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ABSTRACT Convolutional neural network-based single image super-resolution (SISR) involves numerous
parameters and high computational expenses to ensure improved performance, limiting its applicability
in resource-constrained devices such as mobile phones. Knowledge distillation (KD), which transfers
useful knowledge from a teacher network to a student network, has been investigated as a method to
make networks more efficient in terms of performance. To this end, feature distillation (FD) has been
utilized in KD to minimize the Euclidean distance-based loss of feature maps between teacher and student
networks. However, this technique does not adequately consider the effective and meaningful delivery
of knowledge from the teacher to the student network to improve the latter’s performance under given
network capacity constraints. In this study, we propose a feature-domain adaptive contrastive distillation
(FACD) method to train lightweight student SISR networks efficiently. We highlight the limitations of
existing FD methods in terms of Euclidean distance-based loss, and propose a feature-domain contrastive
loss, which causes student networks to learn richer information from the teacher’s representation in the
feature domain. We also implement adaptive distillation that performs distillation selectively depending on
the conditions of the training patches. Experimental results demonstrated that the proposed FACD scheme
improves student enhanced deep residual networks and residual channel attention networks not only in
terms of the peak signal-to-noise ratio (PSNR) on all benchmark datasets and scales but also in terms of
subjective image quality, compared to the conventional FD approaches. In particular, FACD achieved an
average PSNR improvement of 0.07 dB over conventional FD in both networks. Code will be release at
https://github.com/hcmoon0613/FACD.

INDEX TERMS Contrastive learning, efficient super-resolution, feature distillation, knowledge distillation,
single image super-resolution.

I. INTRODUCTION
Single image super-resolution (SISR) is a method of gen-
erating a high-resolution image from a given low-resolution
image [1]. It is an important method that can be applied to a
variety of computer vision tasks, such asmedical imaging [2],
satellite [3], [4], [5], remote sensing [6], [7], [8], face
hallucination [9], [10], [11], and object recognition [12], [13].
In prior works, interpolation and example-based methods
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have been applied for SISR [14], [15], [16]. However,
both approaches exhibit performance limitations. Recently,
convolutional neural network (CNN)-based SISR networks,
such as SRCNN [17], have been reported to outperform
traditional SISR works. Since then, numerous CNN-based
SISR networks have been proposed [1], [18], [19], and the
network parameters and computational complexity have been
increased to obtain better performance.

The practical applicability of complex SISR models is
limited in resource-constrained devices, such as mobile or
IoT devices; thus, efficient and lightweight SISR models are
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FIGURE 1. Examples of limitations on feature distillation (FD) with
Euclidean loss [20], [21]. The teacher and student networks are student
enhanced deep residual networks (EDSR) [22] with scale x2 image. Note
that feature affinity-based knowledge distillation (FAKD*) and local
feature distillation (LFD*) indicate our reproduced results with the same
experimental settings.

required. To satisfy this demand, lightweight SISR models
with a better trade-off between efficiency and performance
quality have been proposed [20], [21], [23], [24], [25], [26],
[27], [28]. Among the aforementioned methods, knowledge
distillation (KD) [29]-based approaches exhibit the following
distinctive advantages: 1) KD promotes the inheritance of the
knowledge of large teacher networks and improves perfor-
mance without modifying the existing network structure at
industrial sites, and 2) KD can be combined with pruning and
network design methods by including additional loss terms to
achieve greater performance improvement [30], [31].
KD is primarily used for classification and detection

tasks [12], [32], [33]. The student network is trained to min-
imize the distance between the labels of the student network
and the soft labels of the teacher network in the classification
task. However, this approach to SISR exhibits limited perfor-
mance improvement [21], [34]. To solve this problem, feature
distillation (FD) is used to guide the training of the student
network. Feature affinity-based KD (FAKD) [20] transfers
the intermediate feature knowledge of a larger teacher model
to a lightweight student network. In FAKD, FD with image
domain distillation improves the distillation performance.
Subsequently, local feature distillation/local-selective fea-
ture distillation (LFD/LSFD) [21] has been proposed based
on the feature attention method, which selectively focuses
on specific positions to extract refined feature information,
improving the simple distance-based feature distillation of
FAKD. Both methods use Euclidean distance as a metric
to transfer feature knowledge from teacher to student
networks. As depicted in Fig. 1, neither method eliminates
the disadvantages of Euclidean distance-based loss, such as
pattern loss and image blurring.

