lab administrator
registers the lab station, RemoteLabo reserves an MQTT
topic for exclusive use of this lab station. A minimal and
flexible structure is required for the message that the lab
station and the lab client send and receive in JSON format.
The pub-sub communication of MQTT is implemented using
the AWS IoT service, which allows secure connections with
security credentials, security policies, and custom rules. The
lab station is connected to this MQTT server through an
endpoint provided by AWS IoT. Both the lab computer and
the experiment client run an MQTT client to connect to the
MQTT server, which dispatches messages.

While MQTT is used for data communication, WebRTC is
used to transmit lab station cameras in real-time. WebRTC
aims to standardize real-time communication for web
browsers and applications and enables peer-to-peer trans-
mission of video, audio, and data to multiple viewers.
The Kinesis Video service from AWS manages WebRTC
communication through Kinesis Video channels. In this
implementation, every camera in a lab station has a corre-
sponding reserved Kinesis video channel.

2) APPLICATION LAYER
All applications of the remote lab system are included in
RLMS, for which modern web technologies are used. Both
the back-end and front-end software is written in TypeScript.
For front-end, Svelte7 was used as the component framework,
and TailwindCSS8 was used as the CSS framework. For the

7https://svelte.dev
8https://tailwindcss.com

back-end, the SvelteKit9 app framework oversees other ser-
vices and functions that do not run on users’ devices. Amazon
DynamoDB was used as the database using the GraphQL
query language.10 The different AWS services were managed
on the front-end through the Amplify library from Ama-
zon. AWS Amazon Cognito was used for authentication and
authorization. The RLMS was deployed on the Vercel11 plat-
form.

JupyterLite was also hosted in Vercel, which compiles the
extensions and publishes the RemoteLabo JupyterLite. The
GitHub12 repositories store the different experiments that are
stored and retrieved through the GitHub API. The JavaScript
library LTIJS13 was used for LTI, and the service was hosted
as a Docker14 container. The course was developed in a
Moodle15 VLE, which was deployed as a Docker container.
The lab interface was developed in the experiment author-

ing tool using the Python programming language and IPWid-
get16 for interactive controls, such as buttons and sliders.
Bqplot17 was used to plot the signals. Students can observe
the lab station directly through the camera panel, which
transmits in real time the lab station cameras that monitor
the installation operations. A notable feature of this system
is its ability to monitor thermography videos, providing a
detailed view of the status of the components involved in the
experiment.

Once an experiment is started, the experiment authoring
tool automatically runs an MQTT client and a WebRTC
client. TheMQTT client obtains permissions to connect to the
MQTT server and subscribe to the lab station topic because
of the permissions assigned to the user within the frame
time of the experiment. This permission, by default, allows
only the monitoring of the lab station signal; hence, all the
students can monitor the lab station of their experiments. The
permission to control the lab station is by default given only
to the teacher, and it can explicitly transfer the control to a
student. In the same way, WebRTC acquires permissions to
receive streaming from the corresponding Kinesis channels
assigned to the lab station.

3) THERMAL FLUID SYSTEMS LAB STATION
The lab station is structured into two functional blocks: the
Control Unit, which is responsible for the management of
controls and communications, and the Service Unit, which
comprises laboratory equipment, as illustrated in Fig. 11.
These components are detailed below.

The Service Unit is an industrial educational facility for
remote teaching of thermal fluids. It includes a closed-loop

9https://kit.svelte.dev
10https://graphql.org
11https://vercel.com
12https://github.com
13https://cvmcosta.me/ltijs
14https://www.docker.com
15https://moodle.org
16https://ipywidgets.readthedocs.io
17https://bqplot.github.io/bqplot

VOLUME 11, 2023 132509



O. Vanegas-Guillén et al.: Remote Labs Meet Computational Notebooks

piping system, pumps for mobilizing working fluids, elec-
trovalves for flow direction, storage tanks, and heating and
cooling systems for the working fluid. In addition, it has
sensors to monitor the system variables, such as flow sensors,
RTD temperature sensors, pressure sensors, and thermo-
graphic cameras. Its multifunctional design, as depicted in
Fig. 9, provides instructors with the possibility of conducting
various educational experiments related to industrial applica-
tions.

The Control Unit consists of a real-time embedded system
based on NI-MyRio®, a lab controller that runs the experi-
ments logic and controller software. In addition, it incorpo-
rates signal conditioners for the sensors and transducers of
the service unit, controllers for the water-cooling and heating
system, and pump controllers for the working fluids.

The instrumentation and control software are based on NI-
LabVIEW®. The implemented architecture is illustrated in
Fig. 12. For communication with lab users, the unit has an
MQTT client that facilitates the subscription and publication
of various topics related to the developed remote experiments.
The topic information is transmitted in JSON format, which
is processed by the MQTT server. This part of the system
provides the data necessary for the embedded controller to
determine the experiment to be performed remotely. Owing to
the NI-RIO® architecture, equipped with a real-time proces-
sor and FPGA, it is possible to carry out multiple experiments
or processes concurrently. This functionality optimizes the
use of resources, thereby allowing the system to execute
several operations simultaneously.

FIGURE 11. Functional blocks of the thermal fluid systems test bench.

As illustrated in Fig. 12, the lab station transmits real-time
video through a single-board computer, Raspberry Pi, which
runs the RemoteLabo video streamer, a program to stream the
video captured from the cameras connected to the Raspberry.
The program captures the camera images, encode the video

using the multimedia library GStreamer18 and transmits it to
the corresponding Kinesis channel with a C WebRTC client
for Kinesis19 able to run in low-resource embedded devices.
In terms of security, both the lab camera WebRTC client

the lab communication MQTT client require credentials to
use these services. These credentials are generated when the
lab administrator registers the lab station in the RLMS. The
lab administrator can obtain the security credentials of any of
their registered lab stations for use with appropriate clients.

