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ABSTRACT Collecting broad ocean region data to leverage large-scale sensors is a valid method to handle
ocean health problems associated with human activities (wind turbine deployment, nuclear wastewater
discharge, etc.). When using the novel collection scheme, reducing the total energy consumption (TEC)
of boat-assisted drones to collect sensor data is challenging. The objective of this study was to minimize the
TEC of boats and drones (owing to their limited battery capacity) during marine environment sensor data
collection. To achieve this, new models for drone hovering in wind, data collection, and related wireless
communication have been developed, and the TEC minimization problem has been formulated as a new
specialized distance-constrained capacitated vehicle routing problem. The problem is divided into four
subproblems to reduce complexity. Based on these four subproblems, an improved heuristic algorithm was
proposed. In the algorithm, the drone hovering position and boat waypoint are determined using the K-means
clustering algorithm and the smallest enclosing circle algorithm. Based on the position and waypoint, the
routes of drones and boats were optimized using the Lin-Kernighan heuristic 3 algorithm, thus minimizing
the TEC. The simulation results demonstrate that when the boat waypoint is 3 and the sensor number is 2000,
owing to the strong local and global search ability, the TEC in the scheme is 0.03×108J less than that of the
graph attention neural network method (GANN), while the scheme also provides time saving, scalability,
and flexibility.

INDEX TERMS Boat, drone, large-scale offshore sensors, optimization, total energy consumption.

NOMENCLATURE
A. SET AND INDICES
m,l Boat waypoint index.
i,j UAV hovering position index.
k Sensor position index.
8 Set of boat waypoints.
M Total number of boat waypoints.
L Set of UAV hovering positions.
I Total number of hovering positions.
3 Set of sensor positions.

The associate editor coordinating the review of this manuscript and

approving it for publication was Adamu Murtala Zungeru .

B. PARAMETERS
vm,0 Boat waypoint.
vm,i UAV hovering position.
H i Average altitude of the UAV communication.
qk Sensor position.
Tϕ Thrust of UAV.
mg Weight of the UAV.
α Tilt angle.
w Wind speed.
µ Empirically determined coefficient.
w0 Basic wind speed.
h0 Basic altitude.
δ Earth’s surface friction coefficient.
Ph (w) hovering power consumption.
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� Blade angular velocity.
Rotor radius.

γ Incremental correction factor.
d0 Fuselage drag ratio.
ρ Air density.
s Rotor solidity.

Rotor disc area.
ϑ Profile drag coefficient.
dpi,k Plane distance between the sensor and the UAV.
dci,k Communication distance between the sensor

and the UAV.
gt Channel power gain.
β0 Channel gain.
τ Additional attenuation factor.
θ Elevation angle.
PLoS
i,k (θ) LoS probability.

c, d Parameters of the propagation environment.
Ri,k Throughput between the sensor and UAV.
ĝt Random variable for small-scale fading.
P t Transmission power.
W Bandwidth.
σ2 Noise power.
Ŕi,k Approximate throughput.
Dk Data amount.
Pc Communication-related power consumption.
T i,k Transmit time.
Th
i,k UAV hovering time.

K Limitation number of sensors administered by
the UAV.

Eh
i UAV hovering energy consumption.

Pu UAV power consumption under average wind
speed.

VU UAV airspeed.
EU UAV energy consumption in data collection.
FDL Maximum travelling distance limitation of the

UAV.
HTL Hovering time limitation of the UAV.
EB Boat energy consumption in data collection.
VB Speed of boat.
PB Power consumption of boat.
N Maximum number of trips.
dpm,l Distance between the two boat waypoints.
dpi,j Distance between the two hovering positions.
EUh Total UAV hovering energy consumption.
EUt Total UAV traveling energy consumption.

C. VARIABLES
GB Boat-planning graph.
B The set of routes between any two boat waypoints.

ηm,l boat moves from the mth waypoint to the lth way-
point.

GU Complete UAV-planning graph.
U The set of routes between any two boat waypoints.

ξ i,n UAV collects data at hovering position vm,i in nth
trip.

ς i,j,n UAV flies from the hovering position vm,i to the
hovering position vm,j in nth trip.

U i,k Binary variable for deciding the attribution.

I. INTRODUCTION
Deploying offshore wind turbines into the ocean undoubt-
edly has various effects on the marine environment, such as
changes in water quality, sediment transport, marine ecology,
and underwater noise [1]. As offshore wind resource devel-
opment gradually extends to wide deep-sea areas [2], these
impacts and the collection of related scientific exploration
data of nuclear-polluted (or influenced/unknown) marine
environments are increasing. Recent reports have shown
that radioactive wastewater discharge into the environment
remains a major concern for governments, researchers, and
society [3], [4]. In the past decade, there have also been
reports on the design of nanosensors for fissile materials
in nuclear wastewater [5]. To acquire this scientific data,
scholars have begun to apply ocean monitoring networks
(OMNs) to collect related oceanic sensor data [6], [7]. The
use of unmanned aerial vehicles (UAVs) to assist with data
collection has become a popular research topic. In [7] and
[8], Liu et al. regarded UAVs as data mules that collect data
from underwater sensor nodes (USNs) via sea-surface sink
nodes (SNs) within the OMNs framework. However, owing
to the limitations of UAV batteries, UAV cannot hover or fly
for extended periods [9]. Therefore, that UAV collects data
from wide waters, especially from large-scale SNs in a wide
deep sea is hard. However, battery charging stations for UAVs
in a wide deep sea, along with an effective UAV path planning
strategy to reduce the energy consumption of UAVs, are
necessary [10]. It appears that some fixed charging stations
are advisable. However, constructing and maintaining battery
change stations in a wide deep sea is costly and fixed stations
lack scalability and flexibility.