To overcome the limitations of Euclidean distance loss,
contrastive distillation for SISR has been studied in the
context of the KD scheme [25], [35]. Contrastive self-
distillation (CSD) [25] explicitly transfers knowledge from
teacher to student networks using contrastive loss in the
latent space of the image domain and improves distillation
performance and texture restoration. However, in SISR,
this approach may degrade distillation efficiency because

FIGURE 2. Examples of worse teacher case on enhanced deep residual
network (EDSR) network with KD scheme (scale 2). Note that teacher and
student networks are trained separately from scratch.

it cannot completely leverage the rich information of
intermediate feature maps. Furthermore, CSD suffers from
unstable distillation performance owing to its use of external
images as negative samples for contrastive loss.

Finally, as depicted in Fig. 2, the inference output of a
teacher network does not guarantee better performance for
all patches. Inappropriate inference results interfere with the
training of the student network and must be removed from the
training process.

To address these problems, we propose feature-domain
adaptive contrastive distillation (FACD), which selectively
transfers the teacher’s feature-domain knowledge using
contrastive loss. The proposed feature-domain contrastive
distillation (FCD) resolves the restoration of edges and
patterns, and improves distillation performance compared to
image-domain contrastive distillation (ICD) and CSD [25]
by transferring well-refined feature knowledge to the student
network effectively.

In addition, FAKD and LSFD, which use three interme-
diate feature maps for FD, do not account for attention at
the feature map level. As CNN-based super-resolution (SR)
networks have a cascading structure, improper distillation at
the upper part has been found to sequentially affect the output
at the lower part of the network. To this end, we assign greater
importance (attention) to the top of network, as discussed in
Section V.
Finally, the percentage of inappropriate inference outputs

of the teacher network amounts to up to 5% for enhanced
deep residual networks (EDSR) [22] and up to 11% for
residual channel attention networks (RCAN) [36] across
all training patches. Because these patches can transfer
incorrect knowledge to the student network, the application
of FCD is adaptively adjusted based on patch conditions
during training. Combined with feature-domain contrastive
loss, feature map level attention, and adaptive distillation,
FACD achieves state-of-the-art performance over FD and
excellent qualitative results. Our main contributions can be
summarized as follows:

1) We propose an algorithm called FCD that improves
the efficiency of traditional FD and mitigates the
loss of detailed texture information that occurs in

131886 VOLUME 11, 2023



H.-C. Moon et al.: Feature-Domain Adaptive Contrastive Distillation for Efficient SISR

the FD method based on an intermediate feature
domain contrastive learning method, which refines and
transfers useful representational knowledge to students.

2) We observe that inappropriate teacher network
knowledge interferes with student network learning.
To ensure efficient distillation, we propose an
algorithm called FACD that selectively applies FCD
by comparing output patches derived from teacher and
student networks with the ground truth.

3) We demonstrate that the FACDachieves state-of-the-art
performance compared to distance-based FD and
yields excellent qualitative results. In particular, FACD
outperforms FD in terms of edge and pattern recon-
struction results. Furthermore, we conduct extensive
experimental analysis with ablation studies.

The remainder of this paper is organized as follows.
In Section II, we discuss related works on super-resolution.
The proposed method is described in Section III. The
effectiveness of the FACD is evaluated in Section IV and V.
Finally, the conclusions of this study are summarized in
Section VI.

II. RELATED WORKS
A. EFFICIENT SUPER-RESOLUTION NETWORK
At first, CNN-based SR models stack deeper layers to
improve performance; however, this induces gradient vanish-
ing. Subsequently, very-deep SR [18] and deeply recursive
convolutional [19] networks have been proposed, which use
deep stacking of residual blocks [37] to solve this problem.
In addition, batch normalization (BN) has been applied
to the SISR model in EDSR [22], thereby normalizing
the features and eliminating model flexibility. EDSR uses
the residual-scaling method to improve training instability
induced by the removal of BN. Furthermore, residual dense
network (RDN) fully exploit the features from all layers
for utilizing hierarchical features. Especially, RDN used the
residual dense block (RDB) which adaptively learn more
preceding and current local features for stable training [38].
After that, residual channel attention networks (RCAN) [36]
and second-order attention networks (SAN) [39] have
been reported to achieve significant performance improve-
ments by adopting the channel-attention mechanism. Since
then, fast and memory efficient network (FMEN) has
adopted the sequential attention branch, in which spatial
pixel is assigned an important factor according to local
and global contexts [40]. Recently, multi-level dispersion
residual network (MDRN) achieved the first place in
the NTIRE 2023 Efficient SR Challenge by adopting
the attention distillation and multi-level dispersion spatial
attention mechanism [41]. On the other hand, generative
adversarial network (GAN) based SISR attempt to generate
perceptual texture through learning with adversarial loss [42],
[43]. Recent GAN-based SISR have achieved significant
performance gains by utilizing the rich and diverse priors
encapsulated in pre-trained GAN models for adversarial
loss [44], [45].