B. THERMAL FLUID LAB CASE STUDY
Fig. 9 shows the user interface of the learning scenario for
the experiment of characterization and performance of a heat
exchanger. The objective of this experiment is for students
to perform a comprehensive analysis of the behavior of heat
exchangers in a thermal fluid system. This is achieved by
observing and characterizing their transient and steady-state
behaviors and evaluating their efficiency and overall heat
transfer coefficient, in contrast to their theoretical and practi-
cal performance.

This remote laboratory experiment allows students to inter-
actively read, from the Lab Guide, the instructions and theory
related to thermal fluid systems using rich content, as shown
in Fig. 9(A). For the development of the practice, the student
had the Sandbox Panel shown in Fig. 9(C). Here, the students
can see the calculations and graphs obtained with real data
provided by the lab client through the developed Jupyter
extension. In this space, from the temperature and flow data
of the installation, the heat transfer coefficients are obtained,
in a plate heat exchanger in two different configurations (co-
current and counter-current). These results allow students to
understand how the flow rates of the working fluids affect
the heat transfer efficiency in each configuration. In the Lab
Interface Panel, shown in Fig. 9(E), students have access to an
interactive dashboard that allows them tomonitor andmanage
the lab station. This panel shows the Piping and Instru-
mentation Diagram (P&ID) of the installation, as shown in
Fig. 9(E). The various electrovalves of the installation can be
activated or deactivated using Boolean buttons. In addition,
there are other types of indicators and graphic controllers for
the management and control of pumps, heating or cooling
systems of the working fluids, flow rate, and pressure at
various locations within the installation.

VI. EVALUATION AND ANALYSIS
The following section analyzes the proposed remote lab-
oratory system architecture using the study presented in
Section V as a reference. This analysis involved the col-
laboration between the two universities. The evaluation was
carried out during the first semester of the year 2023, with the
participation of students from two institutions and programs,
among them: Second semester students of the ‘‘Heat Trans-

18https://gstreamer.freedesktop.org/
19https://github.com/awslabs/amazon-kinesis-video-streams-webrtc-

sdk-c

132510 VOLUME 11, 2023



O. Vanegas-Guillén et al.: Remote Labs Meet Computational Notebooks

FIGURE 12. Embedded control, monitoring and video software architecture of thermal fluid systems test bench.

fer’’ course of the Civil Engineering course at the University
of Guayaquil ‘‘UG,’’ and of the eighth semester of the ‘‘Pro-
cess Simulation’’ course of the Industrial Engineering course
at the Salesian Polytechnic University ‘‘UPS.’’

To evaluate RemoteLabo, the UNE 71362:2020 stan-
dard [20] was adapted, which provides a model and tools
to evaluate the quality of Digital Educational Materials
(DEM) created and used in e-learning and teaching envi-
ronments. The adapted tool is composed of ten evaluation
criteria grouped into three categories for better understand-
ing: educational, technological and accessibility Table 1. The
educational criteria evaluate the learning scenario in terms of:
the quality of the content presented and whether it is suited
to the learner’s level of knowledge; the adaptability crite-
rion evaluates the application’s ability to adjust to different
types of learners and teachers, and the possibility of easily
modifying its content; and the interactivity criterion, which
analyzes how the application encourages learner participation
during reading, whether it contains interactive activities and
whether it allows the learner to control his or her learning. The
technological criteria evaluate: the format and design to deter-
mine the quality of the presentation of the remote practices,
whether they are clear and facilitate understanding of the con-
tents and learning; reusability, which evaluates whether the
system can be used multiple times or some of its components
in different educational experiences; the portability criterion,
which evaluates whether the system can be used in multiple
environments and computer systems; and the technological

TABLE 1. Evaluation criteria of the quality of digital educational
materials.

criterion of technical robustness or stability, which analyzes
whether the system presents technical failures and whether
its use is not affected by erroneous user interactions or by
changing the device or technology. The group of accessibility
criteria evaluates whether the structure of the learning sce-
nario facilitates access, understanding and progress through
the content; whether navigation within learning scenarios
is correct, clear, and coherent; and the operability criterion,
which evaluates the functionality of the system with standard
input devices such as keyboards and mice.

VOLUME 11, 2023 132511



O. Vanegas-Guillén et al.: Remote Labs Meet Computational Notebooks

FIGURE 13. Evaluation results grouped by category: educational (a), technological (b), and accessibility (c).

Students accessed the experiment from their respective
courses in theMoodle LMS, where teachers previously added
it as a learning activity and scheduled the Thermal Fluids
Lab Station for their students’ usage through the RemoteLabo
RLMS. The students entered asynchronously in the experi-
ment of Section V which lasted 30 minutes, and at the end of
it, they accessed a web form for evaluation.

To calculate the score of the experiment implemented in
Remotelabo, the participants checked each of the criteria, ver-
ifying the degree of compliance with the items that comprised
it. Compliance with each item was scored using a Likert
scale, where a value of 1 means that the laboratory does not
comply with the item, and a value of 5 means that it fully
complies. The degree of compliance with the criteria is the
sum of the degrees of compliance of the items that compose
the criteria. The quantitative quality rating assigned to the
remote laboratory system is the arithmetic mean of the item
scores.