To address these limitations, inspired by a truck combined
with a UAV in solving the delivery problem [9], we pro-
pose a novel scheme that uses a boat to assist the UAV in
collecting sensor data from the large-scale sea surface sink
nodes (SNs). In this scheme, the boat is outfitted with UAV
battery-change stations, and can offer a takeoff and landing
location for the UAV. Although boats have many benefits
for UAV data collection, their energy consumption must be
considered. In addition, according to [9], using the truck to
combine with the UAV, the optimization objective should be
changed to the integrated costs of the truck and UAV. There-
fore, in this study, our objective was to optimize the total
energy consumption (TEC) of boats and UAV. This approach
adopts a comprehensive system design methodology in engi-
neering practice that minimizes the number of unknown
parameters [11]. The main contributions of this study are as
follows.

• We propose a new boat-assisted UAV scheme for
collecting large-scale offshore sensor data. This
scheme enhances the scalability and flexibility of data
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collection, particularly in the broader offshore and deep-
sea regions.

• Wind conditions must be considered to reduce the
energy consumption of the UAV. Therefore, we devel-
oped a new UAV hovering model and novel data
collection and communication model.

• We formulated the total energy consumption problem of
boats and UAV as a new special distance-constrained
capacitated vehicle routing problem (DCVRP), aiming
to minimize the TEC of both boats and UAV.

• To address the new DCVRP, we employed a new
advanced heuristic algorithm, the Lin-Kernighan heuris-
tic 3.0 (LKH-3), along with two other algorithms. This
combination enhances the optimization capability of the
proposed algorithm.

• By applying a mixed set of algorithms, we optimized
the TEC of the data collection process, resulting in a
significantly improved energy efficiency.

The remainder of this paper is organized as follows.
Section II presents related research. Section III illustrates the
system model, UAV hovering model, UAV data-collection
model, problem formulation, solution method, and algorithm
design. Section IV provides numerical simulation results,
analysis, discussion, and performance evaluation. Section V
provides concluding remarks.

II. RELATED WORK
With the recent advancements in offshore wind power tech-
nology and its expansion into the deep sea, wind facilities
have gradually developed from nearby offshore locations
to deep-sea areas [2]. Therefore, the influence of facilities
on the deep sea, particularly the collection of related sci-
entific exploration data, should be considered. More impor-
tantly, radioactive wastewaterdischarge into the environment
remains a majorconcern for governments, researchers, and
society [3], [4]. To collect these scientific data, UAVs have
been utilized as data mules between SNs and ground base sta-
tions (GBS) [7]. This benefits from their flexible networking
configurations and freedom from geographical restrictions
[12]. However, the battery energy of UAV limits the hovering
time and flying range during data collection. For the battery
limitation challenge, the research [9] on the delivery data
problem by UAV mentioned that the truck can be combined
with the UAV, so the UAV can extend its flight range. In [13],
Das proposed a scheme that combines drones and delivery
trucks to act as mobile launching and retrieval sites for UAV.
Ribeiro et al. [10] reported that UAV can be assisted by
mobile charging stations during search-and-rescue missions.
Obviously, in the deep sea area, the boat can also act as
the mobile charging station, launching and recovery sites for
drones, it is quite wonderful.

Using the boat instead of the truck as the mobile site for
the UAV, the integrated cost of the boat (or truck) should
be considered, including the time, traveling distance, and
energy consumption. For example, Li et al. [9] introduced

the two-echelon vehicle routing problem with time windows
and mobile satellites (2E-VRP-TM) to solve the challenges
they encountered. To address this challenge, they developed
an adaptive large-neighborhood search heuristic and used it
to effectively minimize the integrated costs. For an optimal
delivery route, Das et al. [13] formulated a vehicle rout-
ing problem with time windows (VRPTW), similar to the
job scheduling problem in their mechanism. To solve this
problem, they proposed the collaborative Pareto ant colony
algorithm (P-ACO). The proposed mechanism is an effi-
cient solution for reducing integrated costs in parcel delivery
logistics. Ribeiro et al. [10] presented a modified version of
the vehicle routing problem (VRP) to address the combined
utilization of UAVs and mobile charging stations. Using
the construct-and-adjust heuristic method integrated with a
genetic algorithm (GA), they offered an appealing planning
approach to enhance the efficiency and speed of responses in
search and rescue missions.

Considering the information presented in the aforemen-
tioned articles, it can be concluded that the heuristic algorithm
is a suitable approach for addressing VRP and their variants.
Consequently, for the distance-constrained capacitated vehi-
cle routing problem (DCVRP) [14], which is another variant
of VRP, the heuristic algorithm can also serve as an appro-
priate solution method. However, unlike the VRP, which is
known to be NP-hard, the DCVRP is considered stronger
NP-hard [14]. Therefore, it is essential to consider an
improved heuristic algorithm with enhanced optimization
capabilities. The LKH-3 algorithm is a well-suited heuris-
tic algorithm for effectively addressing strongly NP-hard
problems [15]. It was developed by Helsgaun based on the
Lin-Kernighan heuristic (LKH) and the LKH did effective
in the traveling salesman problem (TSP) [16]. LKH uses a
1-tree to define the alpha measure to determine the optimal
solution. LKH-3 uses penalty functions to address these con-
straints. In contrast to LKH, the constraints are handled by the
penalty functions in LKH-3. Meanwhile, to solve the VRP,
in addition to GA and LKH-3, there are other state-of-the-
art methods, including simulated annealing (SA) [17], [18],
particle swarm optimization (PSO) [18], Tabu search (TS)
algorithm [17], and graph attention neural network (GANN)
[19]. However, GA is good at finding the optimal global
solution, and it is difficult to find the optimal local solution.
SA has a good local search ability, but it is difficult to find an
optimal global solution. PSO has poor local search capability
and its search accuracy is not sufficiently high. The TS is
weak in determining the optimal global solution. Compared
with the above algorithm, LKH-3 has a strong local search
capability and global optimization ability. GANN also has
a strong capability for local and global searches. However,
the search solution ability of LKH-3 is slightly stronger than
that of GANN. The disadvantage of LKH-3 is that its time
complexity is higher than that of the GANN.