However, the utilization of deep layers, stacked blocks,
and attention mechanisms results in substantial memory
and computational expenses during inference due to the
considerable parameter count and the execution of spatial
and non-local operations. Moreover, their applicability is
limited on resource-constrained devices, such as mobile
phones or IoT devices. To adapt SISR to such devices,
the development of an efficient network structure and the
optimization of training schemes is essential [46]. Because
performance optimization achieved by only designing an
efficient network structure is limited, advanced training
schemes, comprising pruning, quantization, and KD, are very
important on resource-constrained devices. Among these,
KD is particularly promising because it achieves additional
performance improvement without requiring the structure of
the target model to be changed. This approach is described in
detail in the next section.

B. FEATURE-DOMAIN DISTILLATION FOR SISR
In KD, knowledge is transferred from a teacher model to
lightweight student networks [29]. Distillation based on the
label domain (identical to the image domain in SISR) yields
better classification performance. However, in regression
problems such as SISR, the solution space is very large;
therefore, single image-domain KD is not an effectivemethod
to transfer knowledge [47]. Therefore, FD was proposed to
guide the training of the student network effectively based on
Euclidean distance-based matching in the image and feature
domains [20], [21], [34], [48].

First, FitNet [34] was proposed based on distillation in
both the image and feature domains. For FD, a simple
regressor composed of 1 × 1 convolution layers was used
owing to differences in the channel size of the teacher
and student networks. On the other hand, PISR [48] has
been proposed, in which ground truth images are used as
privileged information to teach an encoder in the teacher
network the degradation and sub-sampling of high-resolution
images. For more efficient distillation, FAKD is a feature
affinity matrix-based KD framework that distils the structural
knowledge from a larger teacher model. Furthermore, the
teacher supervision (TS) loss between the output SR images
of teacher and student networks is considered. In addition,
LSFD is a feature attention method that adaptively focuses
on specific pixels to extract feature information using the
difference map between the inference output of teacher
and student networks. By merging FD with the adaptive
functional attention mechanism, LSFD exhibits enhanced
performance compared to other FD algorithms such as
FAKD.However, these approaches do not completely address
the limitation of the Euclidean distance loss in terms
of performance and subjective image quality. FD may
degrade distillation efficiency because it cannot completely
distill the rich information of intermediate feature maps.
Therefore, in this paper, we propose a feature-domain
contrastive loss, which causes student networks to transfer
richer information from the teacher’s representation in
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the feature domain by maximizing mutual information.
We will describe the details of contrastive loss in the next
subsection.

C. CONTRASTIVE LEARNING
Contrastive loss is introduced in self-supervised learn-
ing [49], [50] and it is employed to train images to
ensure that positive pairs remain close to each other, while
negative pairs remain far away [25], [32]. By maximizing
the Kullback-Leibler (KL) divergence of the positive and
negative pairs, the mutual information in the positive
pair is maximized, while both distributions are clearly
distinguished. In other words, KD with contrastive loss
optimizes performance by maximizing mutual information
between teacher and student networks, while minimizing
uncertainty between both networks simultaneously; thus,
as training progresses, teacher and student networks become
gradually similar. In this approach, contrastive represen-
tation distillation (CRD) achieves the better results than
convectional KD in classification tasks by distillation based
on contrastive loss [32]. Recently, complementary relation
contrastive distillation (CRCD) distilled the relation struc-
tural knowledge between teachers and students to achieve
better performance than CRD, a sample-based contrastive
distillation [51].

Similar to the classification task, contrastive loss-based
methods in SISR or restoration have led to performance
improvements over conventional methods [52], [53], [54],
[55]. Most of studies have performed contrastive learning
by generating positive and negative pairs from the output
images (or feature embedding) of the SR networks, and
have shown effectiveness in terms of texture restoration.
As a results, KD with contrastive loss [25], [35] in the
image domain has been proposed for SISR, resulting in
a marginal performance enhancement compared to other
distillation approaches [20], [21]. In particular, CSD [25]
uses contrastive loss in the latent features of the image
domain. Inspired by conventional FD and CSD, we focus on
improving distillation by using contrastive loss in the feature
domain, where the solution space in the regression task is
smaller than in the image domain. Therefore, we propose a
novel method of feature-domain contrastive distillation and
introduce an adaptive KD approach for efficient knowledge
transfer from teacher networks.

III. PROPOSED METHOD
In this section, we describe an overall architecture and the loss
function of the proposed distillation method. The pipeline
of the proposed FACD framework is depicted in Fig. 3.
The proposed FACD performs distillation in both image and
feature domains. In the image domain, the output images
of the teacher network and ground truth (GT) are used
for KD of the student network. On the other hand, in the
feature domain, FACD operates based on contrastive learning
between the intermediate feature maps of the teacher and
student networks [20], [21].

