
Received 15 September 2023, accepted 21 November 2023, date of publication 23 November 2023,
date of current version 29 November 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3336565

A Comprehensive Framework for Systemic
Security Management in NoC-Based Many-Cores
RAFAEL FOLLMANN FACCENDA 1, GUSTAVO COMARÚ 1, (Graduate Student Member, IEEE),
LUCIANO LORES CAIMI2, AND FERNANDO GEHM MORAES 1, (Senior Member, IEEE)
1School of Technology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, Brazil
2Department of Computer Science, Federal University of Fronteira Sul (UFFS), Chapecó 89815-899, Brazil

Corresponding author: Fernando Gehm Moraes (fernando.moraes@pucrs.br)

This work was supported in part by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—CAPES under Grant 001, in part by
Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq under Grant 309605/2020-2 and Grant 407829/2022-9, and in
part by Fundação de Amparo à Pesquisa do Estado do RS—FAPERGS under Grant 21/2551-0002047-4.

ABSTRACT Many-core Systems-on-Chip (MCSoC) are increasingly used in various applications domains
such as high-performance computing, embedded systems, and Internet of Things devices. As MCSoCs
permeate various industries and applications, the potential consequences of security issues are becoming
increasingly severe. Therefore, security is a fundamental design constraint, addressing vulnerabilities
and protecting valuable data from threats. This requires the development of robust security mechanisms
and countermeasures against potential threats. The reviewed works on security for MCSoCs addressed
frameworks and mechanisms to treat different security threats. Despite these proposals, the integration
of security mechanisms still needs to be improved, enabling a security manager to make decisions using
monitoring data for mitigating threats more effectively. This integration is the primary goal of our work,
aiming to create a comprehensive framework for security management. The framework adopts aMonitoring-
Detection-Countermeasure loop. A distributed monitoring infrastructure detects suspicious behaviors,
generating warnings to different system actors. These actors decide the warning severity, firing security
countermeasures. Countermeasures may be local (e.g., discarding a packet) or taken at the system level (e.g.,
aborting a malicious application). The results use an MCSoC modeled at the RTL level, providing accuracy
at the clock cycle (cc) level. Five different attack scenarios are evaluated, showing that the gap between
attack detection and countermeasure takes less than one millisecond (15,000 cc at 100 MHz). The area
overhead in the communication infrastructure corresponds to 48.8%. These results show that the framework
can effectively manage the system’s security while maintaining the performance of the applications.

INDEX TERMS Countermeasures, monitoring, NoC-based many-cores, security framework.

I. INTRODUCTION
High-performance computing architectures increasingly
employ Many-Core Systems-on-Chip (MCSoC) that use
Networks-on-Chip (NoC) as their communication infrastruc-
ture to meet the ever-growing demand for computational
power. These systems are widely used in diverse domains,
such as embedded systems, data centers, and high-
performance computing. Prominent examples of MCSoCs

The associate editor coordinating the review of this manuscript and

approving it for publication was Engang Tian .

include Esperanto [1], Epiphany-V [2], Kalray MPPA [3],
Celerity [4], Kilo-Core [5]. As MCSoCs become more
prevalent, ensuring their security has become a crucial design
consideration.

As MCSoCs permeate various industries and applications,
the potential consequences of security issues are becoming
increasingly severe. Therefore, security is fundamental to
system design, addressing vulnerabilities, and protecting
valuable data from threats. This requires the develop-
ment of robust security mechanisms and countermeasures
against potential threats to prevent unauthorized access,

131836

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0009-0005-9919-6369
https://orcid.org/0009-0008-8121-7813
https://orcid.org/0000-0001-6126-6847
https://orcid.org/0000-0002-8169-5347


R. F. Faccenda et al.: Comprehensive Framework for Systemic Security Management

tampering, or data leakage. Such proposals must also
consider non-functional requirements such as power, perfor-
mance, and area.

MCSoCs are susceptible to various attacks, such as
hardware Trojans (HT), side channel attacks (SCA), denial of
service (DoS), and spoofing [6]. Current security methods in
MCSoCs include the implementation of firewalls [7], secure
routing algorithms [8], encryption [9], authentication [10],
anomaly detection [11], among others. These proposals focus
on mitigating a single type of attack rather than seeking to
create an integrated security framework.

This paper introduces a systemic security management
approach designed for NoC-based MCSoCs. Our primary
objective is to create a comprehensive framework that enables
the integration of diverse security mechanisms, monitoring,
analysis, and decision-making processes. We present the
framework, alongside a set of attacks and recovery costs,
to assist system designers and researchers in effectively
improving the security of MCSoCs. By adopting our
proposed framework, designers can achieve more resilient
and secure architectures, ensuring safe and reliable operation
across a variety of applications and industries.

A recurrent observation in the literature is the absence
of systemic and integrated security mechanisms that simul-
taneously monitor, detect, and mitigate a broad spectrum
of threats in real-time. The novelty of our work is to
fulfill this gap by proposing a comprehensive framework for
security management. The proposed framework monitors the
system at several locations, allowing the detection of threats.
Threat detection fires countermeasures and generates security
warnings to a security manager. None of the reviewed works
presents this monitoring-detection-countermeasure security
loop.

This paper is organized as follows. Section II reviews
security proposals for NoC-based systems. Section III
overviews the architecture and threat models. Section IV
details the security mechanisms added to the reference
architecture. Section V presents the main contribution of this
work, the security framework, which adopts a Monitoring-
Detection-Countermeasure loop. Section VI evaluates the
framework in different attack scenarios and evaluates the area
overhead due to added hardware mechanisms. Section VII
concludes this paper and points out directions for future work.

II. RELATED WORK
In a previous study, Fiorin et al. [12] emphasized the need of
a security framework designed to gather data from monitors
integrated into network interfaces (NI) or routers strategically
positioned within critical areas of the NoC. The authors
propose to monitor: (i) buffer occupancy, (ii) anomalous
behavior of power manager; (iii) unauthorized access to
secure memory locations; (iv) violation of execution of
critical routines. These authors propose in [7] the adoption of
firewalls integrated into the NI to manage memory accesses
using a lookup table containing the access rights. The authors
only evaluate the firewall area. In more recent work, Fiorin

et al. [13] propose the insertion of a configurable Probe
device inside the NI that can detect events and collect values
about throughput, latency, resource utilization, and message
characteristics. After detecting events, a message to the Probe
Management Unit (PMU) reports the detected set of events
that can trigger runtime management functions. The probe
module was evaluated for area, energy, and traffic overhead.

Azad et al. [9] propose a mechanism that allows the
configuration of security zones in MPSoCs. The authors
assume that the NoC is untrustworthy and that an attacker
can tamper with the on-chip communication. Secure zones
are created at runtime by configuring firewalls through
authenticated encryption. Differently from our security zone
approach described in Section IV-A, the proposal is, in effect,
a Network Interface design.