Finally, 40 participants from the UG (36 students and
four professors) and 30 from the UPS (28 students and two
professors) participated in the Remotelabo evaluation. The
results obtained from an educational perspective are shown
in Fig. 13(a). Both institutions highlighted the high quality
of the contents, with scores of 83.6% by UG and 80.2%
by UPS, emphasizing that the contents are presented in a
clear and understandable manner. In addition, the application
demonstrated adaptability (UG: 81.0%,UPS: 85.3%) because
the use of notebooks allows for easy integration with different
students and professors, in addition to offering an interactive
and enriching user experience that fosters participation in the
learning process, encouraging student exploration and auton-
omy (UG: 87.8%, UPS: 85.9%). Regarding the technological
aspects, Fig. 13(b) show that both universities positively
valued the format and design (UG: 84.2%, UPS: 86.5%),
pointing out a high-quality visual and structural presentation
that shows the structure of the learning scenario: a lab guide,
a sandbox for experimentation, the lab interfacewhere remote
equipment can be observed and controlled, and the real-time
video of the installation. Its reusability potential was also
highlighted (UG: 83.2%, UPS: 87.7%) because by using
Python, parts of the learning scenario and the experiment

can be used multiple times. However, an improvement was
suggested in terms of portability (UG: 75.8%, UPS: 73.3%)
because JupyterLite and the Python Kernels have drawbacks
when deployed in outdated browsers, and in robustness (UG:
75.1%, UPS: 70.4%) because some students experienced
prolonged times to deploy the learning scenario. In the acces-
sibility criteria the learning scenario structure (UG: 82.3%,
UPS: 78.3%) was highlighted for its design that facilitates
access, understanding and progress of remote practice; easy
and consistent navigation (UG: 83.1%, UPS: 87.7%); and
high operability with standard devices such as a mice and
keyboards (UG: 82.5%, UPS: 81.1%), ensuring accessibility
and ease of use on different devices, as shown in Fig. 13(c).

VII. CONCLUSION
This study presents an architecture for a remote laboratory
system that includes an RLMS equipped with authoring,
learning scenarios, and grading tools, powered by computa-
tional notebooks. The RemoteLabo architecture implements
a publish-subscribe model that decouples the remote lab
communication mechanism, removing direct interaction and
interdependency between the lab station and the RLMS.
As an effect, it significantly simplifies the configuration,
maintenance, implementation of changes or updates, and
security of the system, avoiding coordinating adjustments
between different parts of the system, unlike client-server
approaches. This approach contrasts with other methods,
such as LaaS, where the interaction between the client and
lab station is more direct and requires the implementation
of more infrastructure on the part of the lab station, such as
servers, and the need to develop or manage services on them.

The integration of JupyterLite-powered computational
notebooks into the authoring (authoring tool), development
(learning scenario), and grading (grading tool) cycle in the
RLMS allowed the integration of code, visualizations, and
other multimedia, facilitating the creation of thermal fluid
systems experiments with quality content, interactivity, and
adaptability for both students and teachers using the tool. The
use of JupyterLite, powered by WebAssembly technology,
allowed the learning scenario, authoring, and grading tool
to run entirely in the user’s browser, eliminating the need

132512 VOLUME 11, 2023



O. Vanegas-Guillén et al.: Remote Labs Meet Computational Notebooks

for new infrastructure and the installation and configuration
of a Jupyter server, resulting in an ideal environment for
remote labs, where students can securely access real-time lab
equipment from any device with a modern browser. The use
of computer notebooks in Remotelabo promoted the creation
of student-centered experiments, where the main mode of
interaction was user writing, executing Python code with
access to the lab station and observing the result in real time;
this approach allowed students to have autonomy in their
learning.

This approach also introduces challenges that need to be
overcome. The architecture of RemoteLabo is new compared
to other widely accepted, standardized and time-tested solu-
tions. Shifting the responsibility for communication from
each lab station to a centralized entity also brings with it the
computational requirements and scalability appropriate for
this entity or entities running the publish-subscribe broker.
However, when using WebAssembly, and because it is still
under active development, JupyterLite may present lower
performance compared to native executions of other Jupyter
Notebook distributions, with limitations in Python packages,
as not all of them are available for Pyodide, the default kernel
used. Browser resource consumption is also a limiting fac-
tor for application portability in computationally constrained
devices owing to WebAssembly’s use of memory and CPU
resources.

The evaluation and analysis of the proposed solution
revealed its advantages and challenges, highlighting key
aspects of interaction, scalability, reusability, interoperability,
and accessibility. The power of the computational note-
books was confirmed in the remote experiments phases, with
specific data supporting their effectiveness and adaptabil-
ity. These findings indicate an enhanced approach that not
only optimizes technical management but also supports the
learning process by encouraging greater student participation,
exploration, and autonomy. This suggests that the proposed
architecture can be useful for the development lifecycle of
remote educational laboratories in science and engineering.

VIII. FUTURE WORK
RemoteLabo’s architecture, which incorporates computa-
tional notebooks into the life cycle of a remote laboratory,
raises several lines of futurework that are focused on develop-
ment. An analysis of the technical requirements and behavior
of the publish-subscribe communication infrastructure in
function of the number of lab stations is required to maintain
key architecture aspects, such as scalability. Although many
users can now concurrently observe the lab station and mon-
itor its signals, the control is limited to one user at once per
session. The security challenges that imply the coordination
of the lab station control from multiple users, is a pending
issue to be addressed. To increase the robustness of the sys-
tem and the portability of the proposal, new kernels can be
developed or customized for use with JupyterLite, adapting
it to the requirements of the new remote labs to be devel-
oped. Likewise, new JupyterLite extensions can be designed

to add new features or enhance existing ones, for example,
extensions that allow the grading tool to comment and grade
more atomically the work within the computer notebook.
RemoteLabo tools can potentially be improved by integrating
AI. An AI chatbot to assist the user through the learning
process, the use of AI in the process of learning analytics,
and experiments auto adaptable to individual student skills
and needs are good examples of this integration. The incor-
poration of new types of online laboratories at different levels
of higher education in science and engineering is proposed.
Based on the proposed architecture, these laboratories could
manifest themselves as simulations, hybrid, or fully remote
environments, which presents new scenarios for educational
research in online laboratories.