A. ADAPTIVE KNOWLEDGE DISTILLATION FOR SR
In this section, we describe adaptive KD for efficient
knowledge transfer from teacher networks. As depicted in
Fig. 2, the output of the teacher network is not always
guaranteed to have better performance than student networks.
On average, EDSR and RCAN yield 5% and 11% worse
cases, respectively, on the training patches, which interfere
with the efficiency of distillation. Therefore, we propose a
simple but effective adaptive distillation method to optimize
the distillation performance in both the image and feature
domains. If the SR image of the student network is closer to
the ground truth than the SR image of the teacher network,
we ignore these patches during training. The indicator of
adaptive KD is formulated as follows:

αi =

{
0 if ∥SRSi − GTi∥1 < ∥SRTi − GTi∥1,
1 else.

(1)

where α denotes the indicator of appropriate samples, and i
denotes the index of the batch sample. If the distance from
GT is farther from the teacher, the parameters of appropriate
samples αi are set to 0, indicating that the patch is not used
for distillation.

B. CONTRASTIVE ADAPTIVE DISTILLATION
Conventional FD has demonstrated that the efficiency of
distillation lies in the feature domain rather than the image
domain [20]. Consequently, previous FD methods for SISR
have focused primarily on improving distillation schemes
in the feature domain. Nevertheless, the combination of
feature distillation and image distillation has been shown
to outperform a single refined feature distillation [20], [21].
Furthermore, KDwith contrastive loss improves performance
by enabling more explicit knowledge transfer from teacher
networks [25]. Therefore, we apply contrastive learning in the
feature domain to transfer richer information from interme-
diate features, and retain the Euclidean distance-based loss
during image domain distillation to minimize interference
induced by contrastive learning.We describe the loss function
for each domain separately.

First, we propose the loss function in the image domain
with the adaptive KD indicator (αi) as follows:

LSR =
1
2N

N∑
i=1

(2 − αi)∥SRSi − GTi∥1 + αi∥SRSi − SRTi ∥1

(2)

where SRS , SRT , and GT denote the output images of
the student network, teacher network, and GT, respectively.
N indicates the batch size of training process. LSR denotes
the combined loss function of the Euclidean loss with GT
(conventional SISR) and the distillation loss in the image
domain.

Second, for the purpose of transferring knowledge from
intermediate features of teacher networks, we propose feature
domain adaptive contrastive distillation (FACD). To ensure
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FIGURE 3. Overall architecture of feature-domain adaptive contrastive distillation (FACD).

fair comparison with conventional FD methods [20], [21],
FACD configures three feature matching points, as depicted
in Fig. 3. The detailed loss function of FACD is formulated
as follows:

F̂ij =
Fij

∥Fij∥2
(3)

LFACD =

N∑
i=1

3∑
j=1

wj
αi∥DR( ˆFSij ) −

ˆFTij ∥1∑K
k=1 ∥DR( ˆFSij ) −

ˆFNegkj ∥1

(4)

where F̂ij denotes the normalized feature maps, wj represents
the attention weight of each feature matching point, and
DR denotes the deep regressor comprising five 1 × 1
convolutional layers with PReLU activation [56]. In this
study, the feature map level attention parameter wi was set
to [0.5, 0.3, 0.2]. In addition, N refers to the number of batch
sizes, andK refers to the number of negative pairs. To transfer
knowledge from the teacher network more effectively, the
feature maps are first normalized. As given by Eq. 2, FD is
not performed on inappropriate samples in positive pairs.

To use contrastive loss on the feature domain, the
construction method of positive and negative pairs, as well
as the similarity measures (e.g., Euclidean distance, dot-
product, or cosine similarity) to be used in the contrastive loss
function should be determined.

As depicted in Fig. 3, for the proposed FACD loss,
we consider the features of the student network FSij and
the teacher network FTij as a positive pair in the same
index. To enhance the efficiency of contrastive distillation,
as depicted in Fig. 3, all features of teacher and student
networks except the ones corresponding to the same index
are considered as negative pairs. To generate more negative
samples, pairs with different indices on the student’s features
(FSij , F

S
kj) are also considered as negative pairs. Moreover,

contrastive loss with Euclidean loss is adopted as the
similarity measure.

By minimizing LFACD, the student network learns to place
positive pairs closer and negative pairs further apart. Through
this approach, mutual information between the feature maps
of the teacher and student networks can be maximized [32].