Wind speed also plays a crucial role in planning UAVs
paths for ocean data collection [20]. Although the wind speed
can vary over time [21], both on land and at sea, it is often
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assumed to be constant when creating UAV flight paths [20],
[22], [23] or during hovering. The adoption of the aver-
age wind speed in these studies is reasonable because data
collection is typically avoided under strong-wind and heavy-
rain conditions to prevent UAV accidents. However, during
the data collection process, UAV may encounter random
variations in wind speed, such as large, medium, or small
changes; different wind directions; or even no wind. In such
cases, obtaining the average wind value during UAV flight
and hovering is a suitable approach to data collection.

According to the delivery problem, customer positions are
key elements in path planning. In our research on large-scale
SNs data collection, the UAV data-collection position was
similar to the customer position. Therefore, it is impor-
tant to determine its position. For example, Huang et al.
[12] studied a UAV-assisted internet of things (IoT) data-
collection system. To minimize system energy consumption,
they exploited heuristic evolutionary algorithms to solve the
UAV deployment position problem. Xu et al. [24] addressed
the issue of unreasonable distribution of UAV data collection
positions because it results in a high TEC for IoT systems.
They utilized a differential evolution algorithm with variable
population sizes based on a mutation strategy pool initial-
ized by the K-means clustering algorithm to minimize the
energy consumption of the system during data transmission
by optimizing the UAV positions. The K-means clustering
algorithm is a method based on the Euclidean distance, where
neighborhood points are gathered together as much as pos-
sible, and the non-neighborhood points are separated as far
as possible. Therefore, this is a better algorithm for solving
theminimum communication distance betweenUAV and IOT
devices. Reference [24] reported that the shorter the dis-
tance, the smaller the energy consumption of communication.
Meanwhile, to optimize the energy consumption of commu-
nication between the UAV and IOT device, another algorithm
can be chosen, that is, the smallest enclosed circle (SEC)
algorithm, which finds the minimum circle from multiple
scatters to cover these scatters. The radius of the minimum
circle is the minimum communication distance between the
UAV and the IOT devices.

III. SYSTEM MODELS AND METHODS
A. SYSTEM MODELS
An example scenario for the data collection of large-scale
sea surface sensors using a boat-assisted UAV is shown
in Figure 1. The waypoint of the boat is indicated by
vm,0 = [xm, ym], vm,0∈8, m≤M,M boat waypoints are in
set 8. The UAV hovering position is denoted by vm,i =

[xi, yi],vm,i∈L, i̸=0,i≤I . There are I hovering positions of the
UAV in set L. Let the average altitude of the UAV commu-
nication state be Hi, meanwhile be at the hovering position
vm,i. The horizontal location of the wireless sensor is denoted
as qk = [xk , yk ],qk∈3, where 3 denotes the set of sensors.

1) THE UAV HOVERING MODEL
When the maritime UAV collects data, it encounters ran-
dom wind speed at any hovering position vm,i. As shown in

Figure 2, we consider a UAV hovering model. The thrust Tϕ

of a UAV is expressed as

Tϕ cosα = mg, (1)

where α is the tilt angle between the vector of Tϕ and the
inverse direction vector ofmg, which is theweight of theUAV
using Newton as a unit. The α can be obtained from [25]

α = arctan
(
w2/µ

)
, (2)

where w is the wind speed and µ is an empirically deter-
mined coefficient [25]. Therefore, the relationship between
the thrust Tϕ and wind speed w is expressed as

Tϕ = mg/cos
(
arctan

(
w2/µ

))
. (3)

Because the wind speed change with altitude, at a hovering
position vm,i, we have

w(Hi) = w0(Hi/h0)
δ , (4)

where w0 is the basic wind speed, h0 is the basic altitude,
and δ is Earth’s surface friction coefficient. Therefore, the
hovering power consumption Ph(w) of the UAV using Watt
(W) as a unit is decomposed as [25], [26]{

Ph (w(Hi)) = ϑρs�3 3

8
+ (1+ γ ) Tϕ (Hi)3/2/

√
2ρ

Tϕ (Hi) = mg/cos
(
arctan

(
w(Hi)2/µ

))
,

(5)

where � is the blade angular velocity, is the rotor radius, γ
is the incremental correction factor to the induced power, and
d0,ρ, and s present the fuselage drag ratio, the air density, and
the rotor solidity, respectively. stands for the rotor disc area.
ϑ indicates the profile drag coefficient.

2) THE UAV DATA COLLECTION MODEL
A wireless communication model used for the rotary-wing
UAV collecting sensor data is shown in Figure 3 (each deep
blue area in Figure 1). The plane distance between the sensor
and UAV is dpi,k =

∣∣∣∣vm,i − qk
∣∣∣∣ , qk∈3. The communica-

tion distance between the sensor and UAV is expressed as

dci,k =

√
Hi2 +

(
dpi,k

)2
, qk∈3. The path loss is proportional

to the communication distance but inversely proportional to
the channel power gain [17]. For sensor-UAV links, large-
scale attenuation is usually modeled as a random variable
depending on the occurrence probabilities of the line-of-sight
(LoS) links and non-line-of-sight (NLoS) links [26], [27].
Thus, based on [17], [26], and [27], especially considering the
interference-free scenario (rural and suburban) [28] or even
the sea environment, the channel power gain is given as gt,
which can be written as

gt =

{
β0

(
dci,k

)−2
, LoS link,

τβ0
(
dci,k

)−2
, NLoS link,

(6)

where β0 is the channel gain at a reference distance and that
τ < 1 is the additional attenuation factor owing to the NLoS
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FIGURE 1. The example scenario for boat-assisted unmanned vehicle
aircraft (UAV) collecting sensor data on the ocean environment.

condition. The probability that occurs in the LoS propagation
group depends on the propagation environment and eleva-
tion angle θ . Therefore, the LoS probability is denoted as
PLoSi,k (θ), which can be expressed in the following form [28]
and [29],

PLoSi,k (θ) = 1/(1+cexp(−d[θ−c])) , (7)

where c and d are related directly to the propagation envi-
ronment. θ indicates the elevation angle related to the UAV
average communication altitude Hi and the plane distance
dpi,k , that is, θ = arctan

