
Received 18 October 2023, accepted 20 November 2023, date of publication 23 November 2023,
date of current version 29 November 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3335941

Ergodic Capacity Analysis of Uplink MU-MIMO
Systems With Low-Resolution ADCs
YOUYANG XIANG, HANJIE WU , AND XIANTAO CHENG , (Member, IEEE)
National Key Laboratory of Wireless Communications, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, China

Corresponding author: Xiantao Cheng (xiantaocheng@163.com)

This work was supported by the Natural Science Foundation of Sichuan Province under Grant 2022NSFSC0486.

ABSTRACT This paper addresses the ergodic capacity for uplink multi-user multiple-input multiple-output
(MU-MIMO) systems equipped with low-resolution analog-to-digital converters (ADCs). The nonlinear
quantization effect poses a great challenge to conduct the capacity analysis. This is because the well-known
Shannon capacity expression is only applicable for linear systems, and it cannot be directly used for the
capacity analysis in the nonlinear quantized systems with low-resolution ADCs. To tackle this, we resort to
the replica method from statistical physics. Specifically, we elaborately derive the closed-form expression
of the ergodic capacity, which is applicable for arbitrary signaling inputs. As a result, explicit capacity
expressions are readily obtained for the often-used Gaussian inputs and QAM inputs. With the obtained
expressions, we can evaluate the ergodic capacity for various system setups, and can study the impacts of
the system parameters (the number of received antennas, the number of users, the number of quantization bits
and the channel parameters) on the ergodic capacity. We directly calculate the mutual information between
the transmitted signals and the received quantized signals, without performing any additional reception
operations, and obtainmore fundamental results. Compared to the time-consumingMonte-Carlo simulations,
the analytical expressions are highly accurate while significantly saving the computation time. Furthermore,
it is shown that with proper system configurations, the capacity loss caused by low-resolution ADCs may be
mild, compared with infinite-precision ADCs.

INDEX TERMS Ergodic capacity, MU-MIMO, low-resolution ADCs, replica method.

I. INTRODUCTION
Due to the ability of supporting many high-data-rate
applications, massive multi-user multiple-input multiple-
output (MU-MIMO) is a core technology for modern and
future wireless communication systems [1], [2], [3], [4].
However, the large number of antennas in MU-MIMO
systems dramatically increases the hardware cost and power
consumption at the base station (BS), if each antenna
bears a pair of high-resolution analog-to-digital converters
(ADCs) [5], [6]. Since the power consumption of each ADC
exponentially scales with the number of quantization bits Qb
[7], using low-resolution ADCs is regarded as a promising
way to alleviate the hardware cost and power consumption
issue [8], [9].
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The severe nonlinearity introduced by the low-resolution
ADCs makes the capacity analysis difficult. Specifically, one
cannot rely on the Shannon capacity expression to analyze
the capacities of the nonlinear quantized systems with
low-resolution ADCs. To bypass this difficulty, researchers
often adopt some linear quantization models to approxi-
mate the nonlinear quantization operation [10], [11], [12],
[13], [14], [15], [16], [17], [18], [19], [20]. With these
approximate linear models, the capacity analysis of the
quantized systems can be conducted based on the Shannon
capacity expression. In [10], [11], [12], [13], [14], and [15],
the achievable rate expressions are derived based on the
linear additive quantization noise model (AQNM), where the
quantization error is modeled as additive Gaussian noise.
The results therein reveal that the rate loss caused by
low-resolution ADCs can be compensated by using more
antennas. In [16], the linear Bussgang’s decomposition [21]
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is used to approximately model the nonlinear quantization.
Based on this, the achievable rate is analyzed. For the
mixed-ADC MIMO receiver bearing a small number of
high-resolution ADCs but a large number of low-resolution
ADCs, the AQNM-based analysis shows that the mixed
ADCs can achieve almost the same performance as that of
the perfect quantization (corresponding to infinite-precision
ADCs) [18], [19], [20]. However, the above studies assume
that the quantization process is linear and the signals received
at the BS are detected by a non-optimal linear receiver
(e.g., maximal ratio combining (MRC) receiver and zero
forcing (ZF) receiver). Since the quantization operation
is nonlinear in essence, the adoption of the approximate
linear quantization models will adversely affect the analysis
accuracy.Moreover, due to the data-processing principle [22],
the non-optimal linear receiver (i.e., the additional processing
of the quantized received signals) will lead to a underestimate
of the system capacity.