The effectiveness of contrastive loss on each domain is
described in our ablation studies.

C. OVERALL LOSS FUNCTION
The overall loss function of FACD is constructed via
contrastive distillation in the image and feature domains,
which is formulated as follows:

Ltotal = LSR + λLFACD (5)

where λ denotes a hyperparameter for balancing LSR and
LFACD. The hyperparameter of λ was set to 4 in our
experimental configurations.

IV. EXPERIMENTS
In this section, we explain the details of our experimental
network configurations and analyze the results both quanti-
tatively and qualitatively.

A. EXPERIMENTAL CONFIGURATIONS
Following previous works [20], [21], [22], [25], [36], [39],
we used 800 split set images from the DIV2K dataset [57]
for training. FACD was also evaluated with luminance-
peak-signal-to-noise-ratio (Y-PSNR) on four benchmark
datasets—Set 5 [58], Set 14 [59], BSD 100 [60], and Urban
100 [61]. For comparison with previous KD algorithms,
we performed experiments on existing SISR networks,
EDSR [22] and RCAN [36]. Table 1 lists the configuration
details of distillation models consisting of teacher and student
networks. The configuration of each distillation model was
identical as in the respective previous works to ensure
fair experimental comparison. While EDSR reduces the
number of residual blocks (ResBlocks) and the channel size
of the convolution, RCAN retains the number of residual
groups (ResGroups) containing multiple ResBlocks, and
only reduces the number of ResBlocks. This distillation
compresses EDSR by approximately a factor of 30, and
RCAN by approximately a factor of 3 in terms of the
number of parameters. In details, each FD used the same
configuration of teachers and students, so the computational
and memory complexity of each FD scheme is the same.
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TABLE 1. Network descriptions of teacher and student networks. T and S
denote the teacher and student network respectively.

FACD was implemented using PyTorch 1.8.0 with an
NVIDIA TITAN RTX GPU. All student networks using dis-
tillation were trained using the ADAM optimizer with default
hyper-parameters in PyTorch. Unlike the configurations used
in previous works (200 [20] or 300 [21] epochs), FACD loss
was not sufficiently saturated. Therefore, the batch size and
total number of epochs were set to 16 (same as in the previous
works) and 600, respectively. The initial learning rate was set
to 2 × 10−4, and was halved after 150 epochs. In addition,
the patch size for training was set to 48 × 48 for the network
input, and the default configurations were applied for data
augmentation (e.g., horizontal flip, vertical flip, and random
rotation). The same experimental configurations were applied
to FAKD [20], LFD [21], CSD [25], and PISR [48], which
are the main comparison works in this paper, to ensure
reproducible results.

B. QUANTITATIVE RESULTS
The quantitative results in terms of Y-PSNR are presented in
Table 2. FACD achieved the best performance on almost all
benchmark datasets and scale factors, except for the Set 5
dataset on EDSR x4. Compared to the conventional FD,
both EDSR and RCAN exhibited an average performance
improvement of approximately 0.07 dB. The performance
improvement in RCAN was greater than that in EDSR.
The most significant distinction between EDSR and RCAN
was the inclusion of feature-attention blocks. As a result,
rendering the features more similar to RCAN using the
feature attention scheme was effective. In other words, the
knowledge of teacher networks can be better utilized in
RCAN than in EDSR in the feature domain.

1) IMPACT ON SCALE FACTOR
Table 3 summarizes the evaluation results presented in
Table 2. PSNR performance improvement is the average
difference between the performance of FACD and the overall
FD performance, and is listed in Table 2. As presented
in Table 3, the degree of performance improvement in
FACD, compared to other FD methods, decreased as
the scale factor increased. In general, the performance
improvement efficiency of scale x2 was approximately two
times better than that of scale x4. As the scale factor
increased, texture restoration became more difficult, which
induced an upper bound on the performance of the teacher
network. This implies that the knowledge that can be
transmitted by the teacher network is limited at larger scale
factors.

2) PERFORMANCE ON URBAN100
Each benchmark dataset for SISR exhibits its own data
characteristics. For instance, Sets 5 and 14 contain samples of
simple objects, and BSD100 exhibits various characteristics,
ranging from natural images to complex textures. The
Urban100 dataset includes a variety of repeated patterns
and edges that arise from the complex architecture of
buildings. As presented in Tables 2 and 3, FACD exhibited
better quantitative performance, especially on the Urban100
dataset. Thus, FACD has an advantage over other FD
approaches in terms of texture restoration. FACD achieved a
PSNR improvement of 0.56 dB, 0.34 dB, 0.17 dB, and 0.09dB
over the baseline student, FAKD, LSFD, and PISR on scale
x2 in the RCAN network, respectively.