Thejaswini et al. [10] present an HT detection and miti-
gation approach using obfuscation and key-based authentica-
tion. The authors aim to prevent illegal transactions between
routers, protecting the NoC against packet misrouting and
information leakage. The evaluation uses the Gem5 simulator
in a 4 × 4 mesh NoC-based SoC with 16 cores. Despite the
reported high detection rate and effective mitigation against
HT attacks, there are no identified concerns related to security
management.

Meng et al. [14] propose a framework for systemati-
cally detecting security violations in SoC designs resulting
from vulnerabilities in NoC communication. The threat
model includes message misdirection, message mutation,
delivery prevention, and network congestion. The proposed
framework, SEVNOC, extracts a control-flow graph of the
design that enables analysis of security properties through
state exploration. The framework does not detect attacks at
runtime. The authors’ goal is to detect vulnerabilities in the
RTL design using a symbolic approach.

Sharma et al. [15] analyze the security aspects of MPSoCs,
discussing several defense mechanisms known in the liter-
ature, such as secure zones, firewalls, and key agreement,
and then expand the discussion to the Cloud of Chips
scope. Furthermore, the authors propose a software-defined
network-on-chip (SDNoC) as an alternative that can reserve
resources, avoiding congestion and harmful paths. The paper
provides a broad view of MPSoC security and how effective
are the defense mechanisms against DoS, Hardware Trojan,
and Side-channel attacks. However, the proposal does not
include runtime monitoring of threats, which results in a gap
in detection and countermeasures once a threat is detected.

Ruaro et al. [16] also adopt SDN to establish a pro-
grammable path based on different policies, such as power,
QoS, and security. In addition, the authors propose a
secure path configuration based on key authentication that
avoids DoS and flooding attacks since packets that fail the
authentication are discarded. However, the authors point out
that their approach is still vulnerable to HT attacks.

Kumar et al. [17] propose a methodology to protect
NoCs against HTs. The authors propose a 3-tier approach
that includes a Trojan cognizant routing algorithm (TCRA),

VOLUME 11, 2023 131837



R. F. Faccenda et al.: Comprehensive Framework for Systemic Security Management

TABLE 1. Related work summary.

a Trojan detection and diagnosis module, and a Trojan-
resilient network interface. The detection and diagnosis
module is responsible for identifying and locating HTs in
the system, while the network interface provides a secure
communication channel between the NoC and the external
world. The Authors used a NoC simulator (NoCTweak) to
test the TCRA under different scenarios, including single and
multiple HTs. The results of the experiments show that the
proposed approach effectively mitigates the impact of HTs
on NoCs. The TCRA outperforms other methods regarding
average throughput, packet delivery, and free link availability.

Sudusinghe et al. [18] propose a machine learning-based
approach for detecting eavesdropping attacks in NoCs,
which can be launched by inserting HTs. The approach
involves training machine learning models on data sets that
emulate different application executions and malicious router
scenarios. The performance of the models is evaluated based
on accuracy, F1 score, precision, and recall. The results show
that the accuracy of the models increases with the percentage
of information snooping due to an eavesdropping attack.
Experiments use a 4 × 4 mesh NoC modeled using Garnet
NoC with the Gem5 system simulator, testing the model
using the Garnet synthetic traffic injector. The results show
that the models can detect eavesdropping attacks with high
accuracy, even when the percentage of snooping is as low as
25%. The authors conclude that the proposed approach can
detect eavesdropping attacks in NoC architectures with high
accuracy and low false positive rates. This work highlights
the potential of machine learning to detect security threats in
complex system-on-chip designs.

Charles et al. [6] survey NoC security attacks and
countermeasures. The authors evaluate five types of security
attacks and the corresponding countermeasures: eavesdrop-
ping, spoofing, denial-of-service (DoS), buffer overflow, and
side channel (SCA). For each attack, the survey presents
proposals to mitigate or avoid them, presenting the overhead
and effectiveness of the proposal. One of the future directions
pointed out by the authors is the integration of security
mechanisms. They argue that a proposal that mitigates one
particular type of threat does not effectively secure the SoC.

Table 1 provides a qualitative comparison of the works
discussed in this section. The column Security Location
denotes the system components endowed with security
mechanisms. Most proposals focus primarily on protecting
the communication infrastructure, encompassing NoC and
NI components. In addition to employing these components,
our work uses PEs to monitor and configure NoC and NI
peripherals at runtime.

The column Defense Mechanisms presents the security
mechanisms adopted by the authors. Our approach is distinct
due to adopting opaque secure zones, which reserve commu-
nication and computation resources for a specific application,
together with secure mechanisms for communicating with
peripherals.

The Monitoring column lists the policies used for
system monitoring. Here appears a gap in current literature,
as fundamental mechanisms are firewalls or authentication,
lacking systemic mechanisms. The Detection column is
a consequence of the monitoring methods. As discussed
later, our work monitors multiple events simultaneously,

131838 VOLUME 11, 2023



R. F. Faccenda et al.: Comprehensive Framework for Systemic Security Management

FIGURE 1. MCSoC model. PE: Processing Element, MPE: Manager PE;
Peripheral: contains a SNIP (Secure Network Interface with Peripheral)
and an IO device. App. injector: transmits applications to execute into the
system.

enabling the detection of a broader range of security
events.

Lastly, the Countermeasure column shows that the most
common countermeasure is packet discarding, followed by
rerouting. Besides incorporating these countermeasures, our
work notifies a security agent about suspicious events. This
enables this agent to know the system’s status and implement
suitable measures to ensure its secure operation.

The reviewed proposals on security for NoC-based systems
addressed frameworks and mechanisms to treat different
security threats. Despite these advances, the integration of
security mechanisms still needs to be improved, enabling a
security manager to make decisions using monitoring data
to mitigate threats more effectively. This integration is the
primary goal of our work, aiming to create a comprehensive
framework for security management.

III. ARCHITECTURE AND THREAT MODELS
A. ARCHITECTURE MODEL
Figure 1 overviews the architecture model, based on [19].
It contains two regions. The first is the ‘‘General Purpose
Processing Cores’’ (GPPC), with identical general-purpose
processing elements (PEs). One of those PEs is the MPE,
which controls the system, also being the security manager
of our proposal. The second region contains peripherals and
the application injector (Appinj), responsible for deploying
applications into the system.

All PEs (including the MPE) have the same hardware
architecture, with two routers, private memory, a processor,
and a DMNI (Direct Memory Network Interface) [20]
module. The system contains two 2D-mesh NoCs, a packet-
switching data NoC and a control NoC. The data NoC uses
duplicated physical channels, enabling the adoption of XY
and adaptive source routing. The control NoC uses broadcast
as the default transmission mode [21].

Peripherals are specialized nodes that provide IO interface
and hardware acceleration for tasks running on the GPPC.