In this paper, we aim to analyze the ergodic capacity of
uplink MU-MIMO systems, where multiple single-antenna
users communicate with the BS equipped with N antennas
and the BS uses low-resolution ADCs to quantize the
received signals. This system setup is similar to that in [10].
However, we will use the accurate nonlinear quantization
model, rather than the approximate AQNM used in [10].
Moreover, the analysis in [10] is only applicable for the case
where the MRC reception is used to process the received
quantized. In contrast, we directly compute the mutual
information between the transmitted signals and the received
quantized signals, and do not assume any additional receiver
operations. Therefore, the derived capacity expressions are
more fundamental.

Specifically, the main contributions of our paper can be
summarized as follows:

1) By resorting to the replica method from statistical
physics [23], [24], [25], [26], [27], [28], [29], [30], [31],
we derive the analytical ergodic capacity expression
in the large-system regime, i.e., assuming that the
number of BS antennas N is very large or goes
to infinity. We accurately take into account of the
nonlinear quantization effect when conducting the
capacity analysis.

2) The derived expression is applicable for arbitrary
signaling inputs. In other words, with the obtained
expression, one can easily evaluate the ergodic capac-
ity with various signaling inputs. Based on that,
for Gaussian inputs and finite-cardinality constella-
tions (i.e., QAM signals), we provide the explicit
expressions.

3) For the capacity analysis, we calculate the mutual
information between the transmitted signals and the
received quantized signals, and do not relay on
any additional receiver operations (e.g. MRC data
processing of the received signals). Consequently, our
capacity results are more fundamental. Due to the
data-processing principle [22], the additional MRC

processing will lead to a certain information rate loss.
In other words, our obtained results embody the system
capacity more accurately than those in [10], as will be
verified in the simulation section below.

4) Although the capacity expressions are derived in
the large-system regime, they are applicable even
when the number of BS antennas N is moderate.
In other words, the analytical capacity expressions
match well with Monte-Carlo simulations when N is
not large. Based on this, we can use the analytical
expressions, instead of the time-consuming Monte-
Carlo simulations, to swiftly investigate the effects
of the system parameters (the number of received
antennas N , the number of users K , the number of
quantization bits Qb and the channel parameters in (2)
in Section II) on the capacity.

The rest of the paper is organized as follows. Section II
briefly describes the system model for uplink MU-MIMO
with low-resolution ADCs, where the nonlinear quantiza-
tion operation is accurately characterized. In Section III,
we elaborately derive the expression of the ergodic capacity
using the replica method, and provide specific capacity
expressions for the Gaussian inputs and QAM inputs.
In Section IV, simulations are carried out to verify the
accuracy of the analytical results. Some insights are gained
on the system design. Finally, we draw the conclusions
in Section V.

Notation. Lowercase and uppercase boldface letters
denote column vector and matrix, respectively. (·)R and (·)I

denote the real and imaginary parts of a complex-valued
argument, respectively. (·)T and (·)H denote transpose and
Hermitian transpose, respectively. IN denotes the identity
matrix of size N × N . diag (a) is a diagonal matrix with the
vector a on its diagonal. vec(A) outputs a vector by catenating
the columns in the matrix A. an denotes the n-th entry of
the vector a. |a| denotes the absolute value of the scalar a.
det (A) is the determinant of matrix A. Ex[f (x)] denotes the
expectation of f (x) with respect to x. x ∼ CN (µ, 6) (x ∼

CN (µ, 6)) shows that the vector x (the scalar x) follows a
complex Gaussian distribution with mean vector µ (mean µ)

and covariance matrix 6 (variance 6). ϕ(x) =
1

√
2π
e−

x2
2 and

8(x) =
∫ x
−∞

ϕ(t)dt , respectively, represent the probability
density function (PDF) and cumulative distribution function
(CDF) of a real Gaussian distributed random variable x with
zero mean and unit variance. And Dx = ϕ (x) dx.