(
Hi/d

p
i,k

)
.Usually, considering only

the locations of the UAVs and devices, it is difficult to deter-
mine exactly which path loss type (LoS/NLoS) is experienced
by the device-UAV link [30]. Therefore, by averaging over
the randomness of both LoS and NLoS links [17], [30], the
expected channel power gain can be calculated as

E [gt]i,k = PLoSi,k (θ) β0
(
dci,k

)−2
+

(
1− PLoSi,k (θ)

)
τβ0

(
dci,k

)−2
. (8)

In a time-division multiple access (TDMA) system, Ri,k
denote the throughput between the sensor andUAV. Similar to
the methods in [26], for throughput calculation using Jensen’s
inequality, the expected communication throughput can be
expressed as

E
[
Ri,k

]
= E

[
W log2 (1+ Ptgtĝt/σ 2)

]
,

≤Ŕi,k = W log2 (1+ PtE[gt]i,k/σ 2) , (9)

where ĝt is a random variable, and E
[
ĝt

]
= 1 accounts

for small-scale fading [26], [28]. Ŕi,k is the approximate
throughput for E

[
Ri,k

]
[26], Pt is the transmission power,

W is the bandwidth, and σ 2 is the noise power. Similar to
[24], we assume that the kth sensor has a Dk amount of data
sent to the UAV, and the time required to transmit the data
from the kth sensor to the UAV at the hovering position vm,i
is calculated by

Ti,k = Dk/Ŕi,k , (10)

where i ∈ I , qk ∈ 3.

Each sensor can only send data to one UAV, and because of
the system bandwidth limitations of themultiplexingmeasure

FIGURE 2. An unmanned vehicle aircraft (UAV) hovering energy
consumption model with wind condition.

FIGURE 3. The unmanned vehicle aircraft (UAV) sensor data collection
model for the ocean environment.

used in [24], each UAV can only simultaneously receive
data from up to K sensors. Thus, according to the number
of hovering positions, the sensor set 3 can be divided into
I subsets {31, · · ·, 3i· · ·, 3I } . The sensor‘s amount of any
subset in these subsets is not more than K . At the hovering
position vm,i, the UAV needs to hover above the sensor subset
3i for a duration because the UAV must entirely collect all
sensors‘ data in the subset 3i.

So, the UAV hovering time at the hovering position vm,i is
as

T h
i,k = max

i∈I

{
Ti,1, · · ·, Ti,k , · · ·

}
, (11)

where qk ∈ 3i, k ≤ K .

The hovering energy consumption of the UAV at the ith
hovering position is expressed as

Eh
i = Ph (w(Hi))T h

i,k , (12)

where i ∈ I , qk ∈ 3i.

Let Pc denote communication-related power consumption;
then, the hovering energy consumption of the UAV can be
rewritten as

Eh
i = (Ph (w(Hi))+ Pc)T h

i,k , (13)

where i ∈ I , qk ∈ 3i.

B. PROBLEM FORMULATION
In the process of collecting large-scale amounts of sensor data
and optimizing the total energy consumption of the UAV and
boat, routes were planned for both the UAV and boat. Figure 1
illustrates the planned route for the boat, which is represented
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by the red line. There were multiple waypoints along this
route. Each boat waypoint corresponds to a partitioned sub-
region for data collection, as depicted by the blue areas.

When collecting data in each subregion, the UAV must
performmultiple circular collection paths, as indicated by the
green dotted-line loop. This circular collection process was
repeated several times within a subregion to complete the data
collection task considering the limited energy resources of the
UAV. Subsequently, the UAV was transported by boat to the
next sub-region for further data collection. It is important to
note that each boat waypoint serves as a takeoff and landing
location for UAV.

We first process the minimization problem of the boat’s
energy consumption (EB) and the UAV’s energy consumption
(EU), and then conveniently optimize the boat and UAV’s
TEC. We define a complete boat-planning graph GB ={
8, B

}
, then 8 and B denote the set of boat waypoints and

set of routes between any two boat waypoints, respectively.
The distance between the two waypoints is expressed as
dpm,l =

∣∣∣∣vm,0 − vl,0
∣∣∣∣ , vm,0, vl,0∈8. We use a binary variable

η to denote the routes in B. ηm,l = 1 when the boat moves
from themth waypoint to the lth waypoint. Otherwise, ηm,l =

0. The boat visited each waypoint once. Let VB and PB denote
the velocity and power consumption of the boat, respectively.
We have minimization problem 1 regarding the boat’s energy
consumption (EB)

(Problem 1)

min EB =
∑|8|

m=0

∑|8|

l=0
dpm,lηm,lPB/VB, (14)

Subject to∑|8|

l=1,l ̸=0
η0,l = 1,

∑|8|

l=1,l ̸=0
ηl,0 = 1, (14a)∑|8|

m=0,l ̸=m
ηm,l = 1,

∑|8|

l=0,l ̸=m
ηl,m = 1, (14b)∑

m∈SB

∑
l∈SB

ηm,l≤ |SB| − 1,

∀SB⊂F, 2≤ |SB| ≤ |8| − 1, (14c)

where SB denotes a subset of8. (14a) indicates that the boats’
starting and ending places are both waypoints v0,0. (14b)
ensures that only one path exists between the mth and the
lth boat waypoint. (14c) states that only one trip (red line in
Figure 1) occurs in boat waypoint set 8.
Because the boat waypoint (vm,0) is the UAV takeoff and

landing location, the quantity and distribution of boat way-
points influence the energy consumption of the boat and
UAV. Therefore, we partition the hovering position set L
into M subsets {L1, · · ·,Lm, · · ·,LM } , and define a com-
plete UAV-planning graph GU

=
{
{vm,0,Lm}, U

}
, where

Lm =
{
vm,1, · · ·, vm,i, · · ·, vm,j

}
. The UAV visits each hov-

ering position only once, and the hovering time is T h
i,k .