REFERENCES
[1] (May 2019). 1876-2019—IEEE Standard for Networked Smart

Learning Objects for Online Laboratories. [Online]. Available:
http://dx.doi.org/10.1109/IEEESTD.2019.8723446

[2] C. Salzmann, W. Halimi, D. Gillet, and S. Govaerts, ‘‘Deploying large-
scale online labs with smart devices,’’ in Cyber-Physical Laboratories
in Engineering and Science Education, M. E. Auer, A. K. M. Azad,
A. Edwards, and T. de Jong, Eds. Cham, Switzerland: Springer, 2018,
pp. 43–78, doi: 10.1007/978-3-319-76935-6_3.

[3] Z. Lei, H. Zhou, W. Hu, and G.-P. Liu, ‘‘Controller effect in online
laboratories—An overview,’’ IEEE Trans. Learn. Technol., early access,
Apr. 17, 2023, doi: 10.1109/TLT.2023.3267491.

[4] V. Kammerlohr, D. Paradice, and D. Uckelmann, ‘‘A maturity model for
the effective digital transformation of laboratories,’’ J. Manuf. Technol.
Manage., vol. 34, no. 4, pp. 621–643, May 2023, doi: 10.1108/jmtm-01-
2022-0050.

[5] M. Hernández-de-Menéndez, A. Vallejo Guevara, and R. Morales-
Menendez, ‘‘Virtual reality laboratories: A review of experiences,’’ Int.
J. Interact. Design Manuf. (IJIDeM), vol. 13, no. 3, pp. 947–966,
Sep. 2019, doi: 10.1007/s12008-019-00558-7.

[6] J. A. Sanchez-Viloria, L. F. Zapata-Rivera, C. Aranzazu-Suescun,
A. E. Molina-Pena, and M. M. Larrondo-Petrie, ‘‘Online laboratory
communication using MQTT IoT standard,’’ in Proc. World Eng. Educ.
Forum/Global Eng. Deans Council (WEEF/GEDC), 2021, pp. 550–555,
doi: 10.1109/WEEF/GEDC53299.2021.9657292.

[7] H. Adineh, M. Galli, B. Heinemann, N. Höhner, D. Mezzogori, M. Ehlenz,
‘‘Challenges and solutions to integrate remote laboratories in a cross-
university network,’’ in Proc. Int. Conf. Remote Eng. Virtual Instrum., in
Lecture Notes in Networks and Systems, vol. 298, 2022, pp. 189–202, doi:
10.1007/978-3-030-82529-4_19.

[8] D. G. Zutin, M. Auer, P. Orduña, and C. Kreiter, ‘‘Online lab infrastructure
as a service: A new paradigm to simplify the development and deployment
of online labs,’’ in Proc. 13th Int. Conf. Remote Eng. Virtual Instrum.
(REV), Feb. 2016, pp. 208–214, doi: 10.1109/REV.2016.7444467.

[9] Z. Lei, H. Zhou, W. Hu, and G.-P. Liu, ‘‘Unified and flexible
online experimental framework for control engineering education,’’ IEEE
Trans. Ind. Electron., vol. 69, no. 1, pp. 835–844, Jan. 2022, doi:
10.1109/TIE.2021.3053903.

[10] Z. Lei, H. Zhou, W. Hu, and G.-P. Liu, ‘‘Concurrent experimen-
tation in NCSLab: A scalable approach for online laboratories,’’
Future Gener. Comput. Syst., vol. 148, pp. 139–149, Nov. 2023, doi:
10.1016/j.future.2023.05.014.

[11] L. Xue, W. Hu, and G. Liu, ‘‘Learning with remote laboratories: Designing
control algorithms with both block diagrams and customized C code
schemes,’’ Comput. Appl. Eng. Educ., vol. 30, no. 5, pp. 1561–1576,
Sep. 2022, doi: 10.1002/cae.22544.

[12] J. Broisin, R. Venant, and P. Vidal, ‘‘Lab4CE: A remote laboratory for
computer education,’’ Int. J. Artif. Intell. Educ., vol. 27, no. 1, pp. 154–180,
Mar. 2017, doi: 10.1007/s40593-015-0079-3.

[13] M. Pau, M. Mirz, J. Dinkelbach, P. Mckeever, F. Ponci, and A. Monti,
‘‘A service oriented architecture for the digitalization and automation of
distribution grids,’’ IEEE Access, vol. 10, pp. 37050–37063, 2022, doi:
10.1109/ACCESS.2022.3164393.