II. UPLINK MU-MIMO SYSTEM MODEL
Consider an uplink MU-MIMO system [10], where K
independent single-antenna users communicate with the BS
withN receive antennas in the same time-frequency resource,
as illustrated in Figure 1. Each BS antenna bears a RF
chain, and a pair of low-resolution ADCs, which are used to
quantized the real and imaginary parts of the received signal.
The baseband quantized received signal q ∈ CN×1 at the BS
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FIGURE 1. The uplink MU-MIMO system model.

can be formulated as

q = Qc (y) = Qc (Hs + n) = Qc

(
K∑
k=1

hksk + n

)
, (1)

where y ∈ CN×1 is the unquatized received signal, s =

[s1, s2, · · · , sK ]T ∈ CK×1 denotes the transmitted symbol
vector of all theK users, sk is of unit energy and is transmitted
from the k-th user, n ∈ CN×1 is the additive Gaussian
white noise (AWGN) with each entry being of zero mean and
variance σ 2, H = [h1,h2, · · · ,hK ] ∈ CN×K is the channel
matrix, hk ∈ CN×1 is the channel vector between the BS
and the k-th user, Qc (·) represents the complex quantization
operation and is applied element-wise. The details of Qc (·)

will be given later on.
To capture both the small-scale Rayleigh fading and the

large-scale fading, the channel matrix H is modeled as [32]

H = GD1/2, (2)

where G ∈ CN×K represents the small-scale fading matrix,
the entries in G are independently and identically distributed
as CN (0, 1), D = diag (β1, β2, · · · , βK ) ∈ CK×K is a
diagonal matrix modeling the large-scale fading, the k-th
diagonal entry βk corresponds to the large-scale fading of
the channel between the BS and the k-th user. The large-
scale fading coefficients {βk}

K
k=1 characterize the effects

of both the geometric attenuation and the shadow fading.
With enlarging BS-user distance, the strength of received
signals will decrease, leading to the geometric attenuation.
On the other hand, the signal strength may vary due to the
random blockage between the BS and the users. This effect is
referred to as shadow fading. In general, the large-scale fading
coefficients are assumed to be constant across the BS antenna
array.

Specifically, for the n-th entry of y, the nonlinear
quantization operation can be formulated as

qn = Qc (yn) = Q
(
yRn
)

+ jQ
(
yIn
)

, (3)

where yRn and yIn denote the real and imaginary parts of yn,
respectively, and Q (·) denotes a conventional real-valued
quantizer with Qb quantization bits. For an arbitrary real-
valued scalar y, the quantizerQ (·) maps it to one of B = 2Qb

discrete values, as shown below

Q (y) =


v0, y ∈ [u0, u1] ,
v1, y ∈ (u1, u2] ,
...,

...,

vB−1, y ∈ (uB−1, uB] ,

(4)

where −∞ = u0 < u1 < · · · < uB = ∞ and v0 < v1 <

· · · < vB−1 are the quantization thresholds and the quantizer
output values, respectively. Considering a conventional mid-
point uniform quantizer, we have

ub = (−B/2 + b) 1, b = 1, 2, · · · ,B− 1,

vb = (−(B− 1)/2 + b) 1, b = 0, 1, · · · ,B− 1,

(5)

where 1 is the quantizer step size, and it can be optimally
adjusted to minimize the quantization errors [33].

III. ERGODIC CAPACITY ANALYSIS WITH
LOW-RESOLUTION ADCS
The ergodic capacity is defined as the average mutual
information between q and s, as given by

C = EH [I (q; s | H)] = −Eq,H,s

[
log

p (q | H)

p (q | H, s)

]
= −Eq,H

[
log p (q | H)

]︸ ︷︷ ︸
≜Hq

−
(
−Eq,H,s

[
log p (q | H, s)

])︸ ︷︷ ︸
≜Hn

,

(6)

where p (q | H) =
∫
s p (s) p (q | H, s) ds, p (s) =∏K

k=1 p (sk), p (sk) is the prior distribution of sk , p (q | H, s)
is the likelihood function, i.e., the distribution of the
quantized signal vector q conditioned on the transmitted
vector s and the channel matrix H.