We define a binary variable as ξ , when the UAV collects
data at hovering position vm,i in nth trip, ξi,n=1. Otherwise,
ξi,n = 0. The maximum number of trips is N . Regard the boat
waypoint vm,0 as a hovering position (T h

0,k = 0) and insert it
into the Lm(i.e., Lm =

{
vm,0, vm,1, · · ·, vm,i, · · ·, vm,j

}
), the

distance between the two hovering positions is expressed as
dpi,j =

∣∣∣∣vm,i − vm,j
∣∣∣∣. U is a set of routes between any two

boat waypoints. ςi,j,n = 1 when the UAV flies from hovering
position vm,i to hovering position vm,j in nth trip. Otherwise,
ςi,j,n = 0. The UAV takes off from vm,0, and before the
battery energy drains, it returns to vm,0. Because of the bat-
tery energy limitation, the UAV’s maximum hovering time
and longest flight distance are HTL and FDL , respectively.
According to [20], to calculate the flight energy consump-
tion, let VU and Pu denote the airspeed of the UAV and the
power consumption under average wind speed, respectively.
To optimize the total energy consumption of the UAV (EU),
we have Problem 2

(Problem 2)

minEU = Pu
∑M

m=1

∑N

n=1

∑|Lm|
i=0

∑|Lm|
j=0

dpi,jςi,j,n/VU

+

∑M

m=1

∑N

n=1

∑|Lm|
i=0

Eh
i ξi,n, (15)

Subject to∑|Lm|
i=0

T h
i,kξi,n≤HTL , n = 1, · · ·,N , (15a)∑|Lm|

i=0

∑|Lm|
j=0

di,jςi,j,n≤FDL , n = 1, · · ·,N , (15b)∑N

n=1
ξi,n =

{
1, i = 1, · · ·, |Lm|
N , i = 0,

(15c)

∑|Lm|
i=0

ςi,j,n = ξi,n, j = 1, · · ·, |Lm| , (15d)∑|Lm|
j=0

ςi,j,n = ξi,n, i = 1, · · ·, |Lm| , (15e)

where the two terms in (15) represent the total flight and
hovering energy consumptions, respectively. (15a) and (15b)
are the two constraints of the UAV in one data collection
trip. During the entire data collection, (15c), (15d), and (15e)
ensured that each hovering position was visited by the UAV
only once.

In summary, the total energy consumption for boat-assisted
UAV data collection under the newly developed DCVRP is
expressed as

min
vm,0,vl,0∈F,vm,i,vm,j∈L

EB + EU. (16)

Based on the energy consumption of the boat and the energy
consumption composition in Equation (16), it is crucial to
determine the waypoint of the boat.

C. METHOD OF SOLVING PROBLEM
To solve (16), it is decomposed into four subproblems, as
follows:

1) MINIMIZING THE UAV COLLECTION TIME FOR THE
SUBSET DATA
With respect to sensor subset 3i is concerned, according to
(11), there is a maximum data collection time T h

i,k and a
corresponding hovering position vi in each subset. The UAV
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must hover at position vi for duration T h
i,k . Therefore, the

minimum hovering time problem is expressed as
(Problem 3)

min
i∈I ,k∈3i

max
{
Ti,1, · · ·, Ti,k , · · ·

}
. (17)

So, to solve Problem 3, we have Proposition 1:
Proposition 1:
If a minimum exists in the T h

i,k , i∈I , k∈3i, it is the only
minimum of the function in T h

i,k .
Proof:According to the theory of the smallest enclosing

circle, a final minimum enclosing circle has two properties:
one is the circle being unique and the other is that the circle
has only two cases:1. There are at least three points on the
circle and the circle is restricted by three points (three points
of the co-circle). 2. If there are only two points on the circle,
it must have a line joining the two points as the diameter.
Therefore, the radius of the final minimum enclosing circle
is unique. In 3i, when the center of the circle is used as a sea
surface point corresponding to the UAV hovering position, its
radius is certainly the minimum plane distance dpi,k between
the wireless sensor location and point (Figure 3).

According to (9), (10), and dci,k =

√
Hi2 +

(
dpi,k

)2
,

we have

Ti,k = Dk/Ŕi,k (d
p
i,k ) , (18)

where the throughput Ŕi,k (d
p
i,k ) is a function of d

p
i,k . Function

is an increasing function of dpi,k . Thus, the Ti,k have unique
minima.

2) MINIMIZING THE TOTAL UAV HOVERING ENERGY
CONSUMPTION
Based on Problem 3, considering the relationship between the
minimum plane distance dpi,k and the minimization problem
of the total hovering energy consumption, this problem can
be expressed as

(Problem 4)

min
i∈I ,k∈3i⊂3

EUh = min
∑M

m=1

∑N

n=1

∑|Lm|
i=0

Eh
i ξi,n,

(19)

Subject to

|3i| ≤K , (19a)

where (19a) indicates that each UAV can only receive data
from up to K sensors simultaneously.

According to (13) and (18), Eh
i is related to the plane dis-

tance dpi,k between the center of the circle and the sensor in3i,

that is, Eh
i =

(Ph(w(Hi))+Pc)Dk
Ŕi,k (d

p
i,k )

. The function Eh
i = f

(
dpi,k

)
,

it is defined as a strictly monotonically increasing function.
Thus, Problem 3 is simplified to the problem of the minimum
sum of communication distances. Euclidean distance (i.e.,
dpi,k =

∣∣∣∣vm,i − qk
∣∣∣∣) was used as the judgment criterion.

Regarding the Euclidean distance, because using the distance

or square of the distance does not affect the judgment crite-
rion, the summation of the square of the distance was used as
the objective function. Thus, we have Problem 5

(Problem 5)

min
∑I

i∈I

∑3i

k∈3i
Ui,k

∣∣∣∣vm,i − qk
∣∣∣∣2, (20)

Subject to

Ui,k =
{
1, i = {i| argmin

∣∣∣∣vm,i − qk
∣∣∣∣},

0, otherwise,
(20a)

where constraint (20a) indicates that qk belongs to the nearest
center point vm,i (the UAV hovering position). Problem 5 was
a clustering problem. Based on Problem 5, Problem 4 can be
rewritten as

(Problem 4a)

min
∑I

i∈I

∑3i

k∈3i
Eh
i

(∣∣∣∣vm,i − qk
∣∣∣∣) , (21)

Subject to

|3i| ≤K , (21a)

Uk,i =
{
1, i = {i| argmin

∣∣∣∣vm,i − qk
∣∣∣∣},

0, otherwise,
(21b)

Thus, the K-means clustering algorithm and SEC
algorithm can be introduced to solve Problem 4a.