Examples of peripherals include hardware accelerators,
communicationmodules (e.g., Ethernet interface), and shared
memories. The Appinj is responsible for transmitting appli-
cations to be executed in the GPPC through the data NoC.
Peripherals and Appinj are connected to the boundaries of the
GPPC to obtain regular floorplanning.

B. THREAT MODEL
The reference architecture has two trustworthy entities: (i)
control NoC and (ii) MPE. Message authentication code
(MAC) protects the operating system and tasks load against
boot attacks. Only the operating system running on PEs
may access the control NoC, preventing attacks on it from
malicious tasks.

This work considers in the threat model attacks that
involve denial-of-service, spoofing, and eavesdropping exe-
cuted from different sources (Hardware Trojans, malicious
applications, malicious IO devices), arising in the following
vulnerabilities:

1) Resource sharing between applications: Execution of
secure and non-secure applications in the same region,
using the same structures for computation (PEs)
and communication (NoC routers). This characteristic
presents a major system vulnerability since malicious
applications could access sensitive application data or
generate an intensive communication flow that disrupts
the surrounding communication structures.

2) Applications deployment: Applicationsmust be deployed
securely to ensure they are not tampered or compro-
mised during the object code transmission through data
NoC.

3) Hardware Trojans (HTs): Malicious hardware can be
inserted into the NoC or PEs [22] to perform unautho-
rized operations, steal sensitive data, or disturb traffic by
blocking ports.

4) Access to IO devices: Applications that communicate
with IO devices demand additional security measures to
prevent unauthorized access or exploration of protocol
violations.

5) Malicious IO devices: IO devices that communicate with
the external environment may try to attack applications
by injecting malicious code or data. In addition, IOs can
be a gateway for information leakage.

It is crucial to consider these vulnerabilities and implement
securitymeasures tomitigate the risks to ensure the safety and
reliability of the system.

IV. SECURITY MECHANISMS AND APPLICATION
EXECUTION
This section initially details the security mechanisms (hard-
ware and software) added to the reference architecture
(IV-A). In the sequel (IV-B), we present the actions executed
at system startup, responsible for carrying out security-related
configurations. Next (IV-C), we detail the deployment of
applications with security requirements into the system, and

VOLUME 11, 2023 131839



R. F. Faccenda et al.: Comprehensive Framework for Systemic Security Management

FIGURE 2. (a) Secure Router. LCs: activated by LCreg. APs: activated by
apReg. {k1Reg,k2Reg} authentication key registers. Each AP has an
interface with the control NoC to notify suspicious packets. (b) Example
of SR paths Task↔SNIP through the AP.

we conclude this section (IV-D) with a summary of the
adopted security mechanisms. Once an application runs, the
framework (Section V) monitors for suspicious events and
takes countermeasures.

A. SECURITY MECHANISMS
The primary security mechanism is the Opaque Secure Zone
(OSZ) [23]. OSZs are system regions with PEs reserved
for executing an application with security requirements –
Appsec. The purpose of OSZs is to protect communication
and computation. The boundaries of the OSZ are closed by
link control modules (LCs) to ensure that the communication
within an OSZ remains secure. The LC modules block any
communication trying to cross the OSZ boundaries, and the
Appsec traffic remains inside the OSZ. Any traffic attempting
to cross an OSZ is automatically deviated, thus preserving the
Appsec security. OSZs protect the Appsec by ensuring that it
does not share processors and routers with other applications,
preventing interference from other applications that could
disturb the processing and communication within the OSZ,
such as unauthorized access or data tampering.

Themechanism that enables the OSZmethod is the support
for adaptive source routing (SR). The SR is used in: (i)
paths circumventing OSZs to avoid losing packets; (ii) paths
between OSZs and peripherals; (iii) paths inside the OSZ
when detecting a threat (discussed in more detail later). The
SR is a security mechanism once it obfuscates the source and
target addresses. It means that the packet header contains the
turns the packet takes at each hop, rather than including the
target addresses in the header.

To enable the communication of an Appsec with a
peripheral, it is necessary to open a link in the OSZ without
compromising the OSZ security mechanism. To enable this
secure communication, two hardware modules are used:
Access Point (AP) and the Secure Network Interface with
Peripherals (SNIP).

The AP is a hardware module inserted on all router ports,
except the local one, with its operation mode defined by
memory-mapped registers. Figure 2(a) shows the ‘‘secure

FIGURE 3. Three examples of gray (gray PEs) and safe areas (white PEs),
with OSZs created in the safe areas. The MPE is part of the gray area
despite not executing user tasks.

router’’, with nine LCs (link control modules), four APs, and
the data router. All links have an LC module, including the
local port, that blocks the traffic when activated. The AP
verifies the authenticity of the packets using a lightweight
authentication protocol [24], detects suspicious traffic, and
notifies such events to the MPE through the control NoC.

The SNIP (Secure Network Interface with Peripherals),
placed between the NoC and a peripheral (Figure 1), executes
the functions related to a network interface and is responsible
for authenticating the communication between Appsecs and
IO devices. The paths between APs and SNIPs are defined
by SR. Figure 2(b) presents an example of an Appsec task
communicating with a peripheral.

B. SYSTEM INITIALIZATION ACTIONS
During the boot process, the MPE carries out a series of
security-related actions. Initially, the MPE blocks commu-
nication with all peripherals by activating the LC modules
positioned between the NoC and the SNIPs. This measure is
crucial for preventing peripherals from attempting to inject
malicious code into the system.

Subsequently, the MPE creates the safe and gray areas,
with examples presented in Figure 3. Gray areas serve
two purposes: (i) execute applications without security
requirements; (ii) ensure that a path always exists between a
border of the safe regions and peripherals located at the NoC
borders. The safe area is reserved for allocating OSZs. The
shape of these areas is a function of the peripheral’s location
and the amount of PEs required to run Appsecs.
Moreover, the MPE generates random initialization keys

for each PE and peripheral. Since no other applications or
traffic exist in the system at this step, these keys can be
transmitted without encryption. This approach eliminates
the need for complex key distribution mechanisms and
guarantees the confidentiality and integrity of these keys,
as they are not accessible to applications or IO devices.

Lastly, theMPE grants access to theAppInj, a trusted entity
responsible for deploying applications into the system.

C. DEPLOYMENT OF APPLICATIONS WITH SECURITY
REQUIREMENTS
The MPE receives requests from the Appinj to execute
applications into the system. If an application has security
requirements, the MPE runs the following algorithms:

131840 VOLUME 11, 2023



R. F. Faccenda et al.: Comprehensive Framework for Systemic Security Management

1) Mapping: The MPE defines the shape and location of
the OSZ, ensuring that at least one side of the OSZ is
adjacent to a gray area.

2) Secure deployment: The MPE controls the transmission
of the object code to the selected PEs. Each PE verifies
the object code integrity using a MAC.

3) Closing the OSZ: The MPE activates the LC modules to
close the OSZ, and elects a PE to manage the AP, the
PEAP.