Specifically, we have p (q | H, s) = p (q | z) =∏N−1
m=0 p (qm | zm), where z =

∑K
k=1 hksk , zm is them-th entry

of z, and

p (qm | zm)

=

∏
o∈{R,I }

[
8

(√
2
(
uob+1 − zom

)
σ 2

)
− 8

(√
2
(
uob − zom

)
σ 2

)]
,

(7)

where qRm ∈
[
uRb , u

R
b+1

]
, qIm ∈

[
uIb, u

I
b+1

]
, and

{uRb , u
R
b+1, u

I
b, u

I
b+1} are the quantization thresholds

(see (4) and (5)).
Due to the nonlinear quantization effect caused by low-

resolution ADCs, it is difficult to calculate the expectations
in (6). To address this issue, we are committed to deriving
the analytical expression of the ergodic capacity C by using
the replica method in the large-system regime [23], [24],
[25], [26], [27], [28], [29]. Specifically, we assume that the
number of BS antennas goes to infinity, i.e., N → ∞, but
the ratio K/N keeps fixed. With this assumption, we can use
the replica method to elaborately derive the ergodic capacity.
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The obtained expression of the ergodic capacity will be given
in Proposition 1 below.

Before presenting Proposition 1, we need to introduce
some new parameters for better illustration. These parameters
include the mean square error (MSE) and the mutual
information metrics corresponding to the following scalar
AWGN channels

ysk =

√
q̃sk sk + nsk , k = 1, 2, · · · ,K , (8)

where sk is the transmitted signal (see (1)), nsk ∼ CN (0, 1)
denotes the AWGN, and q̃sk denotes the signal-to-noise ratio
(SNR) of the k-th AWGN channel. Here it is worthwhile to
point out that these scalar AWGN channels are used only to
illustrate Proposition 1, and are irrelevant to the systemmodel
in Section II. In other words, {ysk , nsk }

K
k=1 are irrelevant to

{y,n} in (1).
Based on (8), one can express the Bayesian estimate of sk

as

ŝk =

∫
sk
skp

(
ysk |sk

)
p (sk) dsk∫

sk
p
(
ysk |sk

)
p (sk) dsk

. (9)

As a result, the corresponding MSE is given by

MSEsk = Eysk ,sk

[
|sk − ŝk |2

]
. (10)

Define the mutual information between ysk and sk as

I
(
ysk ; sk |

√
q̃sk

)
= −Eysk

{
log Esk

[
e
−

∣∣∣ysk−
√
q̃sk sk

∣∣∣2]}
− 1,

(11)

then we have [29]

d
dq̃sk

I
(
ysk ; sk |

√
q̃sk

)
) = MSEsk . (12)

With the above preparations, we can clearly express
Proposition 1 in the sequel.
Proposition 1: In the large-system regime for the signal

model in (1), the ergodic capacity is given by

C =

K∑
k=1

[
I
(
ysk ; sk

)
− q̃sk

(
1 − qsk

)]
+ 2N

(
B−1∑
b=0

∫
z
�(2)
ub log�(2)

ub Dz−

B−1∑
b=0

∫
z
�(1)
ub log�(1)

ub Dz

)
,

(13)

where Dz = ϕ (z) dz, �
(1)
ub (z) = 8

(1)
ub+1 (z) − 8

(1)
ub (z),

�
(2)
ub (z) = 8

(2)
ub+1 (z) − 8

(2)
ub (z), and

8(1)
ub (z) = 8

√
2ub − z

√∑K
k=1 βkqsk

χ

 , (14)

8(2)
ub (z) = 8

√
2ub − z

√∑K
k=1 βk

σ

 , (15)

where

χ =

√√√√σ 2 +

K∑
k=1

βk
(
1 − qsk

)
, (16)

and the parameters
{
qsk , q̃sk

}K
k=1 are the solutions to the

following fixed-point equations
qsk = 1 − MSEsk ,

q̃sk = Nβk
∑B−1

b=0

∫
Dz

(
ϕ

(1)
ub+1 (z)−ϕ

(1)
ub (z)

)2
�
(1)
ub (z)

,
(17)

where k = 1, 2, · · · ,K , and

ϕ(1)
ub (z) =

1
χ

ϕ

√
2ub − z

√∑K
k=1 βkqsk

χ

 . (18)

Proof: See Appendix.
Here it is worthwhile to provide several remarks:
Remark 1: The results in Proposition 1 can be further

extended to the systems with infinite-precision ADCs.
As Qb → ∞, we have

lim
Qb→∞

[
8

(
ub+1 − z

a

)
− 8

(
ub − z
a

)]
=

1
a
ϕ

(
u− z
a

)
(19)

and

lim
Qb→∞

[
ϕ

(
ub+1 − z

a

)
− ϕ

(
ub − z
a

)]
=
u− z
a2

ϕ

(
u− z
a

)
.