3) MINIMIZING THE TOTAL UAV TRAVELING ENERGY
CONSUMPTION
To minimize the total traveling energy consumption EUt of
the UAV during large-scale sensor data collection, the mini-
mum problem is expressed as

(Problem 6)

minEUt

= minPu
∑M

m=1

∑N

n=1

∑|Lm|
i=0

∑|Lm|
j=0

dpi,jςi,j,n/VU,

(22)

Subject to

(15a)− (15e).

Based on these constraints, Problem 6 was transformed into
a DCVRP. Thus, Problem 6 was NP-hard. The methods for
solving the DCVRP are diverse and can be used with any
heuristic algorithm as follows: LKH-3, GA, ACO, SA, and
PSO. Here, we use LKH-3 to find a promising DCVRP
solution to conveniently address Problem 6.

4) MINIMIZING THE BOAT TRAVELING ENERGY
CONSUMPTION
Problem 1 is a simple TSP problem (red line in Figure 1).
However, the size of Problem 1 increases with an increase in
the scale of set 8 in Figure 1.
To address the above problems, the following algorithms

were designed and applied.
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Algorithm 1 K-Means Clustering Algorithm
input: 3,M , I
output:

{
v1,1, · · · , vm,i, · · · , v1,I

}
, {31, · · · , 3I }

1. Initialize the cluster centers
{
v1,1, · · · , vm,i, · · · , v1,I

}
randomly;

2. while
{
v1,1, · · · , v1,i, · · · , v1,I

}
no more change

3. Decide qk belong to which vm,i by
∣∣∣∣vm,i − qk

∣∣∣∣2;
4. Update vm,i by vm,i =

∑3i
k∈3i

Uk,iqk/
∑3i

k∈3i
Uk,i;

5. end
6. Return the cluster centers {v1, · · ·, vI } and the subsets
{31, · · · , 3I }

D. ALGORITHM DESIGN FOR SOLVING PROBLEM
Based on Problems 1, 4a, and 6, we developed a new compre-
hensive algorithm based on the heuristic algorithm to solve
(16), that is, the mixed double K-means and Lin–Kernighan
heuristic algorithm (MDK-LKH). It includes the following
three algorithms: The Lin-Kernighan heuristic algorithm,
K-means clustering algorithm, and SEC algorithm [31]. In the
proposed algorithms, to solve the minimum total energy con-
sumption problem, it is crucial to obtain the optimal hovering
position of the UAV that is similar to the optimal position of
the boat waypoint. Therefore, we first determined the optimal
hovering position using the SEC and K-means algorithms.
LKH-3 is then introduced to solve Problem 6. LKH-3 is the
solver, and its details are provided in [15]. Finally, TEC was
addressed using MDK-LKH.

1) ALGORITHM 1: K-MEANS ALGORITHM
One of the methods used to find the hovering position of the
UAV in large-scale data collection is the K-means clustering
algorithm. Details of the K-means algorithm are presented
in Algorithm 1.

In Algorithm 1, first, according to the number of boat way-
points I , the cluster centers (hovering positions) are randomly
initialized according to the number of boat waypoints I . Then,
the initial cluster centers vm,i are used in the iteration, and they
are used to decide the attribution of the sensor. Subsequently,
the cluster centers are updated in Line 4. When the new
cluster centers are the same as the old ones, the iteration is
stopped.

2) ALGORITHM 2: SEC ALGORITHM
As discussed in Proposition 1, for each subset 3i, there is a
minimum UAV hovering time (T h

i,k ) for the data collection.
While the T h

i,k is related to the plane distance dpi,k and the
maximum number of sensors taken in charge via a UAV.
Thus, by calculating T h

i,k is transformed into looking for the
minimum circle plane covering the entire sensor of this circle,
and then the center of the circle (corresponding to the UAV
hovering position) is obtained. Therefore, the SEC algorithm
(Algorithm 2) is used to perform this task. The details are as
follows.

In Algorithm 2, first, to select, check and confirm any three
sensor locations {qk−2, qk−1, qk} in 3i, whether it forms a
minimum circle Ck that covers whole sensors. Otherwise,

Algorithm 2 SEC Algorithm
input: 3,K
output:

{
v1,1, · · · , v1,i, · · · , v1,I

}
1. for i= 1 to I
2. Select any three sensors

{
qk−2, qk−1, qk

}
3. Obtain the smallest circle C that covered these sensors
4. While qk+1 is outside the C
5. Update C by C +1 and qk+1
6. Update qk+1 by qk+2
7. end
8. Obtain v1,i from C .
9. end

another sensor location, qk+1 is selected for verification.
When the sensor location qk+1 is outside the minimum cir-
cle Ck , the minimum circle is updated to cover the sensor
locations {qk−2, qk−1, qk , qk+1} , and the next sensor loca-
tion qk+2 is selected to obtain the minimum circle again.
By using this iterative approach, the minimum circle covering
the entire sensor in 3i can be obtained. All centers of the
found minimum circles are used as the UAV corresponding
to hovering positions in air, and each circle radius acts as
the plane radius (dpi,k ) that corresponds to the communication

distance
(
dci,k

)
between the UAV and the sensor.

3) ALGORITHM 3: MDK-LKH DESIGN AND TIME
COMPLEXITY ANALYSIS
To solve the TEC under the new special DCVRP, that is, (16),
the designed MDK-LKH is exploited, and its details are as
follows:
• The UAV hovering positions were obtained using the
K-means clustering and SEC algorithms. Then, the set
(L) of hovering positions is split into multiple subsets,
Lm. The takeoff and landing locations of the UAV in
the subsets are the waypoints of the boat. These were
obtained using a K-means clustering algorithm.