3) COMPARISON WITH CSD
Consequently, CSD of the teacher and student networks
has an identical number of ResBlocks, except for the
number of channels. However, as depicted in Fig. 1, the
teacher and student networks of EDSR exhibit different
numbers of ResBlocks and channels. RCAN teacher and
student networks include different numbers of ResBlocks
and ResGroups; however, they exhibits the same number of
channels.

Therefore, to ensure a fair experimental comparison of the
distillation domain with contrastive loss, we configured the
teacher model identically to CSD (R16C256) and compared
their distillation performances in the EDSR networks.
Furthermore, CSD was compared with FCD to exclude its
effect on adaptive distillation. As presented in Table 4,
FCD exhibited an average PSNR improvement of 0.02 dB
compared to CSD. Thus, the domain applying the contrastive
distillation was more efficient on the features in the network
than on the feature of the output.

4) COMPARISON WITH PRUNING METHODS
To further demonstrate the effectiveness of the proposed
FD method, we compared the evaluation results with
SOTA pruning methods such as ASSL [26] and SRP [27].
To compare each methods in terms of complexity, Floating
point Operations (FLOPs) measure when the output image
size is set to 3 × 1280 × 720 in the inference process.
To ensure fair comparison, the student model was configured
for KD tomatch the computational cost of each pruned EDSR
sub-network model as closely as possible. As presented in
Table 5, FACD achieved an average PSNR improvement of
0.02 dB over the SOTA pruning methods at smaller network
sizes.

C. QUALITATIVE RESULTS
As depicted in Fig. 4 and 5, we qualitatively compared
FACD with existing approaches on the Set14/Urban100
benchmark datasets. To compare the difference in the
restoration quality of detailed patterns, we performed the
comparison on relatively small cropped images. PSNR scores
were calculated with respect to only the cropped images.
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TABLE 2. Quantitative results (PSNR) measured by applying different FD methods on the student EDSR and RCAN network, as shown in Table 1. Note that
the model efficiency such as running time and memory for each FD method is the same. Note that FAKD*, LFD* and PISR* indicate our reproduced results
with our experimental settings. Except for them, the results in the table are taken from their respective paper. Red indicates the best PSNR within each
dataset, and Blue indicates the second best.

FIGURE 4. Qualitative results on EDSR with scale x2. Noted that FAKD* and LFD* indicate our reproduced results with the same experimental settings.

TABLE 3. Evaluation results on average PSNR improvement over other FD
approaches. Performance improvements that are greater than 0.1dB are
marked with an underline.

1) QUALITATIVE RESULTS COMPARED TO OTHER
FD METHODS
In general, as evidenced by the qualitative results, PSNR
performance is proportional to the subjective image quality.
Our results clearly confirmed that FACD achieved better

PSNR and qualitative results than other FD approaches.
In particular, in terms of texture restoration (e.g. patterns),
FACD yielded clearer textures and exhibited greater simi-
larity between the teacher and HR images than other FD as
shown in Figs. 4 and 5. In the case of scale x4 images (078
fromUrban 100), a difference was confirmed in the distortion
of texture as shown in Fig. 5. In other cases (babara/ppt3 from
Set14, x2), a difference was observed in the sharpness and
straightness of the line as shown in Fig. 4.

2) QUALITATIVE RESULTS ON RCAN NETWORK
Now, we present qualitative results of FD on the RCAN
network. As depicted in Fig. 6, FACD achieved better
PSNR scores and qualitative results compared with other FD
approaches. In particular, FACD recovered the linear patterns
presented in Fig. 6 better than conventional FD.
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FIGURE 5. Qualitative results on EDSR with scale x3 and x4. Noted that FAKD* and LFD* indicate our reproduced results with the same experimental
settings.

FIGURE 6. Qualitative results on RCAN with scale factors of x2 and x3 super-resolution (SR). Note that feature affinity-based knowledge distillation
(FAKD*) and local feature distillation (LFD*) represent the results reproduced using identical experimental configurations.

TABLE 4. Quantitative results (PSNR) of CSD and FCD. Note that CSD*
indicates our reproduces results with our experimental settings. Both
networks of teacher configuration are same. Better result is marked
in Red.

V. ABLATION STUDY
This section demonstrates the effectiveness of FACD and
presents an ablation study conducted to evaluate the effective-
ness of each loss component, formulation of contrastive loss,
the effects of adaptive distillation in the image and feature
domains, that of contrastive distillation in the feature and
spatial affinity (SA) matrix domains, and the fidelity of the
distillation schemes.