(20)

By substituting the above relationships into (13) and (17),
we can obtain the ergodic capacity of the systems with
infinite-precision ADCs as

C∞ =

K∑
k=1

[
I
(
ysk ; sk

)
− q̃sk

(
1 − qsk

)]
+ N log

(
1 +

K∑
k=1

βk
(
1 − qsk

)
σ 2

)
, (21)

where
{
qsk , q̃sk

}K
k=1 are the solutions to the following fixed-

point equations
qsk = 1 − MSEsk ,

q̃sk =
Nβk

σ 2 +
∑K

k=1 Nβk
(
1 − qsk

) . (22)

Remark 2: Obviously, the expressions of MSEsk in (10)
and I

(
ysk ; sk

)
in (11) depend on the prior of the transmitted

symbol sk . Below we provide two often-used examples for
the transmitted symbol sk :

(1) Gaussian inputs: When the transmitted signals follow
the Gaussian distribution, i.e., sk ∼ CN (0, 1) , k =

132836 VOLUME 11, 2023
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TABLE 1. Simulation parameters.

1, 2, · · · ,K , the MSE and mutual information are given by

MSEsk =
1

1 + q̃sk
, (23)

I
(
ysk ; sk |

√
q̃sk

)
= log

(
1 + q̃sk

)
. (24)

(2) QAM inputs:When transmitted signals are drawn from
M -QAM constellation, it is hard to obtain the exact analytical
expressions of MSE and mutual information. According to
[34], an approximate expression of mutual information based
on multi-exponential decay curve fitting can be expressed as

I
(
ysk ; sk |

√
q̃sk

)
= logM

[
1 −

KM∑
i=1

a(M )
i e−b

(M )
i q̃sk

]
,

(25)

where the parameters KM and
{
a(M )
i , b(M )

i , ∀i
}
are given in

[34]. Exploiting the relationship between mutual information
and MSE in (12), we can obtain

MSEsk = logM
KM∑
i=1

a(M )
i b(M )

i e−b
(M )
i q̃sk . (26)

IV. SIMULATION AND DISCUSSION
In this section, we conduct simulations to validate the
obtained analytical results. The transmit SNR per user is
defined as 1/σ 2. If not specified otherwise, the number
of users is K = 4, the number of received antennas
is N = 32 and the number of quantization bits is
Qb = 3. The large-scale fading coefficient is generated as
βk = ek (dk/dmin)

−γ , where ek is the random log-normal
shadowing-fading coefficient, the standard deviation of the
log-normal distribution is δshad = 6dB, dk is the distance
between the k-th user and the BS, it follows the uniform
distribution dk ∼ U (dmin, dmax) with dmin = 100 meters and
dmax = 1000 meters being the minimum and maximum BS-
user distance respectively, and γ = 1.6 is the decay exponent.
In the following, we will use ‘Monte Carlo’ and ‘Analytical’
to represent the results of Monte-Carlo simulations and

FIGURE 2. The ergodic capacity comparison between the analytical
results and the Monte-Carlo simulations for the Gaussian inputs.

the analytical results obtained in Section III, respectively.
The parameters in the simulation setups are summarized in
Table 1.

With Gaussian inputs, Fig. 2 compares our analytical
results with Monte-Carlo simulations, which are conducted
according to (6).For comparison, the analytical results and its
corresponding Monte-Carlo results in [10] are also presented
in Fig. 2. It is noticed that the results in [10] are confined
to the MRC reception. Therefore, the analytical results
and Monte-Carlo simulations corresponding to [10] are
denoted by ‘Analytical, MRC’ and ‘Monte Carlo, MRC’,
respectively. It can be seen that for various quantization bits
Qb’s, our analytical curves merge together with the Monte-
Carlo results over a wide range of SNRs, verifying that
the analytical expressions are highly accurate. Our results
are obtained by directly computing the mutual information
between the transmitted signals and the received quantized
signals (see (6)), while the results in [10] are based on
the use of the MRC receiver to process the received
quantized signals. The additional (MRC) processing will
underestimate the capacity according to the well-known
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TABLE 2. Computation time (seconds) comparison under various system setups.