VOLUME 11, 2023 132513

http://dx.doi.org/10.1007/978-3-319-76935-6_3
http://dx.doi.org/10.1109/TLT.2023.3267491
http://dx.doi.org/10.1108/jmtm-01-2022-0050
http://dx.doi.org/10.1108/jmtm-01-2022-0050
http://dx.doi.org/10.1007/s12008-019-00558-7
http://dx.doi.org/10.1109/WEEF/GEDC53299.2021.9657292
http://dx.doi.org/10.1007/978-3-030-82529-4_19
http://dx.doi.org/10.1109/REV.2016.7444467
http://dx.doi.org/10.1109/TIE.2021.3053903
http://dx.doi.org/10.1016/j.future.2023.05.014
http://dx.doi.org/10.1002/cae.22544
http://dx.doi.org/10.1007/s40593-015-0079-3
http://dx.doi.org/10.1109/ACCESS.2022.3164393


O. Vanegas-Guillén et al.: Remote Labs Meet Computational Notebooks

[14] B. E. Granger and F. Pérez, ‘‘Jupyter: Thinking and storytelling with code
and data,’’ Comput. Sci. Eng., vol. 23, no. 2, pp. 7–14, Mar. 2021, doi:
10.1109/MCSE.2021.3059263.

[15] J. M. Perkel, ‘‘Why jupyter is data scientists’ computational notebook
of choice,’’ Nature, vol. 563, no. 7729, pp. 145–146, Nov. 2018, doi:
10.1038/d41586-018-07196-1.

[16] T. Kluyver, ‘‘Jupyter notebooks—A publishing format for reproducible
computational workflows,’’ in Proc. 20th Int. Conf. Electron. Publishing
(ELPUB), 2016, pp. 87–90, doi: 10.3233/978-1-61499-649-1-87.

[17] A. Cardoso, J. Leitão, and C. Teixeira, ‘‘Using the Jupyter notebook as a
tool to support the teaching and learning processes in engineering courses,’’
in The Challenges of the Digital Transformation in Education (Advances
in Intelligent Systems and Computing), M. E. Auer and T. Tsiatsos, Eds.
Cham, Switzerland: Springer, 2019, pp. 227–236, doi: 10.1007/978-3-030-
11935-5_22.

[18] A. Cardoso, J. Leitão, P. Gil, A. S. Marques, and N. E. Simões, ‘‘Demon-
stration: Using IPython to demonstrate the usage of remote labs in
engineering courses—A case study using a remote rain gauge,’’ in Smart
Industry & Smart Education (Lecture Notes in Networks and Systems),
M. E. Auer and R. Langmann, Eds. Cham, Switzerland: Springer, 2019,
pp. 714–720, doi: 10.1007/978-3-319-95678-7_79.

[19] O. A. V. Guillén, J. M. Antón, J. B. Maldonado, and J. Z. Gamboa,
‘‘Termolabo project: Design and implementation of thermo-fluids systems
online laboratory,’’ in Proc. IEEE Global Eng. Educ. Conf. (EDUCON),
Apr. 2021, pp. 1066–1072, doi: 10.1109/EDUCON46332.2021.9454066.

[20] (Feb. 5, 2020). UNE 71362:2022 Quality of Digital Educational Mate-
rials. [Online]. Available: https://www.une.org/encuentra-tu-norma/busca-
tu-norma/norma?c=N0063263

[21] L. F. Z. Rivera, ‘‘Models and implementations of online laboratories;
A definition of a standard architecture to integrate distributed remote
experiments,’’ Ph.D. dissertation, Florida Atlantic University, Boca Raton,
FL, USA, 2019. Accessed: Mar. 24, 2023. [Online]. Available:
https://www.proquest.com/docview/2287470698/abstract/B55FF287
C5CF4F2DPQ/1

[22] A. Maiti, D. G. Zutin, H.-D. Wuttke, K. Henke, A. D. Maxwell,
and A. A. Kist, ‘‘A framework for analyzing and evaluating architec-
tures and control strategies in distributed remote laboratories,’’ IEEE
Trans. Learn. Technol., vol. 11, no. 4, pp. 441–455, Oct. 2018, doi:
10.1109/TLT.2017.2787758.

[23] M. Tawfik, C. Salzmann, D. Gillet, D. Lowe, H. Saliah-Hassane, E. San-
cristobal, and M. Castro, ‘‘Laboratory as a service (LaaS): A novel
paradigm for developing and implementing modular remote laboratories,’’
Int. J. Online Biomed. Eng. (iJOE), vol. 10, no. 4, p. 13, Jun. 2014, doi:
10.3991/ijoe.v10i4.3654.

[24] A. Villar-Martínez, J. García-Zubía, I. Angulo, and L. Rodríguez-
Gil, ‘‘Towards reliable remote laboratory experiences: A model for
maximizing availability through fault-detection and replication,’’ IEEE
Access, vol. 9, pp. 45032–45054, 2021, doi: 10.1109/ACCESS.2021.
3065742.

[25] M. Soll, J. Haase, P. Helbing, and J. Nau, ‘‘What are we miss-
ing for effective remote laboratories?’’ in Proc. IEEE German Educ.
Conf. (GeCon), Aug. 2022, pp. 1–6, doi: 10.1109/GeCon55699.2022.
9942771.

[26] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, ‘‘The many
faces of publish/subscribe,’’ ACM Comput. Surveys, vol. 35, no. 2,
pp. 114–131, Jun. 2003, doi: 10.1145/857076.857078.

[27] P. Pierleoni, R. Concetti, A. Belli, and L. Palma, ‘‘Amazon, Google
and Microsoft solutions for IoT: Architectures and a performance
comparison,’’ IEEE Access, vol. 8, pp. 5455–5470, 2020, doi:
10.1109/ACCESS.2019.2961511.

[28] P. Eugster, ‘‘Type-based publish/subscribe: Concepts and experiences,’’
ACM Trans. Program. Lang. Syst., vol. 29, no. 1, p. 6, Jan. 2007, doi:
10.1145/1180475.1180481.