1) IMPACT ON CONTRASTIVE LOSS DOMAINS
To demonstrate the effectiveness of contrastive loss in the
feature domain, we compared the contrastive loss results
in the feature and image domains. The composition of
contrastive loss, including the formation of the equation, was
identical in the two cases, except for the application domain.
As presented in Table 6, FCD outperformed both ICD
and CSD. Feature-domain contrastive distillation achieved a
PSNR improvement of 0.04 dB compared to image-domain
contrastive distillation.

To demonstrate the effect of applying a contrastive loss for
each domain, the qualitative results of CSD and ICD were
analyzed. As depicted in Fig. 6, FCD achieved better PSNR
scores and qualitative results than other CD approaches.
FCD restored both straight lines depicted in Fig. 6, while
the student network and FAKD restored only one. Feature
domain with contrastive loss performed better than the image
domain in terms of texture restoration.

2) IMPACT ON CONTRASTIVE LOSS FORMULATION
InfoNCE loss has been primarily used in contrastive learning
and unsupervised learning [63]. Similarity measures of con-
trastive loss in InfoNCE loss use the dot-product operation.
On the other hand, FACD uses Euclidean distance-based loss
as a similarity measure for contrastive loss. As presented
in Table 7, contrastive loss based on Euclidean distance
improved PSNR by a margin of 0.02 dB compared to
InfoNCE loss.

3) IMPACT ON EACH LOSS COMPONENT
To confirm the effect on the performance of each loss
component, each loss component was turned on/off and
tested. L1_GT denotes the conventional Euclidean loss over
GT images, and L1_T denotes the image domain distillation
loss. The difference between FCD and FACD is whether
or not adaptive distillation is used. The overall results are
presented in Table 8. Comparedwith the baselinemodel with-
out distillation, the proposed distillation approach achieved
significant performance improvement on all benchmark
datasets.
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TABLE 5. PSNR (dB) results on the Set5 (x2) in the EDSR sub-network. Note that ASSL [26] and SRP [27] indicate the original paper results. (Red indicates
best PSNR within the same network settings).

FIGURE 7. Qualitative results on residual channel attention networks (RCAN) with a scale factor of x2 super-resolution (SR). Note that contrastive
self-distillation (CSD*) and image-domain contrastive distillation (ICD*) represent the results reproduced using identical experimental configurations.

TABLE 6. Ablation study (PSNR) on contrastive loss comparison between
image and feature domains (x2, EDSR). FCD refers to the method
obtained by removing the adaptive scheme from FACD. CSD* represents
the results reproduced using our experimental configurations.

TABLE 7. Ablation study (PSNR) of the different contrastive loss (LFACD)
on EDSR x2.

The 4-th row in Table 8 demonstrates that training
was efficient when distillation was applied independently
without L1_GT. In particular, the FCD or FACD components
exhibited larger performance improvements compared with
other loss components, as evidenced by the performance
difference shown between the 1-st and 3-rd rows. This implies
that the proposed FCD or FACD transferred the knowledge
from the teacher network to the student network effectively.
Finally, the combination of all loss components achieved the
best evaluation results on various benchmark datasets.

4) IMPACT ON ADAPTIVE DISTILLATION
In Section III-A, we describe the impact of worse cases
obtained from the teacher networks. To show the effective-
ness of adaptive distillation scheme, we compared the quan-
titative results obtained using the proposed FACD and FCD
(FACD without an adaptive distillation approach). As pre-
sented in Table 9, FACD achieved a PSNR improvement of

TABLE 8. Ablation study (PSNR) on the effectiveness of each loss
component in the RCAN network (x4). Red indicates the best PSNR within
each dataset.

0.02 dB compared to FCD. This ablation study confirmed the
importance of the adaptive distillation approach.

5) IMPACT ON FEATURE ATTENTION
The three intermediate feature matching points were con-
figured for fair FD comparison. To compare the effects of
the different features, we compared the evaluation results
of attention corresponding to each feature point. The only
difference among the three methods was the composition
of the wj in Eq. 4. As presented in Table 10, FCD with
the proposed attention version (FAT) achieved the best
performance in terms of PSNR. This indicates that, due to
the cascading architecture of the CNN-based SR network,
the upper part of the network wields greater influence on the
distillation performance than the lower part.

6) EFFECT OF ADAPTIVE DISTILLATION IN THE FEATURE
DOMAIN
In this section, we describe the effect of applying adaptive
distillation to the feature domain. Because feature informa-
tion is more important than image information owing to
the cascading architecture of the CNN-based SR network,
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TABLE 9. Ablation study (PSNR) on the effectiveness of adaptive
distillation methods in the EDSR and RCAN networks. FCD indicates
feature-domain contrastive distillation without adaptive distillation. Red
indicates the best PSNR within each dataset.