4) Path Computation: The computation of the paths
between each peripheral that the Appsec communicates
with, called IOpath.

5) Transmission of security data: The MPE sends
{IOpath,Appsec id, key generation parameters} to
peripherals through the data NoC using the initialization
keys for authentication. The PEs receive these parame-
ters through the control NoC.

6) Start the Appsec execution: The MPE sends a message to
the Appsec to start its execution.

At the end of the execution of a given Appsec, the MPE and
PEs clear the memory and management structures allocated
for the application’s tasks to prevent information leakage, and
after release LCs and AP.

D. SUMMARY OF THE DEFENSE MECHANISMS
Figure 4 presents in its left part the list of the defense
mechanisms adopted in the current work:

D1 Opaque Secure Zones (Section IV-A);
D2 Authentication keys, used in the AP ↔ SNIP communi-

cation;
D3 MAC, protects the binary codes;
D4 Source routing, obfuscate the source and target address;
D5 Key renewal, ensures the periodic change in the

authentication keys;
D6 Safe and gray areas (Figure 3);
D7 SNIP, a NI that authenticates the communication.

V. FRAMEWORK FOR SYSTEMIC SECURITY
MANAGEMENT
The proposed framework adopts an actuation loop based
on Monitoring-Detection-Countermeasure, as illustrated
in Figure 4, which protects the system when executing
applications with security requirements. This framework
integrates into the many-core defense mechanisms, sum-
marized in Section IV-D, with distributed monitoring
methods (Section V-A) that enable the detection of
threats and activation of countermeasures (detailed in
Section V-B).

Monitoring mechanisms (M1-5) observe system resources
and generate warnings (W1-6) in case of suspicious
behavior. Based on the severity of the alerts, the
system triggers countermeasures, which can be local
(C1-5) or system-level actions. System-level counter-
measures are triggered upon detecting a more complex
attack (A1-3).

A. MONITORING AND DETECTION OF SUSPICIOUS
BEHAVIOR
To protect internal communication within the OSZ, we adopt
a protocol called ‘‘session protocol’’ (M1) [25]. This protocol
includes sending control messages via the control NoC
alongside the data messages to monitor the arrival of packets
inside the OSZ. Packets are only accepted upon receiving
both control and data packets that confirm the source and
target of this packet. The ‘‘session protocol’’ can raise
two warnings: W1 (Missing Packet), when only the control
message arrives or the data packet is delayed beyond a certain
time threshold; W2 (Unexpected Data) when a data packet
arrives without the control message, making it impossible to
confirm the source of the message.

The communication API (Application Programming Inter-
face) with peripherals adopts a master-slave protocol, which
is monitored (M2). Any IO transaction must always start
from the Appsec (master), and the IO device must answer this
request (slave). PEs monitor the packets’ arrivals. Whenever
a packet arrives without being requested, the PE raises W2
(Unexpected Data), or if an answer packet from an IO takes
too long to arrive, the PE sends an W1 (Missing Packet).

The Access Point (AP) (M3) monitors all packets trying to
enter the OSZ. The AP can raise four warnings:

• W2 – Unexpected Data. When a packet tries to enter
the OSZ without being requested. The AP has two
counters, CTin and CTout , which count the number
of packets entering and leaving the OSZ. Due to the
master-slave communication protocol, the number of
received packets cannot exceed the transmitted packets,
i.e., CTin < CTout . Whenever this condition becomes
false, the AP generates the warning.

• W3 – Wrong Packet Type. The SNIPs add an identifier
in the packets signalizing that it is generated by a
peripheral. This warning is raised if the packet does
not have this identifier. This monitoring avoids packets
generated by applications running on PEs to try to enter
the OSZs.

• W4 – Wrong Authentication Key. The AP executes
a lightweight authentication protocol that verifies the
packet’s authenticity. The warning is raised when the
authentication fails, signalizing a forged packet.

• W6 – Intense Access Attempts. This warning signalize a
potential DoS attack. A counter in the AP monitors the
number of received packets within an interval defined
according to the application profile.

Thus, a packet only enters the OSZ, passing through
the AP, satisfying three conditions: (i) CTin < CTout ; (ii)
successful authentication; (iii) packet from a peripheral.

The SNIP also monitors packets (M4). The SNIP authen-
ticates packets, sending warning W4 if the authentication
fails. In addition, the SNIP can raise W6 if the number of
packets received within a time window is larger than a given
threshold.

VOLUME 11, 2023 131841



R. F. Faccenda et al.: Comprehensive Framework for Systemic Security Management

FIGURE 4. Security management framework overview.

The last monitoring element is the Link Control (LC) (M5).
Packets should not arrive at enabled LCs due to the routing
method, which circumvents the OSZs. Thus, LCs generate a
W5 (Suspicious Route) warning for any packets arriving at an
activated LC, especially if the packet is trying to exit the OSZ
(this onlymay occur if an HT infected the secure application).
LCs also have a counter to generate a warning signalizing a
possible DoS attack (W6).

B. COUNTERMEASURE
Countermeasures are actions that reinforce system security
upon the detection of suspicious behavior. Such actions
are divided into two groups: local and system-level, which
include immediate actions executed upon receiving warnings
and actions taken based on broader systemic information,
respectively.

The five local countermeasures are triggered by receiving
warnings, as depicted on Figure 4. Depending on the warning
severity, a single warning activates the countermeasure, or it
is necessary to receive a set of notifications to trigger it.

The C1 (New Path) action triggers the computation of
a new routing path for a message that did not reach the
final target detected by the Session protocol (W1 from M1),
or detected by the master-slave Protocol (M2) in the case of
an IO communication.

New IO Path (C2) is a countermeasure triggered by W1
(Missing Packet) emitted by any PE that initiates an IO
communication but does not receive the answerwithin a given
time window (M2master-slave protocol). This process is also
a tool that can be requested by other countermeasures that
affect the IO paths, such as C5 (Move AP).

Key renewal can be periodic or reactive. The periodic
key renewal is part of the authentication method, aiming to
enhance its security. Although the keys are not transmitted in
plaintext, unauthorized access to the flits with the keys could

enable a brute-force attack. The reactive key renewal (C3) is
a countermeasure to refresh the keys, triggered by W2 or W3.
For example, a packet with correct keys arrives at an AP but
without a request (W2), or wrong type (W3). Even though the
AP blocked the packet, a key renewal must occur since the
authentication keys were correctly forged.

Packet Discarding (C4) is the fourth local countermeasure.
This is the most frequent countermeasure action due to the
OSZ method. The AP of the OSZ discards packets that
fail authentication at any layer: whether due to the absence
of request (W2), wrong type (W3), or incorrect key (W4).
Additionally, activated LCs discard packets that attempt to
cross it (W5). Moreover, the SNIP discards packets arriving
with incorrect keys, and PEs may discard packets considered
suspicious.