[29] N. Ferraz Junior, A. A. A. Silva, A. E. Guelfi, and S. T. Kofuji,
‘‘Performance evaluation of publish-subscribe systems in IoT
using energy-efficient and context-aware secure messages,’’ J.
Cloud Comput., vol. 11, no. 1, pp. 1–17, Jan. 2022, doi: 10.1186/
s13677-022-00278-6.

[30] W. Halimi, C. Salzmann, D. Gillet, and H. Saliah-Hassane, ‘‘Standard-
ization layers for remote laboratories as services and open educational
resources,’’ in Online Engineering & Internet of Things, M. E. Auer and
D. G. Zutin, Eds. Cham, Switzerland: Springer, 2018, pp. 874–884, doi:
10.1007/978-3-319-64352-6_81.

[31] A. Villar-Martínez, L. Rodríguez-Gil, I. Angulo, P. Orduña, J. García-
Zubía, and D. López-De-Ipiña, ‘‘Improving the scalability and replica-
bility of embedded systems remote laboratories through a cost-effective
architecture,’’ IEEE Access, vol. 7, pp. 164164–164185, 2019, doi:
10.1109/ACCESS.2019.2952321.

[32] P. Orduña, L. Rodriguez-Gil, I. Angulo, U. Hernandez, A. Villar, and
J. Garcia-Zubia, ‘‘WebLabLib: New approach for creating remote labo-
ratories,’’ in Cyber-physical Systems and Digital Twins (Lecture Notes
in Networks and Systems), M. E. Auer and K. B. Ram, Eds. Cham,
Switzerland: Springer International Publishing, 2020, pp. 477–488, doi:
10.1007/978-3-030-23162-0_43.

[33] D. G. Zutin, ‘‘Online laboratory architectures and technical consider-
ations,’’ in Cyber-Physical Laboratories in Engineering and Science
Education, M. E. Auer, A. K. M. Azad, A. Edwards, and T. de Jong, Eds.
Cham, Switzerland: Springer, 2018, pp. 5–16, doi: 10.1007/978-3-319-
76935-6_1.

[34] M. Orlando, A. Estebsari, E. Pons, M. Pau, S. Quer, M. Poncino, L. Bot-
taccioli, and E. Patti, ‘‘A smart meter infrastructure for smart grid IoT
applications,’’ IEEE Internet Things J., vol. 9, no. 14, pp. 12529–12541,
Jul. 2022, doi: 10.1109/JIOT.2021.3137596.

[35] T. S. Uhlmann, H. D. Lima, A. L. Luppi, and L. A. Mendes, ‘‘ELSA-
SP—Through-the-cloud subscribe-publish scheme for interactive remote
experimentation under iLab shared architecture and its application to an
educational PID control plant,’’ presented at the Proc. 5th Exp. Int. Conf.
(EXPAT), Jun. 2019, pp. 58–62, doi: 10.1109/EXPAT.2019.8876567.

[36] IMS Global Learning Consortium (LTI). Learning Tools Interoperability
Core Specification 1.3. Accessed: Mar. 14, 2023. [Online]. Available:
https://www.imsglobal.org/spec/lti/v1p3/

[37] J. M. Kevan and P. R. Ryan, ‘‘Experience API: Flexible, decentralized and
activity-centric data collection,’’ Technol., Knowl. Learn., vol. 21, no. 1,
pp. 143–149, Apr. 2016, doi: 10.1007/s10758-015-9260-x.

[38] R. Schiano Lo Moriello, A. Liccardo, F. Bonavolonta, E. Caputo, A.
Gloria, and G. De Alteriis, ‘‘On the suitability of augmented real-
ity for safe experiments on radioactive materials in physics educa-
tional applications,’’ IEEE Access, vol. 10, pp. 54185–54196, 2022, doi:
10.1109/ACCESS.2022.3175869.

[39] F. Esquembre, ‘‘Easy Java simulations: A software tool to create sci-
entific simulations in Java,’’ Comput. Phys. Commun., vol. 156, no. 2,
pp. 199–204, Jan. 2004, doi: 10.1016/S0010-4655(03)00440-5.

[40] F. Esquembre, ‘‘Facilitating the creation of virtual and remote laboratories
for science and engineering education,’’ IFAC-PapersOnLine, vol. 48,
no. 29, pp. 49–58, Jan. 2015, doi: 10.1016/j.ifacol.2015.11.212.

[41] H. Shen, ‘‘Interactive notebooks: Sharing the code,’’ Nature, vol. 515,
no. 7525, p. 152, Nov. 2014, doi: 10.1038/515151ax.

[42] M. B. Kery, M. Radensky, M. Arya, B. E. John, and B. A. Myers, ‘‘The
story in the notebook: Exploratory data science using a literate program-
ming tool,’’ in Proc. CHI Conf. Human Factors Comput. Syst. New York,
NY, USA: Association for Computing Machinery, Apr. 2018, pp. 1–11,
doi: 10.1145/3173574.3173748.

[43] D. E. Knuth, ‘‘Literate programming,’’ Comput. J., vol. 27, no. 2,
pp. 97–111, Feb. 1984, doi: 10.1093/comjnl/27.2.97.

[44] F. Perez and B. E. Granger, ‘‘IPython: A system for interactive scientific
computing,’’ Comput. Sci. Eng., vol. 9, no. 3, pp. 21–29, May 2007, doi:
10.1109/mcse.2007.53.

[45] A. Rule, A. Tabard, and J. D. Hollan, ‘‘Exploration and explanation in com-
putational notebooks,’’ presented at the Proc. CHI Conf. Human Factors
Comput. Syst. (CHI). New York, NY, USA: Association for Computing
Machinery, 2018, pp. 1–12, doi: 10.1145/3173574.3173606.