• For each subset Lm, the UAV hovering energy con-
sumption in one subset was first obtained via the plane
distance dpi,k , and the total hovering energy consumption
was subsequently obtained (i.e., Problem 4a).

• For each subset Lm, via the plane distance dpi,j, under
the constraints of HTL and FDL , the summation of the
UAV traveling energy consumption in one subset is
obtained by LKH-3, and the total UAV traveling energy
consumption used for data collection is acquired (i.e.,
Problem 6).

• The TSP travel distance of the boat was obtained using
the LKH (Problem 1). Thus, the boat-traveling energy
consumption was also obtained.

• Finally, the TEC was obtained by minimizing the sum
of the boat-traveling energy consumption and the total
energy consumption of the UAV.

Thus, the detail is given in Algorithm 3.
For the K-means clustering algorithm, we assumed that

iter is the number of iterations. The time complexity of the
K-means Algorithm isO (2I |3| iter) in Line 1. Similarly, the
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Algorithm 3 Mixed Double K-Means and Lin-Kernighan
Heuristic Algorithm
input: 3,K , M
output: EB + EU
1. The optimal hovering positions in the set L are obtained by
K-means algorithm and SEC algorithm
2. The subsets {L1, · · · ,LM } are obtained by K-means algorithm
3. The boat waypoints

{
v1,0, · · · , vM ,0

}
are obtained by K-means

algorithm
4. for i = 1 to M
5. Obtain the minimum sum of UAV traveling distances∑N

n=1
∑|Lm|

i=0
∑|Lm|

j=0 dpi,jςi,j,n by LKH-3 with vm,0, Lm, HTL,
and FDL
6. Record

∑N
n=1

∑|Lm|
i=0

∑|Lm|
j=0 dpi,jςi,j,n

7. end
8. Obtain the minimum boat energy consumption EB of the boat by
the LKH
9. min EB + EU ← minPB

∑|8|
m=0

∑|8|
l=0 d

p
m,lηm,l/VB +

Pu
∑N

n=1
∑|Lm|

i=0
∑|Lm|

j=0 dpi,jςi,j,n/VU+
∑M

m=1
∑N

n=1
∑|Lm|

i=0 Eh
i ξi,n.

time complexity in Line 2 is O (2M |L| iter), where |L| = I .
According to [31], the time complexity of the SEC algorithm

is O
(
I lg md

Ra
|3i|

)
, where md is the shortest distance from a

circle-round outside point to the circumference of the circle.
Ra is the radius of the smallest enclosing circle obtained in
the last iteration.

In Problem 6, the time complexity of LKH-3 can be sim-
plified to O

(
|Lm|2

)
. Problem 1 is similar to Problem 6,

and the time complexity of the solution to Problem 1 is
O

(
M2

)
. In other words, LKH-3 must be run M times in

MDK-LKH. Based on the above discussion, the time com-
plexity of MDK-LKH is O (2I |3| iter) + O (2M |L| iter) +
O

(
I lg md

Ra
|3i|

)
+ O

(
|Lm|2

)
+ O

(
M2

)
.

IV. SIMULATION RESULTS, ANALYSIS, AND DISCUSSION
We used the numerical data in MATLAB 2020b for the sim-
ulations to evaluate the performance of the proposed scheme.
The experimental environment was an RTX 3060 GPU,
i7-11700 @ 2.50GHz. The parameter values and their
descriptions in the formulas related to (16) are presented in
Table 1. To simulate the offshore communication environ-
ment, we exploited the wireless communication parameters
referring to ocean environments [28], which are also listed
in Table 1. To simulate the UAV hovering energy consump-
tion system, we refer to the parameters and their physical
meanings in [20] and [26]. The drone flight energy con-
sumption and battery energy were obtained from [25]. The
boat parameters are described in [32]. To ensure the validity
of the simulation, the parameter settings were the same as
those in the original study. In the ocean, 2000 sensors were
deployed uniformly in an ocean plane region with 100 km2

size. Considering that the number of sensors in our scheme is
almost three times the maximum number of sensors in [24],
the limited number of sensors that one UAV is responsible
for collecting is set to 55, which is larger than the set of
sensors (30) in [24]. Therefore, in the ocean plane region

TABLE 1. Parameters and their values.

above, 70 UAV hovering positions (considering redundancy)
are obtained using the K-means and SEC algorithms. To
illustrate the performance of MDK-LKH, we compared it
with the following three algorithms:

• GANN [19]: A residual edge-graph attention (RE-GAT)
neural network (GANN) was used to optimize the TEC.

• OGAA: Using original GA algorithm [10] for optimiz-
ing the TEC.

• Boat-direct scheme (BS): A boat is used to carry a UAV
directly to each hovering position on the TSP route. The
route was optimized using the tabu search algorithm
[17].

The simulation results are the average values of
20 instances, which are analyzed and discussed as follows.

The changes in TEC under different numbers of boat way-
points are shown in Figure 4. TEC increased with an increase
in the number of boat waypoints in the three schemes (our
scheme, GANN, and OGAA). When there were three boat
waypoints, the TECs of the three schemes had the smallest
values among the waypoint number changes. When the num-
ber of boat waypoints was three to ten, our scheme exhibited
the smallest TEC among the three or even four schemes.
In particular, the TEC was the smallest when the number of
boat waypoints was three.

For the changes in the TEC with the boat waypoint num-
ber, the algorithms and their planning were the main factors
affecting the TEC by observing and comparing the three
schemes with the BS scheme. The MDK-LKH and its plan-
ning resulted in the smallest TEC for the proposed scheme.
In here (Figure 4), the boat-waypoint quantity is related to
TEC. Compared with our scheme, the BS always requires
70 boat waypoints to collect data in the ocean data collection
area. Therefore, the TEC was the highest. However, although
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FIGURE 4. Comparison of the total energy consumption of drone and
boat for the four schemes under different number of boat waypoints.

FIGURE 5. Variation in the total energy consumption of drone and boat
with the data amount of the ocean environment under the four schemes.

FIGURE 6. In four schemes, changes of the total data collection time of
boat-assisted drone with the different data amount of the ocean
environment.