Move AP (C5) countermeasure is triggered when the MPE
receives a W6warning from an AP, meaning that heavy traffic
on the AP is affecting the IO communication of an Appsec.
W1 also may trigger the Move AP to change the route of
a packet that could not reach the peripheral during an IO
communication. The MPE then elects new AP location and
triggers C3 to refresh the keys and C2 to recalculate the IO
path since the AP coordinate changed. The Suspicious Route
warning (W5) collected throughout the application execution
time can be used as information to avoid mapping the AP at
ports that could have been under attack.

In addition to local countermeasures, the MPE can identify
threats and suspicious behaviors because it receives warnings
and has a global view of the platform. Thus, it is possible to
execute decision-making heuristics and perform system-level
countermeasures, such as:

• Task Migration: Secure applications under attack, can
be migrated to less susceptible regions of the MCSoC.

• Abort Application: if the MPE identifies that a given
PE is the source of an attack, it identifies the tasks

131842 VOLUME 11, 2023



R. F. Faccenda et al.: Comprehensive Framework for Systemic Security Management

running in the PE, and thus the malicious application(s),
sending a message to abort the potential malicious
application(s).

• Block PE: if the previous countermeasure fails, the
identified PE may contain, e.g., an HT, generating
malicious traffic. Thus, the MPE sends a control
message to activate the LC of the local port, isolating
it from the rest of the system.

• Change peripheral Port: SNIPs may have a secondary
channel connected to another Router. When an attacker
targets the SNIP, the primary channel can be swapped to
the secondary one.

VI. SECURITY ANALYSIS AND COSTS
This section explores attacks identified in the Threat Model,
including Denial of Service (DoS), Spoofing, and Eavesdrop-
ping. It outlines the system’s responses in such events (refer to
Figure 4) and discusses the associated costs of implementing
countermeasures.

The many-core system is modeled at the RTL (Register-
Transfer Level) level using VHDL and SystemC hardware
description languages, meaning that the many-core descrip-
tion is synthesizable for FPGAs or ASICs. We use digital
circuit simulators, such as Modelsim [26] or Incisive [27],
to evaluate the experiments. Thus, the accuracy achieved
in the experiments is at the clock cycle level, reflecting
the actual system behavior. Applications run in the digital
simulator for a few dozen milliseconds due to the complexity
of the low-level simulation. On average, the simulation time
for a 5×5 system (i9@3.10GHzwith 32GBRAM) is 131s for
eachms. Thus, a 1-second simulation would require 36 hours.
We do not use network simulators such as OPNET [28] for
the experiments, as we are not considering generic networks
but traffic within an integrated circuit. In the experiments,
no external tool is used other than the digital circuit simulator.

The simulation includes the execution of the software on
each processor modeled at the RTL level. Each processor
runs an in-house microkernel with multitasking and message-
passing support. Communicating task graphs (CTGs) model
applications as a set of communicating tasks. We use the C
language to describe applications.

We adopt two mechanisms to execute attacks. A peripheral
named ‘‘packet injector’’ is directly connected to the system
without using the SNIP. The goal of using this peripheral is
to inject controlled traffic into the system to emulate attacks.
The second mechanism is an HT circuit (based on [29])
connected to routers. The HT trigger may be a malicious
application or a given condition (e.g., time-triggered HT) that
can duplicate, misroute, or block flows.

Simulations focus on five specific attack scenarios:

A. DoS Flooding: In this attack scenario, the ‘‘packet
injector’’ transmits packets at a high throughput rate
of 0.85 flits per clock cycle to an OSZ or SNIP. The
objective is to saturate the NoC links and buffers to
render the NoC unavailable for legitimate operations.

FIGURE 5. DoS flooding attack scenario.

B. Spoofing: This attack is analogous to the DoS flood-
ing attack but operates at a lower injection rate of
0.05 flits per clock cycle. Furthermore, the injected
packets contain the correct keys to bypass the AP or
SNIP, simulating a situation where the keys have been
compromised.

C. Eavesdropping: a time-triggered HT infects a router
inside the OSZ. The attack initiates after 5 milliseconds
of simulation time has elapsed, duplicating packets
traversing the infected router.

D. Internal OSZ DoS blocking: a time-triggered HT infects
a router inside the OSZ. The HT blocks all router
links for 1 millisecond at regular intervals of every
5 milliseconds throughout the simulation time.

E. External OSZ DoS blocking: similar to the previous
attack, but in a router belonging to the GA.

A. DoS - FLOODING
Figure 5 depicts the first attack scenario, in which malicious
flows with forged packets target the SNIP or the AP of a given
OSZ.

Packets that arrive in the SNIP without the correct keys
are automatically discarded. Malicious packets arriving at the
LCs and the AP of a given OSZ are also discarded. However,
the W6 warning signal is triggered if access attempts become
too frequent. This alert informs the AP selection heuristic
running in the MPE to avoid mapping an AP to this port
due to the attack attempt and also initiates a Move AP
countermeasure (C5).

If the malicious flow bypasses the hardware barrier
(AP) and reaches a PE, the master-slave protocol may
identify unexpected data and subsequently discard the packet,
as depicted by countermeasure C4.
The countermeasure C4 in hardware instantly discards the

packet. Conversely, in software (discard action performed by
the PE), the process takes 378 clock cycles (cc), measured
from the point of packet arrival interruption to the complete
clearing of the DMNI slots where the packet was initially
stored.

B. SPOOFING
Figure 6 illustrates a Spoofing attack where the malicious
flow has the correct authentication keys, enabling it to pass
through the AP or even gain access to the SNIP.

When this malicious flow reaches the SNIP, the
master-slave protocol generates an answer packet to the
address stored in the SNIP Application Table. Note that

VOLUME 11, 2023 131843



R. F. Faccenda et al.: Comprehensive Framework for Systemic Security Management

FIGURE 6. Spoofing attack scenario.

FIGURE 7. Key renewal overhead for different applications.

the answer does not go to the attacker but to the registered
application. This answer packet reaches a PE in the OSZ, and
the PE triggers an unexpected packet warning (W2), given that
the application is not expecting answers from IO operations.

Another scenario occurs when the malicious packet
reaches the APwith the correct keys but either at the incorrect
moment or with the wrong type. As a countermeasure in both
cases, a Key Renewal C3 is executed to refresh the keys and
prevent further unauthorized access.

Figure 7 presents the Key Renewal cost, in clock cycles
(cc), for four applications. The key renewal costs have fixed
and variable components. The fixed part refers to the time
to process the key renewal request and decide on the new
key renewal parameters. The variable component of the cost
is related to synchronization costs, which includes the time
taken to receive the key renewal acknowledgment from all
tasks of the application plus the time needed for the tasks to
finish their pending IO transactions before changing the keys.