[46] J. F. Pimentel, L. Murta, V. Braganholo, and J. Freire, ‘‘A large-
scale study about quality and reproducibility of jupyter notebooks,’’
in Proc. IEEE/ACM 16th Int. Conf. Mining Softw. Repositories
(MSR). Montreal, QC, Canada: IEEE, May 2019, pp. 507–517, doi:
10.1109/MSR.2019.00077.

[47] F. Corno, L. De Russis, and J. P. Sáenz, ‘‘Computational notebooks to sup-
port developers in prototyping IoT systems,’’ Int. J. Hum.-Comput. Stud.,
vol. 165, Sep. 2022, Art. no. 102850, doi: 10.1016/j.ijhcs.2022.102850.

[48] D. Du, T. J. Baird, S. Bonella, and G. Pizzi, ‘‘OSSCAR, an open platform
for collaborative development of computational tools for education in
science,’’ Comput. Phys. Commun., vol. 282, Jan. 2023, Art. no. 108546,
doi: 10.1016/j.cpc.2022.108546.

[49] A. V. Yakutovich, K. Eimre, O. Schütt, L. Talirz, C. S. Adorf, C. W. Ander-
sen, E. Ditler, D. Du, D. Passerone, B. Smit, N. Marzari, G. Pizzi, and C.
A. Pignedoli, ‘‘AiiDAlab—An ecosystem for developing, executing, and
sharing scientific workflows,’’ Comput. Mater. Sci., vol. 188, Feb. 2021,
Art. no. 110165, doi: 10.1016/j.commatsci.2020.110165.

132514 VOLUME 11, 2023

http://dx.doi.org/10.1109/MCSE.2021.3059263
http://dx.doi.org/10.1038/d41586-018-07196-1
http://dx.doi.org/10.3233/978-1-61499-649-1-87
http://dx.doi.org/10.1007/978-3-030-11935-5_22
http://dx.doi.org/10.1007/978-3-030-11935-5_22
http://dx.doi.org/10.1007/978-3-319-95678-7_79
http://dx.doi.org/10.1109/EDUCON46332.2021.9454066
http://dx.doi.org/10.1109/TLT.2017.2787758
http://dx.doi.org/10.3991/ijoe.v10i4.3654
http://dx.doi.org/10.1109/ACCESS.2021.3065742
http://dx.doi.org/10.1109/ACCESS.2021.3065742
http://dx.doi.org/10.1109/GeCon55699.2022.9942771
http://dx.doi.org/10.1109/GeCon55699.2022.9942771
http://dx.doi.org/10.1145/857076.857078
http://dx.doi.org/10.1109/ACCESS.2019.2961511
http://dx.doi.org/10.1145/1180475.1180481
http://dx.doi.org/10.1186/s13677-022-00278-6
http://dx.doi.org/10.1186/s13677-022-00278-6
http://dx.doi.org/10.1007/978-3-319-64352-6_81
http://dx.doi.org/10.1109/ACCESS.2019.2952321
http://dx.doi.org/10.1007/978-3-030-23162-0_43
http://dx.doi.org/10.1007/978-3-319-76935-6_1
http://dx.doi.org/10.1007/978-3-319-76935-6_1
http://dx.doi.org/10.1109/JIOT.2021.3137596
http://dx.doi.org/10.1109/EXPAT.2019.8876567
http://dx.doi.org/10.1007/s10758-015-9260-x
http://dx.doi.org/10.1109/ACCESS.2022.3175869
http://dx.doi.org/10.1016/S0010-4655(03)00440-5
http://dx.doi.org/10.1016/j.ifacol.2015.11.212
http://dx.doi.org/10.1038/515151ax
http://dx.doi.org/10.1145/3173574.3173748
http://dx.doi.org/10.1093/comjnl/27.2.97
http://dx.doi.org/10.1109/mcse.2007.53
http://dx.doi.org/10.1145/3173574.3173606
http://dx.doi.org/10.1109/MSR.2019.00077
http://dx.doi.org/10.1016/j.ijhcs.2022.102850
http://dx.doi.org/10.1016/j.cpc.2022.108546
http://dx.doi.org/10.1016/j.commatsci.2020.110165


O. Vanegas-Guillén et al.: Remote Labs Meet Computational Notebooks

[50] T. O. B. Odden, E. Lockwood, and M. D. Caballero, ‘‘Physics computa-
tional literacy: An exploratory case study using computational essays,’’
Phys. Rev. Phys. Educ. Res., vol. 15, no. 2, Dec. 2019, Art. no. 020152,
doi: 10.1103/physrevphyseducres.15.020152.

[51] C. J. Fitzgerald, S. Laurian-Fitzgerald, and C. Popa,Handbook of Research
on Student-Centered Strategies in Online Adult Learning Environments.
Hershey, PA, USA: IGI Global, 2008, doi: 10.4018/978-1-5225-5085-
3.ch021.

[52] A. De Santo, J. C. Farah, M. L. Martínez, A. Moro, K. Bergram,
A. K. Purohit, P. Felber, D. Gillet, and A. Holzer, ‘‘Promoting com-
putational thinking skills in non-computer-science students: Gamify-
ing computational notebooks to increase student engagement,’’ IEEE
Trans. Learn. Technol., vol. 15, no. 3, pp. 392–405, Jun. 2022, doi:
10.1109/TLT.2022.3180588.