GANN and OGAA have the same number of boat waypoints
as our scheme, the TEC of our schemewas the smallest. In the
course of optimizing the boat waypoint/hovering point and
routes of boats and UAV, our scheme has a strong search
capability for local and global solutions. When the number of
boat waypoints is three, the TEC in our scheme is 0.03×108 J,
0.04×108 J, and 12.09×108 J less than that of the GANN,
OGAA, and BS, respectively.

FIGURE 7. Comparing the total energy consumption of drone and boat
under different sensor amount of the ocean environment in the four
schemes.

TABLE 2. Summarize results.

Figure 5 shows the TEC variations for the four schemes.
In our scheme, as the amount of data increases, the TEC
first decreases, then increases, and then decreases again.
This trend was also observed for the other two algorithms
(OGAA and GANN). The TEC of BS increased slightly with
an increase in the amount of data. By observing the energy
consumption composition in Eq. (16) and the energy changes
in Figure 4, we know that the use of the number of boat way-
points can impact the TEC in the course of data collection.
Moreover, boat waypoint position also influenced TEC. With
the advanced optimization capability of MDK-LKH, it has a
higher capability of finding and optimizing boat waypoints.
Therefore, our scheme always had the lowest TEC among the
four schemes in the process of increasing the amount of data.

Figure 6 shows the changes in the total data collection
time (Tt) with the amount of data for the four schemes.
Tt increased with an increase in the amount of data, which
is reasonable. However, Figures 6 and 5 show that although
the sum Tt of the data collection time increases with an
increase in the amount of data (Figure 6), the TEC only
slightly (or not) increases with an increase in the amount of
data (Figure 5). This is because the impact of the number
of waypoint positions on TEC is greater than the influence
of the amount of data. Owing to the excellent capability of
MDK-LKH to search for local and global solutions, Tt in
our scheme is the least, showing the performance of saving
collection time.

We also investigated the TEC for different numbers of
sensors using four schemes. Figure 7 shows that TEC is
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FIGURE 8. In five algorithms, changes in the total energy consumption of
drone and boat with the different earth surface friction coefficient.

approximately proportional to the number of sensors. The
TEC is larger because more sensors have data to collect.
Under the same conditions, the TEC in our scheme was lower
than that of the other three schemes. With respect to the
minimum TEC, these differences became more noticeable as
the number of sensors increased. In particular, for the data
collection of 4000 sensors, the TEC of our scheme is only
1/4 of that of the BS scheme. This is because the LKH has
a strong capability to search for local and global solutions.
Therefore, our scheme can optimize the TEC of boats and
UAV to the greatest extent, and the greater the number of
sensors, the greater is the extent.

To fully assess the performance of MDK-LKH, we intro-
duced two heuristic algorithms (PSO and SA) and improved
them to form improved PSO algorithm (IPSOA) [18] and
SA algorithm (ISAA) [17], respectively. We further stud-
ied the TEC under different Earth surface friction coeffi-
cients using the five algorithms. Figure 8 shows that the
TECs is proportional to the earth’s surface friction coef-
ficient in the five algorithms. This is reasonable because
the UAV energy consumption for data collection increases
with an increase in Earth’s surface friction coefficient. For
all the coefficient conditions, MDK-LKH had the low-
est TEC among the five algorithms. For example, when
δ = 0.1, the TEC in MDK-LKH is 0.5×106 J, 3.9×106J,
15.4×106 J, and 16.4×106 J less than that of GANN, OGAA,
ISAA, and IPSOA, respectively. These results again indi-
cate that MDK-LKH does not exhibit poor optimization
characteristics.

Finally, we reviewed the total energy consumption
and collection time. First, whether it is Figure 4 or
Figures 5, 7, and 8, the TEC consists of four sections, i.e.,
which be produced in boat sailing, next, drone flying, hov-
ering, and communicating. The TEC of Figure 4 is more
representative than other figures on the total energy con-
sumption because it involves the optimization of the boat
waypoint/hovering point and the routes of boats and UAV.
The four Figures show that, compared with others, our
scheme does not perform poorly on the numerical values of
the simulation results for four aspects: the number of boat
waypoints, data amount, number of sensors, and earth surface

friction coefficient. Second, Figure 6 shows a comparison of
the numerical values of the simulation results of the total data
collection time for the four schemes, and also shows that our
scheme performs better. A conclusion showing the relatively
advanced results is presented in Table 2.

V. CONCLUSION
To address the limitations of the existing scheme, this
study proposes a new, time-saving, flexible, and scalable
boat-supported UAV data collection scheme that aims to min-
imize the TEC of boats and UAV during large-scale marine
sensor data collection. For this, under two constraints, a new
drone hovering model, data collection and related wireless
communication model are proposed, and boat and UAV route
planning and their energy consumption are considered. This
is followed by the formulation of theminimization TEC prob-
lem as a new special DCVRP, which is a strongly NP-hard
problem. The problem is then divided into four subprob-
lems: minimizing the sensor data collection time of the UAV,
total UAV hovering energy consumption, total UAV traveling
energy consumption, and boat traveling energy consumption.
Therefore, this problem can be solved using the proposed
MDK–KH method. The K-means algorithm was used to
determine the UAV hovering positions and optimize them
using the SEC algorithm. Boat waypoints are obtained using
the K-means algorithm based on the hovering position. The
UAV and boat routes were optimized using LKH based on the
hovering positions and boat waypoints. Compared to state-
of-the-art methods (GANN, OGAA, ISAA, IPSOA, and BS),
the simulation results demonstrate that the proposed scheme
and algorithms are capable of realizing the minimum TEC
and provide time saving, scalability, and flexibility, that is,
reducing the integrated cost. Under the background of the
environment protection, energy saving and emission reduc-
tion idea, compared to the small-scale sensor data collection
and fixed UAV charge station, our scheme can serve as a
valuable reference for collecting large amounts of data from
marine sensors deployed in wide and deep seas. The UAV
collection of sensor data will be researched in a wider and
deeper sea, and improving the security of the uploaded data
by reducing the eavesdropping of uploaded information will
be a future research direction.
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