For the two applications with low IO communication
volume (MPEG and DTW), the average time for key renewal
is 4,000 and 4,500 clock cycles, respectively. Increasing the
IO communication volume (Synthetic) and the number of
tasks (MWD) directly impact the Key Renewal execution,
reaching average values of 6,370 and 8,753 clock cycles,
respectively. The fixed component of the cost corresponds to
600 cc (average values).

C. EAVESDROPPING
Figure 8 presents an example of an Eavesdropping attack,
where a malicious hardware in the NoC duplicates a packet
to send it outside the OSZ. However, this packet hits an LC or

FIGURE 8. Eavesdropping attack scenario.

FIGURE 9. Searchpath overhead for different path sizes.

the AP at the OSZ border, triggering an alert W5 to indicate
that the packet has taken a suspicious route. To mitigate this
threat, a new path is calculated within the OSZ that avoids
passing through the identified suspicious router.

The New Path countermeasure uses the control NoC to
build a new path avoiding the suspicious router. To achieve
this, a searchpath message is broadcasted to all PEs in the
OSZ, and a backtrack message is subsequently received with
the correct sequence of hops. Figure 9 presents the time to
build new paths ranging from 1 to 13 hops.

The overhead curve starts at a path size equal to 1,
consuming 1805 clock cycles. It then increments by 70 clock
cycles per hop until the hop size reaches 6. From 7 hops, the
overhead corresponds to 100 clock cycles per hop until the
hop size equals 12. These periodic increases in the curve at
every multiple of six are due to the Source Routing (SR).
SR uses flits within the packet to store the direction for
forwarding the packet. Each flit may store the directions for
six hops. Consequently, the cost increases when a new word
is required in the SR path.

D. DoS-BLOCKING (OSZ)
Figure 10 presents an example of DoS blocking inside an
OSZ. In this case, a malicious entity (e.g., HT infecting an
NoC router) blocks any communication trying to pass through
it. The Session protocol detects this behavior due to the
control message emitted alongside the data message. Due to
the broadcast transmission, the control message arrives at the
PE and not the data packet. This behavior raises the Missing
Packet warning (W1).

To avoid this malicious entity, the system triggers a New
Path C1 countermeasure to build a new route circumventing

131844 VOLUME 11, 2023



R. F. Faccenda et al.: Comprehensive Framework for Systemic Security Management

FIGURE 10. DoS blocking scenario inside an OSZ.

FIGURE 11. DoS blocking scenario in the gray area.

FIGURE 12. Overhead for calculating a new path for peripherals.

the suspicious router. The costs related to this countermeasure
are the same presented on Section VI-C.

E. DoS-BLOCKING IN THE GRAY AREA
Figure 11 shows a DoS blocking attack occurring during an
IO transaction in the gray area. In this case, the master-slave
protocol detects the attack since the secure application never
receives the answer from the packet sent to the IO device.

The system initiates a countermeasure if an IO packet fails
to receive an answer within a predetermined time threshold.
The first countermeasure is to create a New IO Path (C2),
corresponding to a new path to the IO device, traversing the
gray area. Figure 12 shows the time to build a new IO path
for different hop counts. This path construction is faster than
the New Path (C1) because the kernel entirely calculates it,
while C1 also uses the control-NoC to find a new path inside
the SZ.

The system can also trigger a Move AP (C5) counter-
measure if the IO communication is still blocked even with
the execution of C2. For the Move AP process, the MPE
decides a new position for the AP and notifies the PE that
it must now configure this new AP. This process also triggers
a Key Renewal and a New IO Path for every SNIP that this
application communicates with because the route using the
old AP is now closed.

TABLE 2. Average cost of Move AP countermeasure for different
applications.

Table 2 shows the costs of the Move AP countermeasure
triggered on four applications: MPEG, DTW, Synthetic and
MWD. The costs of Move AP can be analyzed as the cost to
change the AP location and synchronize the new keys, plus
the cost of the New IO Paths.

The MPEG and DTW applications show similar overheads
when changing the AP location as they have a small number
of tasks (5 and 6, respectively). Conversely, the Synthetic
application requires additional 1,200 clock cycles due to its
higher communication volume, while the MWD application
requires around 5,800 additional clock cycles due to its larger
task count (12). Both characteristics, IO communication
volume and task number, affect the synchronization of
the new AP location and key renewal. As all applications
interact with two SNIPs, the costs of calculating a new IO
path (column ‘‘Path Configuration’’) remain similar, around
3,100 cc. This value refers to the cost to search for the affected
SNIPs, construct the new IO paths (one for each SNIP -
Figure 12), build the path and send the new path packets.
This countermeasure, which involves relocating the AP,

is one of the most complex in terms of protocols and pro-
cessing time. The worst-case scenario observed corresponds
to 14,890 clock cycles, equivalent to 0.1489 ms@100 MHz.
Consequently, the proposed countermeasures add a negligible
impact on applications’ performance due to their low
computational overhead.

F. AREA EVALUATION
Table 3 presents the results of the logic synthesis to assess the
hardware impact of the security elements added to the system.
The synthesis includes the Secure Router, Control Router, and
SNIP. Each processing element (PE) has two routers (data and
control routers), a processor, local memory, and a network
interface. The SNIP is configured with an application table
with four rows, and input/output buffers for 16 slots for 16-bit
flits. The Data Router has two disjoint channels, with 16-bit
flits and 8-flit input buffers. The Control Router has a CAM
size with 8 slots.

Table 3 shows that the SNIP has a low area overhead,
representing 55.6% of the data router area. Comparing the
baseline router area (17,973 µm2) to the new communication
infrastructure (control and secure router – 26,766 µm2), the
area overhead corresponds to 48.8% in the communication
infrastructure.

VOLUME 11, 2023 131845



R. F. Faccenda et al.: Comprehensive Framework for Systemic Security Management

TABLE 3. Synthesis results - 28nm FDSOI - CADENCE GENUS 21.12-s068.

TABLE 4. Summary of the countermeasure costs, in clock cycles.

The communication infrastructure represents no more than
20% of the PE area (in [4], the NoC represents 7.7% of the
PE area). Thus, it is expected that an increase of 50% in the
communication infrastructure corresponds to an increase in
the PE area between 5% an 10%.

VII. CONCLUSION AND FUTURE WORK
This paper presented a framework that combines several
defense mechanisms to detect and protect against security
threats such as Denial of Service, Spoofing, and Eavesdrop-
ping. The framework can help designers and developers to
identify and mitigate security risks and threats, and to ensure
the security and reliability of the system. The framework
can also contribute to developing secure and trustworthy
many-core systems for various applications.

Five attack scenarios were used to measure the costs of the
countermeasures that the system manager can apply to rein-
force the system security. Table 4 illustrates the costs of each
countermeasure, considering the observed worst-case. The
cost to create the OSZ (20.5K clock cycles in [30]) does not
impact the application performance since it is executed before
its execution starts. The table shows that the highest costs
are related to renewing the keys and moving the AP location.
The wost-case is 0.15 ms at 100 MHz, demonstrating that the
proposed countermeasures are lightweight, adding security to
the applications.