TABLE 10. Ablation study (PSNR) of the feature attention on EDSR x2.
FAA, FAB, and FAT indicate paying attention to the average, bottom, and
top parts of features matching points, respectively. FAU is the version of
this paper. The better performance is marked in Red.

we focused on the effect of adaptive distillation in the feature
domain.

The composition of feature domain loss with an adaptive
scheme is formulated as follows:

LonFACD =

N∑
i=1

3∑
j=1

wj
αi∥DR( ˆFSij ) −

ˆFTij ∥1∑K
k=1 ∥DR( ˆFSkj) −

ˆFNegkj ∥1

(6)

where αi denotes the indicator of inappropriate teacher
samples, and descriptions of the formulation are identical to
those in the Section III.
In other words, the composition of feature loss without the

adaptive scheme is formulated as follows:

LoffFACD =

N∑
i=1

3∑
j=1

wj
∥DR( ˆFSij ) −

ˆFTij ∥1∑K
k=1 ∥DR( ˆFSkj) −

ˆFNegkj ∥1

(7)

where the descriptions of the formulation are also identical to
those in Eq. 4, except for αi.

As presented in Table 11, FD with adaptive distillation
outperformed adaptive distillation on the image domain only.

7) IMPACT OF LOSS TYPE ON EACH DOMAIN
To confirm the effect of contrastive distillation on each
domain, we perform an experimental comparison by properly
distinguishing the loss types (e.g., Euclidean distance and
contrastive loss) and the domains of application (e.g., SA and
feature). The spatial affinity (SA) matrix in FAKD represents
the spatial correlation between pixels [20] and is formulated
as follows:

SA = F̂T × F̂ (8)

where F̂ denotes the normalized featuremap. The dimensions
of SA are HW ×HW , where H andW denote the height and
width of the input image, respectively.

TABLE 11. Quantative results on the effectiveness of adaptive distillation
in the feature domain (EDSR, x4). The formulation of LSR is described as
the Section III.

TABLE 12. Quantative results on the effectiveness of contrastive loss in
each domain (EDSR, x2). CD is an abbreviation for Contrastive Distillation.
Noted that SA indicates spatial affinity matrix which is used in the FAKD
paper. The best performance is marked in Red.

TABLE 13. Evaluation results of the average PSNR between the output
images of student and teacher in RCAN networks. FAKD* and LFD*
indicate our reproduced results with our experimental settings. The best
performance in the same setting is marked in Red.

To ensure fair comparison, the adaptive distillation scheme
was removed, and the performance of the resulting architec-
ture was evaluated. As presented in Table 12, the proposed
distillation scheme achieved significant enhancement in
terms of PSNR on all benchmark datasets. We also confirmed
that SA leads to learning feature correlations from each pair
of pixels, even if it comprises unrelated pairs (e.g., different
objects). For this reason, FD is more effective than SA
in feature domains with a deep regressor [21]. Moreover,
as described in the Section. IV, contrastive loss performed
better than L1-distance loss in the FD approach.

8) PERFORMANCE OF THE FD SCHEME OVER THE TEACHER
NETWORKS
To compare the similarity between each FD and the teacher
networks, we evaluated the PSNR between the output images
of teacher and student networks. During this process, the
output images of the teacher were considered as the target
(GT). FACD was exhibited the best performance in all test
configurations. As presented in Table 13, FACD exhibited an
average PSNR improvement of 0.60 dB compared to other
FDmethods. This indicates that feature-based contrastive loss
improves the similarity between output images of student and
teacher networks.

VI. CONCLUSION
In this paper, we analyzed the limitation of the conventional
FD scheme with Euclidean distance-based loss and the
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impact of inappropriate results of the teacher network
on the distillation performance, and proposed the FACD
that employs adaptive contrastive distillation in the feature
domain. In detail, to transfer knowledge from the teacher
networks more effectively, we proposed the FD based on
contrastive loss, which maximizes the mutual information of
features between the student and teacher networks, and the
adaptive distillation scheme by rejecting inaccurate results
of knowledge transfer from the teacher network during the
KD process. The student networks of EDSR and RCAN
based on FACD achieved SOTA results in KD for SISR,
and produced the excellent qualitative results in terms of
texture reconstruction. Since FACD is a simple method
that effectively enhanced the performance using teacher
models, we plan to extend the FACD to other low-level
vision networks (e.g., restoration, real-world SR, etc.) that
operate in real-time on industrial sites (e.g., smartphone
devices) [28], [64] and other types of networks such as
transformer. However, the issues of training cost (e.g.,
600 epochs for saturation) and semantic collapse due to
instance-wise contrastive loss remain to be addressed.
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