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ABSTRACT Permanent Magnet Synchronous Motors (PMSMs) are employed in various high-precision
industrial applications. However, the torque ripple caused by nonideal factors, such as cogging torque, flux
harmonics, and unbalanced stator phase currents diminishes motor performance. Therefore, torque ripple
minimization is an important key in designing high-performance controllers for PMSMs. In this paper,
an explicit model predictive speed control (EMPSC) is proposed as an advanced strategy for torque ripple
minimization. First, the torque ripple is modeled as a periodic disturbance in the speed model. Subsequently,
a Lyapunov-based periodic disturbance observer (PDOB) is designed to fast and accurately estimate the
torque ripple. The EMPSC updates the estimated disturbance into the prediction model and minimizes the
cost function to obtain the optimal control signal. This control signal effectively mitigates torque ripple while
enhancing dynamic response performance. Furthermore, this paper introduces an explicit process aimed
at significantly reducing the complexity and computational effort of the entire control scheme. Lastly, the
simulation and experimental results are presented to demonstrate the effectiveness of the proposed method.

INDEX TERMS Torque ripple minimization, periodic disturbance observer, explicit model predictive
control, permanent magnet synchronous motor (PMSM).

I. INTRODUCTION
Over the past few decades, permanent magnet synchronous
motors (PMSMs) have been widely applied in various motion
control applications, especially in high-precision fields such
as industrial robots, medical instruments, and automotive
systems, due to the advantages of a high torque-to-inertia
ratio, high power density, and high efficiency [1].
However, the existence of parasitic torque ripple remains

a significant disadvantage in PMSM drives. The torque
ripple can generate periodic speed oscillations, especially in
the low-speed range, thereby degrading the speed-tracking
performance. Additionally, periodic speed oscillation also
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causes mechanical vibrations and reduces the lifetime of the
motor system.

Generally, the torque ripple in PMSM is usually caused
by two main sources. The first source arises from the motor
structure, which includes cogging torque and flux harmonics.
The second source comes from the drive controller, such
as dead time effect, unbalanced stator phase, and current
measurement errors. Over the past two decades, researchers
have proposed various techniques for minimizing torque
ripple, which can be categorized into two approaches. The
first approach aims to optimize and develop the motor
structure to eliminate torque ripple parasitism. In [2],
[3], and [4], several advanced motor structure designs are
proposed, such as improvements in winding distribution and
skewing of stator lamination slots. These design innovations
can achieve good control performance with a significant

VOLUME 11, 2023

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 134199

https://orcid.org/0000-0002-2775-2937
https://orcid.org/0000-0003-0037-112X
https://orcid.org/0000-0002-1611-3910


T. T. Nguyen et al.: EMPSC for PMSM With Torque Ripple Minimization

reduction in torque ripple. However, these enhanced struc-
tures require special designs and involve a complex man-
ufacturing process. As a result, the cost of the motor
increases.

The second approach, presented in [5], [6], [7], [8],
[9], [10], [11], and [12], focuses on designing advanced
control techniques to mitigate the influence of torque ripple.
In [5], a Lagrange multiplier-based method is introduced to
calculate the optimal stator current that minimizes torque
ripple. Additionally, a genetic algorithm [6] and an artificial
neural network-based method [7] are also presented to
determine the optimal current control signal that minimizes
torque ripple. The results obtained in [6] and [7] illustrate
the effectiveness of torque ripple minimization. However,
these methods have disadvantages in terms of computational
burden and complex implementation. In [8] and [9], various
proportional-integral resonant (PIR) control strategies have
been proposed to reduce torque ripple by mitigating periodic
disturbances, including back EMF harmonics and dead time
effect in the current loop, as well as cogging torque and
current measurement errors in the speed loop. However,
the resonant term is designed for a particular perturbation
frequency. Consequently, when facing significant frequency
disturbances, the effectiveness of PIR control in minimizing
torque ripple may be compromised. A fuzzy logic control
has been proposed in [10] to address the torque ripple of
PMSM in the presence of parameter mismatches. However,
the effectiveness of these fuzzy controllers depends on
expert knowledge and an extensive tuning process to achieve
effective torque ripple minimization performance. In [11] and
[12], iterative learning control (ILC) techniques have also
been proposed to mitigate torque ripple by compensating
for periodic disturbances. However, a drawback of the
ILC method is its sensitivity to system uncertainties and
variations.