The hardware to support the framework added an overhead
of 48,8% in the communication infrastructure (NoC). This
is an acceptable cost considering that the communication
infrastructure is a part of the processing element (PE) and
may lead to an actual area overhead at the PE level between
5% and 10%.

This work paves the way for developing system-level
heuristics to increase security in many-cores. A fusion of
monitoring data by the security manager will allow the
detection of more complex attacks and the execution of a
more extensive set of countermeasures to those proposed in
this paper.

REFERENCES
[1] O. Peckham. (2020). Esperanto Unveils ML Chip with Nearly 1,100

RISC-V Cores. [Online]. Available: https://www.hpcwire.com/2020/
12/08/esperanto-unveils-ml-chip-with-nearly-1100-risc-v-cores

[2] A. Olofsson, ‘‘Epiphany-V: A 1024 processor 64-bit RISC system-on-
chip,’’ 2016, arXiv:1610.01832.

[3] B. D. de Dinechin, D. van Amstel, M. Poulhiès, and G. Lager, ‘‘Time-
critical computing on a single-chip massively parallel processor,’’ in Proc.
Design, Autom. Test Eur. Conf. Exhib. (DATE), Mar. 2014, pp. 1–6, doi:
10.7873/DATE.2014.110.

[4] A. Rovinski et al., ‘‘Evaluating celerity: A 16-nm 695 Giga-RISC-
V instructions/s manycore processor with synthesizable PLL,’’ IEEE
Solid-State Circuits Lett., vol. 2, no. 12, pp. 289–292, Dec. 2019, doi:
10.1109/LSSC.2019.2953847.

[5] B. Bohnenstiehl, A. Stillmaker, J. J. Pimentel, T. Andreas, B. Liu,
A. T. Tran, E. Adeagbo, and B. M. Baas, ‘‘KiloCore: A 32-nm
1000-processor computational array,’’ IEEE J. Solid-State Circuits, vol. 52,
no. 4, pp. 891–902, Apr. 2017, doi: 10.1109/JSSC.2016.2638459.

[6] S. Charles and P. Mishra, ‘‘A survey of network-on-chip security attacks
and countermeasures,’’ ACM Comput. Surv., vol. 54, no. 5, pp. 1–36,
Jun. 2022, doi: 10.1145/3450964.

[7] L. Fiorin, S. Lukovic, G. Palermo, and P. di Milano, ‘‘Implementation
of a reconfigurable data protection module for NoC-based MPSoCs,’’ in
Proc. IEEE Int. Symp. Parallel Distrib. Process., Apr. 2008, pp. 1–8, doi:
10.1109/ipdps.2008.4536514.

[8] A. Sarihi, A. Patooghy, M. Hasanzadeh, M. Abdelrehim, and
A. A. Badawy, ‘‘Securing network-on-chips via novel anonymous
routing,’’ in Proc. 15th IEEE/ACM Int. Symp. Networks-on-Chip (NOCS),
Oct. 2021, pp. 29–34.

[9] S. Payandeh Azad, M. Tempelmeier, G. Jervan, and J. Sepúlveda,
‘‘CAESAR-MPSoC: Dynamic and efficient MPSoC security zones,’’
in Proc. IEEE Comput. Soc. Annu. Symp. VLSI (ISVLSI), Jul. 2019,
pp. 477–482, doi: 10.1109/ISVLSI.2019.00092.

[10] P. Thejaswini, G. Vivekananda, H. Anu, R. Priya, P. Krishna, and
M. Nischay, ‘‘Hardware Trojan detection and mitigation in NoC using
key authentication and obfuscation techniques,’’ EMITTER Int. J. Eng.
Technol., vol. 10, no. 2, pp. 370–388, Dec. 2022, doi: 10.24003/emit-
ter.v10i2.716.

[11] K. Wang, H. Zheng, Y. Li, J. Li, and A. Louri, ‘‘AGAPE: Anomaly
detection with generative adversarial network for improved perfor-
mance, energy, and security in manycore systems,’’ in Proc. Design,
Autom. Test Eur. Conf. Exhib. (DATE), Mar. 2022, pp. 849–854, doi:
10.23919/DATE54114.2022.9774693.

[12] L. Fiorin, C. Silvano, and M. Sami, ‘‘Security aspects in networks-
on-chips: Overview and proposals for secure implementations,’’
in Proc. 10th Euromicro Conf. Digit. Syst. Design Archit.,
Methods Tools (DSD), Aug. 2007, pp. 539–542, doi: 10.1109/
dsd.2007.4341520.

[13] L. Fiorin, G. Palermo, and C. Silvano, ‘‘A configurable monitoring
infrastructure for NoC-based architectures,’’ IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 22, no. 11, pp. 2438–2442, Nov. 2014, doi:
10.1109/TVLSI.2013.2290102.

[14] X. Meng, K. Raj, S. Ray, and K. Basu, ‘‘SeVNoC: Security validation of
system-on-chip designs with NoC fabrics,’’ IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 42, no. 2, pp. 672–682, Feb. 2023, doi:
10.1109/TCAD.2022.3179307.

[15] G. Sharma, G. Bousdras, S. Ellinidou, O. Markowitch, J.-M. Dricot,
and D. Milojevic, ‘‘Exploring the security landscape: NoC-based
MPSoC to cloud-of-chips,’’ Microprocess. Microsyst., vol. 84, Jul. 2021,
Art. no. 103963, doi: 10.1016/j.micpro.2021.103963.

[16] M. Ruaro, L. L. Caimi, and F. G. Moraes, ‘‘A systemic and secure
SDN framework for NoC-based many-cores,’’ IEEE Access, vol. 8,
pp. 105997–106008, 2020, doi: 10.1109/ACCESS.2020.3000457.

131846 VOLUME 11, 2023

http://dx.doi.org/10.7873/DATE.2014.110
http://dx.doi.org/10.1109/LSSC.2019.2953847
http://dx.doi.org/10.1109/JSSC.2016.2638459
http://dx.doi.org/10.1145/3450964
http://dx.doi.org/10.1109/ipdps.2008.4536514
http://dx.doi.org/10.1109/ISVLSI.2019.00092
http://dx.doi.org/10.24003/emitter.v10i2.716
http://dx.doi.org/10.24003/emitter.v10i2.716
http://dx.doi.org/10.23919/DATE54114.2022.9774693
http://dx.doi.org/10.1109/dsd.2007.4341520
http://dx.doi.org/10.1109/dsd.2007.4341520
http://dx.doi.org/10.1109/TVLSI.2013.2290102
http://dx.doi.org/10.1109/TCAD.2022.3179307
http://dx.doi.org/10.1016/j.micpro.2021.103963
http://dx.doi.org/10.1109/ACCESS.2020.3000457


R. F. Faccenda et al.: Comprehensive Framework for Systemic Security Management

[17] J. Y. V. M. Kumar, A. K. Swain, K. Mahapatra, and S. P. Mohanty,
‘‘Fortified-NoC: A robust approach for Trojan-resilient network-
on-chips to fortify multicore-based consumer electronics,’’ IEEE
Trans. Consum. Electron., vol. 68, no. 1, pp. 57–68, Feb. 2022, doi:
10.1109/TCE.2021.3129155.