FIGURE 3. The ergodic capacity comparison between the analytical
results and the Monte-Carlo simulations for the QPSK inputs and the
16QAM inputs.

data-processing inequality (DPI) in information theory [22].
Therefore, our capacity results are larger than those in [10].
In other words, our analytical capacity results are more
fundamental.

In Fig. 3 and Fig. 4, we compare the analytical results
with Monte-Carlo simulations for QAM inputs. QPSK and
16QAM are considered in Fig. 3, and 64QAM is considered
in Fig. 4. In this case, the capacity analysis in [10] is
not applicable any more, since the derivations therein are
limited to the Gaussian inputs. As seen from the figures, the
analytical results coincide with the Monte-Carlo simulations.
This verifies that our analytical expressions are accurately
applicable for the QAM inputs. For the QPSK inputs and the
16QAM inputs in Fig. 3, at high SNRs, it is observed that
Qb = 1 and Qb = 2 have been able to achieve the ergodic
capacity of Qb = ∞, respectively. At the low-to-medium
SNRs, Qb = 1 and Qb = 2 can capture a dominant portion
of the capacity of Qb = ∞. Therefore, it can be deduced
from Fig. 3 that the relatively lower quantization bits (e.g.,
Qb = 1 and Qb = 2) is sufficient for the QPSK inputs and
the 16QAM inputs. For the 64QAM inputs in Fig. 4, we need
to increase the number of quantization bits Qb to improve

FIGURE 4. The ergodic capacity comparison between the analytical
results and the Monte-Carlo simulations for the 64QAM inputs.

the performance such that it is as close as possible to that of
Qb = ∞. Typically, Qb = 3 and Qb = 5, rather than Qb = 1,
are good choices for the 64QAM inputs. The observations
in Fig. 3 and Fig. 4 corroborate the feasibility of using
low-resolution ADCs in practical MIMO systems, where the
finite-cardinality constellations (e.g., QPSK, 16QAM and
64QAM) are widely used. Moreover, for M -QAM inputs,
the number of information bits per symbol increases as M
increases, thereby resulting in an increase in the capacity.
Note that the maximum number of information bits for
QPSK, 16QAM and 64QAM are 2, 4 and 6, respectively.
Therefore, with K = 4 users, the capacity limits for QPSK,
16QAM and 64QAM are 8, 16 and 24, respectively. In Fig. 3
and Fig. 4, it is observed that the capacity results can converge
to the capacity limits, when the SNR and Qb are sufficiently
large. In contrast, there are no capacity limits for Gaussian
inputs. With enlarging SNR, the capacity results for Gaussian
inputs will continue to increase (if Qb is not too small),
as shown in Fig. 2.

Generally speaking, Monte-Carlo simulations are much
higher time-consuming than analytical calculations. This is
true for the ergodic capacity problem considered in this paper.
To show this, in Table 2 we provide the computation time for
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FIGURE 5. The ergodic capacity with different number of BS antennas.

FIGURE 6. The ergodic capacity with different number of users.

the Monte-Carlo simulations and the analytical calculations
under various system setups. We use a DELL ChengMing
3991 computer to conduct the Monte-Carlo simulations and
the analytical calculations. The results in Table 2 correspond
to those in Fig. 2–Fig. 4, and are obtained by averaging over
the SNR region in Fig. 2–Fig. 4. Obviously, the computation
time of calculating the analytical results is several orders
of magnitude lower than that of conducting Monte-Carlo
simulations. In other words, compared with the analytical
calculations, Monte-Carlo simulations are formidably high
time-consuming. This is more pronounced for high-order
QAM signals. For example, with Qb = 3 and 64QAM
inputs, the calculation time differs by 6 orders of magnitude
between the analytical calculations and the Monte-Carlo
simulations. In short, compared to Monte-Carlo simulations,
analytical results can be obtained more easily and quickly.
Due to the extremely time-consuming nature of Monte-Carlo
simulations, we are inclined to use the analytical expressions
for capacity evaluation.