In recent years, model predictive control (MPC) has
attracted much research attention due to its fast dynamic
performance and ability to handle constraints [13], [14], [15],
[16], [17], [18], [19]. For motor systems, numerous control
algorithms based on MPC have been proposed to reduce the
torque ripple of PMSM, such as quantized searching [20] and
duty-cycle control [21], [22], [23]. In [24], a cascade MPC
control structure with a sinusoidal disturbance compensator
is proposed to reduce the torque ripple caused by the
current sensor offset errors. However, the torque ripple
model in [24] addresses a specific source of torque ripple,
whereas in PMSMs, torque ripple is generally caused by
multiple sources concurrently. Moreover, the load torque
disturbance is not considered. In [25] theMPC combinedwith
repetitive control (RC) is introduced to reduce the influence
of both parameter mismatches and torque ripple. However,
similar to PIR-based methods, repetitive control becomes
complex when dealing with multiple frequency disturbances.
In [26], an FCS-MPC scheme with a state observer and a
feed-forward compensating signal is designed to minimize

the torque oscillations produced by the nonsinusoidal flux
linkage. However, as mentioned in [24], the FCS-MPC
requires a variable sampling frequency and possibly leads to
current ripples. In [27] and [28], the combination of an MPC
with an ILC has been introduced to estimate and suppress
the periodic velocity pulsation caused by the torque ripple.
However, the iteration process of ILC in this method is
complex and time-consuming.

However, none of the aforementioned MPC-based control
methods have considered the complexity and computational
volume. In general, the implementation of MPC requires
solving online optimization during each sampling instant.
However, solving online optimization by using the iterative
computation algorithm, such as the active-set method or
interior-point method is usually computationally complex
and time-consuming. This is also an obstacle of MPC when
practically applied in fast dynamic systems, such as power
systems and electric machines. To overcome this drawback,
an explicit approach was introduced in [30] for constrained
MPC. In explicit MPC, the optimization problem can be
pre-solved in the offline stage, and the optimal control law is
formulated as a piecewise affine (PWA) function. As a result,
explicit MPC can significantly reduce the computational
load and is suitable for real-time implementation of MPC.
Several explicit MPC methodologies [31], [32], [33] have
been effectively employed in position, speed, and current
control of PMSM.

Given the aforementioned problems, this paper proposes
a simple technique for minimizing torque ripple using the
explicit model predictive speed control (EMPSC) combined
with a periodic disturbance observer (PDOB). The major
advantages of the proposed control strategy are summarized
as follows:

1) The PDOB is presented for online estimation of the
periodic disturbance components in the speed model
which generate the torque ripple. Compared to the
existing observers, the proposed PDOB can handle a
wide range of harmonic and is easy to implement.

2) The design of EMPSC with a modified cost function is
proposed to calculate the optimal control signal. This
optimal control signal achieves fast dynamic response,
robustness against disturbances, and effective torque
ripple minimization.

3) Significant reduction in computational complexity
compared to conventional MPC-based methods.