[18] C. Sudusinghe, S. Charles, S. Ahangama, and P. Mishra, ‘‘Eavesdropping
attack detection usingmachine learning in network-on-chip architectures,’’
IEEE Des. Test. Comput., vol. 39, no. 6, pp. 28–38, Dec. 2022, doi:
10.1109/MDAT.2022.3202995.

[19] M. Ruaro, L. L. Caimi, V. Fochi, and F. G. Moraes, ‘‘Memphis: A frame-
work for heterogeneous many-core SoCs generation and validation,’’
Design Autom. Embedded Syst., vol. 23, nos. 3–4, pp. 103–122, Dec. 2019,
doi: 10.1007/s10617-019-09223-4.

[20] M. Ruaro, F. B. Lazzarotto, C. A. Marcon, and F. G. Moraes, ‘‘DMNI:
A specialized network interface for NoC-based MPSoCs,’’ in Proc.
IEEE Int. Symp. Circuits Syst. (ISCAS), May 2016, pp. 1202–1205, doi:
10.1109/ISCAS.2016.7527462.

[21] E. Wachter, L. L. Caimi, V. Fochi, D. Munhoz, and F. G. Moraes, ‘‘BrNoC:
A broadcast NoC for control messages in many-core systems,’’Microelec-
tron. J., vol. 68, pp. 69–77, Oct. 2017, doi: 10.1016/j.mejo.2017.08.010.

[22] H. Wang and B. Halak, ‘‘Hardware Trojan detection and high-
precision localization in NoC-based MPSoC using machine learn-
ing,’’ in Proc. 28th Asia South Pacific Design Autom. Conf. (ASP-
DAC), Jan. 2023, pp. 516–521. [Online]. Available: https://ieeexplore.ieee
.org/document/10044814

[23] L. L. Caimi and F. G. Moraes, ‘‘Security in many-core SoCs leveraged
by opaque secure zones,’’ in Proc. IEEE Comput. Soc. Annu. Symp. VLSI
(ISVLSI), Jul. 2019, pp. 471–476, doi: 10.1109/ISVLSI.2019.00091.

[24] R. F. Faccenda, G. Comarú, L. L. Caimi, and F. G. Moraes, ‘‘Lightweight
authentication for secure IO communication in NoC-based many-cores,’’
in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2023, pp. 1–5, doi:
10.1109/iscas46773.2023.10181962.

[25] R. F. Faccenda, L. L. Caimi, and F. G. Moraes, ‘‘Detection and
countermeasures of security attacks and faults on NoC-based
many-cores,’’ IEEE Access, vol. 9, pp. 153142–153152, 2021, doi:
10.1109/ACCESS.2021.3127468.

[26] Siemens. (2023). ModelSim Simulator. [Online]. Available: https://eda
.sw.siemens.com/en-U.S./ic/modelsim

[27] Cadence. (2023). Incisive SystemC, VHDL, and Verilog Simulation
Training. [Online]. Available: https://www.cadence.com/en_US/home/
training/all-courses/82115.html

[28] OPNET. (2023). OPNET Network simulator. [Online]. Available:
https://opnetprojects.com/opnet-network-simulator

[29] I. Weber, G. Marchezan, L. Caimi, C. Marcon, and F. G. Moraes, ‘‘Open-
source NoC-based many-core for evaluating hardware Trojan detection
methods,’’ in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), Oct. 2020,
pp. 1–5, doi: 10.1109/ISCAS45731.2020.9180578.

[30] L. L. Caimi, V. Fochi, E. Wachter, and F. G. Moraes, ‘‘Runtime creation
of continuous secure zones in many-core systems for secure applications,’’
in Proc. IEEE 9th Latin Amer. Symp. Circuits Syst. (LASCAS), Feb. 2018,
pp. 1–4, doi: 10.1109/LASCAS.2018.8399904.

RAFAEL FOLLMANN FACCENDA received the
degree in computer engineering and the M.Sc.
degree from Universidade Federal de Santa Maria
(UFSM), Santa Maria, Brazil, in 2018 and 2020,
respectively. He is currently pursuing the Ph.D.
degree in computer science with PUCRS, Brazil.
His research interests include many-cores, NoCs,
embedded systems, and security for NoC-base
many-cores.

GUSTAVO COMARÚ (Graduate StudentMember,
IEEE) received the degree in computer engineer-
ing from the Pontifical Catholic University of Rio
Grande do Sul (PUCRS), Porto Alegre, Brazil,
in 2022, where he is currently pursuing the M.Sc.
degree in computer science. His research interests
include security and reliability of hardware and
embedded systems.

LUCIANO LORES CAIMI received the M.Sc.
degree in electrical engineer from the Federal Uni-
versity of Santa Catarina (UFSC), Florianopolis,
Brazil, in 1998, and the Ph.D. degree in com-
puter science from PUCRS, Porto Alegre, Brazil,
in 2019. He is currently an Adjunct Professor with
the Federal University of Fronteira Sul (UFFS).
His main research interests include multiprocessor
systems on chip (MPSoCs) and security for
embedded systems.

FERNANDO GEHM MORAES (Senior Member,
IEEE) received the degree in electrical engineering
and the M.Sc. degree from Universidade Federal
do Rio Grande do Sul (UFRGS), Porto Alegre,
Brazil, in 1987 and 1990, respectively, and the
Ph.D. degree from Laboratoire d’Informatique,
Robotique et Microélectronique de Montpellier,
France. He has been a Full Professor with PUCRS,
since 2002. He has authored and coauthored
53 peer-refereed journal articles in the field of

VLSI design. His primary research interests include microelectronics,
FPGAs, reconfigurable architectures, NoCs, and MPSoCs.

VOLUME 11, 2023 131847

http://dx.doi.org/10.1109/TCE.2021.3129155
http://dx.doi.org/10.1109/MDAT.2022.3202995
http://dx.doi.org/10.1007/s10617-019-09223-4
http://dx.doi.org/10.1109/ISCAS.2016.7527462
http://dx.doi.org/10.1016/j.mejo.2017.08.010
http://dx.doi.org/10.1109/ISVLSI.2019.00091
http://dx.doi.org/10.1109/iscas46773.2023.10181962
http://dx.doi.org/10.1109/ACCESS.2021.3127468
http://dx.doi.org/10.1109/ISCAS45731.2020.9180578
http://dx.doi.org/10.1109/LASCAS.2018.8399904