In Fig. 5 and Fig. 6, we investigate the impacts of the
number of BS antennas N and the number of users K on
the ergodic capacity, where Qb = 3 is used. Specifically,
different N ’s are studied in Fig. 5, and different K ’s are
studied in Fig. 6. The Gaussian inputs are considered in
Fig. 5 (a) and Fig. 6 (a), while the 64QAM inputs are
considered in Fig. 5 (b) and Fig. 6 (b). With the Gaussian
(or 64QAM) inputs, the capacity gradually increases when
enlarging N and/or K . Therefore, the overall observations in
Fig. 2–Fig. 6 tell that by properly choosing N ,K and Qb, one
can compensate the capacity loss caused by low-resolution
ADCs.

V. CONCLUSION
This paper addressed the ergodic capacity of uplink MU-
MIMO systems with low-resolution ADCs. Unlike the
existing works, we took the nonlinear quantization operation
into account, leading to a more accurate capacity analysis.
By means of the replica method, we derived the general
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expression of ergodic capacity, which is applicable for
arbitrary signaling inputs. The specific capacity expressions
are explicitly provided for the Gaussian inputs and the
finite-cardinality constellations, i.e., QAM inputs. Since
we directly calculate the mutual information between the
transmitted signals and the received quantized signals, and
do not perform any additional reception operations, our
results are more fundamental. Numerical results confirm that
the obtained analytical expressions match well with Monte-
Carlo simulations and require much lower computation time.
Therefore, one can readily use the analytical expressions
to investigate the effects of the system parameters on the
capacity. In this way, we can properly design the system to
achieve the desired capacity.

APPENDIX
PROOF OF PROPOSITION 1
According to (6), the computation of the ergodic capacity
can be decomposed as the computations of Hq and Hn.
In the following, we are committed to computing the detailed
expressions of Hq and Hn by using the replica method [23],
[24], [25], [26], [27], [28], [29].

(1) Computing Hq: Define

F = lim
N→∞

Hq = − lim
N→∞

Eq,H
[
log p (q | H)

]
. (27)

To facilitate the derivation, we use the equation [24]

E
[
logA

]
= lim

τ→0

∂

∂τ
logE

[
logAτ

]
(28)

and rewrite F as

F = − lim
N→∞

lim
τ→0

∂

∂τ
log Eq,H

[
pτ (q | H)

]
. (29)

where we assume that the order of the two limits N → ∞

and τ → 0 can be interchanged [24].
Furthermore, we use the following two assumptions [24]:

(1) The obtained F is applicable for arbitrary τ . (2) τ is an
integer. In this way, Eq,H [pτ (q | H)] in (29) can be expressed
as

Eq,H
[
pτ (q | H)

]
= Eq,H

{
Eτ
s [p (q | H, s)]

}
= EEs

{∫
EH

[
τ∏

a=0

p
(
q | H, s(a)

)]
dq

}

=

∫
EZ

[
τ∏

a=0

p
(
q | z(a)

)]
dq, (30)

where Es ≜ {sk}Kk=1, sk ≜
[
s(0)k , s(1)k , · · · , s(τ )

k

]
, s(a)k is the

a-th replica of sk , z(a) =
∑K

k=1 z
(a)
k , Z = {Zk}Kk=1, Zk ≜[

z(0)
k , z(1)

k , · · · , z(τ )
k

]
, and z(a)

k = hks
(a)
k for all k and a.

To compute the expectation w.r.t. Es in (30), we introduce
a set of (τ + 1) × (τ + 1) matrices

{
Qsk

}K
k=1 and the (a, b)-

th entry of Qsk is defined by Qabsk ≜
(
s(a)k
)∗

s(b)k . The above

definition is equivalent to

1 =

∫ τ∏
0≤a≤b

δ
((
s(a)k
)∗

s(b)k − Qabsk

)
dQabsk , (31)

where δ (·) denotes Dirac delta function. By using the results
in [27], we arrive at

Eq,H
[
pτ (q | H)

]
=

∫
eM

(τ )(Qz)dµ(τ )
s (Qs) +O (1) , (32)

where O (·) is Big-O notation, and

M (τ ) (Qz) ≜ log EZ

[∫ τ∏
a=0

p
(
q | z(a)

)
dq

]
, (33)

µ(τ )
s (Qs) = EEs

∫ K∏
k=1

τ∏
0≤a≤b

δ
((
s(a)k
)∗

s(b)k − Qabsk

) ,

(34)

where Qz =
{
Qz0 , · · · ,QzN−1

}
, Qzn ∈ R(τ+1)×(τ+1) is

the covariance matrix of zn ≜
[
z(0)n , z(1)n , · · · , z(τ )n

]T
, the

(a, b)-th entry of Qzn is Qabzn = Ehn

[(
z(a)n
)∗ (

z(b)n
)]

, and

Qs =
{
Qsk

}K
k=1.