[53] J. C. Farah, A. Moro, K. Bergram, A. Purohit, D. Gillet, and A. Holzer.
(Sep. 2020). Bringing Computational Thinking to non-STEM Undergrad-
uates through an Integrated Notebook Application. [Online]. Available:
https://ceur-ws.org/Vol-2676/paper2.pdf

[54] R. Castilla and M. Peña, ‘‘Jupyter notebooks for the study of advanced
topics in fluid mechanics,’’ Comput. Appl. Eng. Educ., vol. 31, no. 4,
pp. 1001–1013, Jul. 2023, doi: 10.1002/cae.22619.

[55] A. S. Behr, L. M. Neuendorf, P. Sakthithasan, K. E. R. Boettcher, and
N. Kockmann, ‘‘Process control using AI on a digital twin of an extraction
column in VR,’’ in Proc. IEEE German Educ. Conf. (GeCon), Aug. 2022,
pp. 1–6, doi: 10.1109/GeCon55699.2022.9942788.

[56] V. F. Ochkov, A. Stevens, and A. I. Tikhonov, ‘‘Jupyter notebook,
JupyterLab—Integrated environment for STEM education,’’ in Proc. VI
Int. Conf. Inf. Technol. Eng. Educ. (Inforino), Apr. 2022, pp. 1–5, doi:
10.1109/Inforino53888.2022.9782924.

[57] J. P. Dias, A. Restivo, and H. S. Ferreira, ‘‘Designing and con-
structing Internet-of-Things systems: An overview of the ecosys-
tem,’’ Internet Things, vol. 19, Aug. 2022, Art. no. 100529, doi:
10.1016/j.iot.2022.100529.

[58] J. Sáenz, L. de la Torre, J. Chacón, and S. Dormido, ‘‘A study of strategies
for developing online laboratories,’’ IEEE Trans. Learn. Technol., vol. 14,
no. 6, pp. 777–787, Dec. 2021, doi: 10.1109/TLT.2022.3145807.

[59] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman, ‘‘Role-based
access control models,’’ Computer, vol. 29, no. 2, pp. 38–47, Feb. 1996,
doi: 10.1109/2.485845.

[60] Information Technology—Message Queuing Telemetry Transport
(MQTT) V3.1.1, Standard ISO/IEC 20922:2016, International
Organization for Standardization, 2016. [Online]. Available:
https://www.iso.org/standard/69466.html

[61] G. Carlucci, L. De Cicco, S. Holmer, and S. Mascolo, ‘‘Congestion control
for web real-time communication,’’ IEEE/ACMTrans. Netw., vol. 25, no. 5,
pp. 2629–2642, Oct. 2017, doi: 10.1109/TNET.2017.2703615.

OSWALDO VANEGAS-GUILLÉN (Member,
IEEE) received the B.S. degree in electronic engi-
neering from Universidad del Azuay, Ecuador,
and the master’s degree in energy engineering
from the School of Industrial Engineering (ETSII),
Technical University of Madrid (UPM), Spain,
where he is currently pursuing the Ph.D. degree.
He is an Associate Professor with the Depart-
ment of Information Technologies, Universidad de
Guayaquil, Ecuador. His research interests include

online laboratories, educational innovation, engineering education, virtual
instrumentation, information security, and renewable energy systems.

PABLO PARRA-ROSERO received the degree in
engineering, with a mention in electrical engineer-
ing, from Escuela Superior Politécnica del Litoral,
Guayaquil, Ecuador, in 1997, the M.Sc. degree in
automatic production and robotics from Universi-
dad Politécnica de Catalunya, Barcelona, Spain,
in 2003, and the Ph.D. degree in automation, con-
trol, and optimization from the University of Piura,
Peru, in 2017. He is currently the Coordinator of
Academic Development and the Industrial Pro-

cesses Research Group (GIPI), Universidad Politécnica Salesiana (UPS),
Guayaquil Campus. His research interests include modeling, simulation,
control of industrial processes, and educational innovation.

JAVIER MUÑOZ-ANTÓN received the master’s
and Ph.D. degrees in mechanical engineering from
the Technical University of Madrid (UPM), Spain.
He is currently a Professor and a Researcher
with the Energy Engineering Department, School
of Industrial Engineering (ETSII), UPM. His
research interests include thermal engineering,
renewable energy, concentrating solar power, and
educational innovation.

JOHANNA ZUMBA-GAMBOA received the
master’s degree in business administration with a
focus on enterprise information systems fromUni-
versidad de Guayaquil, Ecuador. She is currently
an Associate Professor with the Department of
Computational Systems, Faculty of Mathematical
and Physical Sciences, Universidad de Guayaquil.
Her research interests include information and
communication technologies in education.

CARLOS DILLON received the degree in sys-
tem engineering from Universidad Politécnica
Salesiana (UPS). He worked in the IT sector and as
a Software Developer. He is currently a Researcher
with the Department of Development of Appli-
cations for Education, SignalView Ecuador. His
research interests include online laboratories and
cybersecurity.

VOLUME 11, 2023 132515

http://dx.doi.org/10.1103/physrevphyseducres.15.020152
http://dx.doi.org/10.4018/978-1-5225-5085-3.ch021
http://dx.doi.org/10.4018/978-1-5225-5085-3.ch021
http://dx.doi.org/10.1109/TLT.2022.3180588
http://dx.doi.org/10.1002/cae.22619
http://dx.doi.org/10.1109/GeCon55699.2022.9942788
http://dx.doi.org/10.1109/Inforino53888.2022.9782924
http://dx.doi.org/10.1016/j.iot.2022.100529
http://dx.doi.org/10.1109/TLT.2022.3145807
http://dx.doi.org/10.1109/2.485845
http://dx.doi.org/10.1109/TNET.2017.2703615