Define

F (τ ) ≜ − lim
N→∞

log Eq,H
[
pτ (q | H)

]
. (35)

Then we can first compute F (τ ), and subsequently derive F
by using F = limτ→0

∂F (τ )

∂τ
. Following the results in [25],

the expression of F (τ ) is given by

F (τ )
= −Extr

Qs

{
M (τ )(Qz) −

K∑
k=1

R(τ )
sk (Qsk )

}
, (36)

where Extr{·} denotes the extreme operation, and

R(τ )
sk (Qsk ) = max

Q̃sk

{
tr
(
Q̃skQsk

)
− log Esk

(
e
tr
(
Q̃sk s

H
k sk

))}
.

(37)

Therefore, the computation of F (τ ) can be decomposed as
the computations of (33) and (37). Based on replica symmetry
[24], we assume that

Qsk =
(
csk − qsk

)
Iτ+1 + qsk I

(1)
τ+1, (38)

Q̃sk =
(
c̃sk − q̃sk

)
Iτ+1 + q̃sk I

(1)
τ+1, (39)

where I(1)τ+1 is the matrix with all entries equal to 1. Then Qabzn
can be expressed as Qabzn =

∑K
k=1 βkQabsk . Besides, we denote

the n-th entry of z(a) by z(a)n . Obviously, z(a)n is a Gaussian
random variable. Thus we can introduce two independent
standard complex Gaussian random variables vc and u

(a)
c to

represent z(a)n as

z(a)n = vc

√√√√ K∑
k=1

βkqsk + u(a)c

√√√√ K∑
k=1

βk
(
csk − qsk

)
. (40)
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We substitute (40) into (33) and perform the expectation
w.r.t. Z and the integral over q to yield

M (τ )(Qz) = 2N log

(
B−1∑
b=0

∫ [
�(1)
ub (z)

]τ+1
Dz

)
. (41)

Moreover, after using the Hubbard-Stratonovich transforma-
tion and performing some straightforward operations, we get

R(τ )
sk (Qsk )

= max
c̃sk ,q̃ek

{[
(τ + 1) c̃sk csk + (τ + 1) τ q̃skqsk − logM(τ )

sk

]}
,

(42)

where

M(τ )
sk = Esk

{∫
dysk

1
π
e
−

∣∣∣ysk−
√
q̃sk sk

∣∣∣2+c̃sk s∗k sk}×(
Esk

{
e

(√
q̃sk sk

)∗

ysk+y∗sk

(√
q̃sk sk

)
+
(
c̃sk−q̃sk

)
s∗k sk
})τ

.

(43)

Plugging (41) and (42) into (36), we can get F (τ ). With
the normalization constraint limτ→0 Eq [pτ (q)] = 1, we set
the partial derivatives of F (τ ) w.r.t.

{
csk
}K
k=1 and

{
c̃sk
}K
k=1 to

zero and then have csk = E
[
|sk |2

]
= 1 and c̃sk = 0. By using

F = limτ→0
∂F (τ )

∂τ
, we obtain the free entropy F . Equating

the partial derivatives of F w.r.t.
{
qsk
}K
k=1 and

{
q̃sk
}K
k=1 to

zero, we arrive at the fixed-point equations given in (17).
(2) Computing Hn: Since {hk}Kk=1 are Gaussian distributed

vectors, z follows a complex Gaussian distribution with
mean vector 0 and covariance matrix

(∑K
k=1 βk

)
IN . The

expectation for H and s in Hn can be transformed into
expectation for z, and then the high dimensional integrals in
Hn are reduced to B one-dimension integrals. Thus we have

Hn = −2N

(
B−1∑
b=0

∫
z
�(2)
ub log�(2)

ub Dz

)
. (44)

With the above derived expressions of Hq and Hn, we can
get the capacity C in (13).
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