The remainder of this paper is organized as follows.
In Section II, the mathematical model of the PMSM and the
influence of torque ripple are described. In Section III, the
design of the PDOB for online estimation of torque ripple
disturbance is introduced. Section IV presents the design
of the EMPC. The explicit process for online solving the
optimization problem is also introduced in this section. The
simulation study and experimental results are discussed in
Section V and Section VI. Finally, the conclusions of this
paper are summarized in Section VII.
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II. MATHEMATICAL MODEL OF PMSM
The stator current equations of the PMSM in the d − q frame
can be described as follows:

Ld
did
dt

= ud − Rsid + ωeLqiq

Lq
diq
dt

= uq − Rsiq − ωeLd id − ωeψf

(1)

where id , iq, ud , uq are the stator current and voltage along
the d- q axis, respectively; Rs denotes the stator windings
per-phase resistance, ψf is the flux linkage of the permanent
magnet, Lq, Ld present the stator winding inductances in the
q axis and d axis, respectively; and ωe is the rotor electrical
speed. Here ωe = pω where ω is the rotor mechanical speed
and p is the number of pole pairs. The dynamic model of the
PMSM can be expressed as follows:

J
dω
dt

+ Fω + TL = Tm (2)

where J and F present the moment of total inertia and
the viscous coefficient, respectively; TL is the load torque
and Tm is the motor generated torque. Generally, the motor
torque consists of the electromagnetic torque TE and the
parasitic torque pulsation TR. The torque TE is produced
by the interaction of the time-varying stator voltage and the
permanent magnet rotor field.

TE =
3
2
p
(
ψf iq − (Lq − Ld )id iq

)
(3)

For the surface-mounted PMSM, Ld and Lq are almost equal.
Therefore, TE can be described as follows:

TE =
3
2
pψf iq = Kt iq (4)

where Kt is the torque constant. On the other hand, the
parasitic torque pulsation TR is mainly caused by cogging
torque, flux harmonics, and the current offset. According to
the analysis presented in [27], the torque pulsation can be
expressed simply as follows:

TR =

∞∑
n=1

ksn sin(npθ ) + kcn cos(npθ) (5)

where ksn and k
c
n are the n

th harmonic amplitudes. In practice,
the high-order harmonics are usually ignored due to the
inertia characteristic of load. Assume that the 1st , 2nd , . . .N th

h
harmonics are the major harmonics that affect the torque
ripple. These order harmonics can be obtained by analyzing
the motor torque or current waveform as presented in the
Appendix. A. The dynamic model (2) is rewritten as follows:

ω̇ = −
F
J
ω +

Kt
J
iq +

1
J

Nh∑
n=1

ksn sin(nθe) + kcn cos(nθe)

−
1
J
TL = aω + biq + d (6)

where a = −
F
J
, b =

Kt
J

and d represents the lumped
disturbance which consists of the torque pulsation and the
external load torque.

d =
1
J

(
−TL +

Nh∑
n=1

ksn sin(nθe) + kcn cos(nθe)
)

(7)

It can be observed that d is a time-varying disturbance.
Therefore, to facilitate the design of the observer, we express
the lumped disturbance d as follows:

d =
1
J



1
sin(θe)
cos(θe)
...

sin(Nhθe)
cos(Nhθe)



T 

−TL
ks1
kc1
...

ksNh
kcNh


= f Tρ (8)

where

f =
1
J

[
1, sin(θe), cos(θe), . . . , sin(Nhθe), cos(Nhθe)

]T
ρ =

[
− TL , ks1, k

c
1, . . . , k

s
Nh , k

c
Nh

]T (9)

In this way, the time-varying disturbance d can be separated
into two components: f , a vector measurable using position
feedback, and ρ, a vector representing the external load
torque and the amplitudes of the major harmonics. This
characteristic will be utilized to determine the lumped
disturbance d in the next section through the estimation of
vector ρ.

III. DESIGN OF PERIODIC DISTURBANCE OBSERVER
According to the aforementioned analysis, the speed model
of PMSM is consistently affected by periodic disturbances,
which can be represented by the constant vector ρ. Hence,
a PDOB is developed based on the Lyapunov stability theory
to achieve a fast and accurate estimation of the unknown
vector ρ. Compared to PIR [8], RC [25], and ILC [27],
the proposed observer can handle a wide range of harmonic
orders and is easy to implement. First, the speed model of
PMSM can be rewritten as follows:

ẋ(t) = ax(t) + bu(t) + f T (t)ρ (10)

where x(t) = ω(t) and u(t) = iq(t). Then, the state-space
model of PDOB is proposed as:

˙̂x(t) = ax(t) + b(u(t) − uc(t)) + f T ρ̂(t) (11)

where x̂(t) and ρ̂(t) represent the estimated values of x(t) and
ρ, respectively; and uc denotes a compensation control signal.
Define the observation errors as:{

ex(t) = x(t) − x̂(t)
eρ(t) = ρ − ρ̂(t)

(12)

VOLUME 11, 2023 134201



T. T. Nguyen et al.: EMPSC for PMSM With Torque Ripple Minimization

From (11) and (12), the derivative of the observation error is
expressed as: {

ėx(t) = buc(t) + f T (t)eρ(t)
ėρ(t) = − ˙̂ρ(t)

(13)

Proposition 1: Define the update law for ρ̂(t) as:

ρ̂(t) = Kρ f (t)x(t) − ξ (t) (14)

where Kρ is a positive constant and ξ (t) is an auxiliary
variable that is given by:

ξ̇ (t) = Kρ f (t)
(
ax(t) + bu(t) + f T (t)ρ̂(t)

)
+ Kρ ḟ (t)x(t)

−f (t)ex(t) (15)

Then, under update law (14), the observer will be stable.
Proof:According to (14), the derivative of eρ is rewritten

as:

ėρ(t) = −Kρ f (t)ẋ(t) − Kρ ḟ (t)x(t) + ξ̇ (t)

= −Kρ f (t)
(
ax(t) + bu(t) + f T (t)ρ

)
+ Kρ f (t)

(
ax(t) + bu(t) + f T (t)ρ̂(t)

)
− f (t)ex(t)

= −Kρ f (t)f T (t)eρ(t) − f (t)ex(t) (16)

To illustrate the stability of PDOB, a Lyapunov candidate
function (LCF) is proposed as follows:

V =
1
2
eTρ (t)eρ(t) +

1
2
e2x(t) (17)

Then, the derivative of LCF can be expressed as follows:

V̇ = eTρ (t)ėρ(t) + ex(t)ėx(t)

= eTρ (t)
(
− Kρ f (t)f T (t)eρ(t) − f (t)ex(t)

)
+ ex(t)

(
buc(t) + f T (t)eρ(t)

)
= −KρeTρ (t)f (t)f

T (t)eρ(t) + ex(t)buc(t) (18)

To satisfy the Lyapunov stability theory, V̇ (k) must be
negative. Therefore, the compensation signal uc(t) can be
calculated as follows:

uc(t) = −b−1Kxex(t) (19)

where Kx > 0. Then, the derivative (18) is rewritten as:

V̇ = −KρeTρ (t)f (t)f
T (t)eρ(t) − Kxe2x(t) ≤ 0 (20)

Therefore, Proposition 1 is proved. □
In (19), the gain Kx will affect the convergence behavior of

the observer. Ideally, it should be chosen as large as possible
to ensure fast convergence. However, a high value of Kx can
result in significant fluctuations in the compensation signal
uc. Assume that κ1 ≤ Kx ≤ κ2, where κ1 and κ2 are positive
constants representing the desired margin for Kx . Then, the
range of the compensation signal is expressed as:

−b−1(κ2 + a)ex(t)≤uc(t)≤−b−1(κ1 + a)ex(t)
if ex(t) ≥ 0

−b−1(κ1 + a)ex(t)≤uc(t)≤−b−1(κ2 + a)ex(t)
if ex(t) < 0

(21)

Define two auxiliary variables uc1 and uc2 as follows:

uc1(t) =

{
−b−1(κ2 + a)ex(t) if ex(t) ≥ 0
−b−1(κ1 + a)ex(t) if ex(t) < 0

uc2(t) =

{
−b−1(κ2 + a)ex(t) if ex(t) ≥ 0
−b−1(κ1 + a)ex(t) if ex(t) < 0

(22)

Then the constraints (21) can be simply rewritten as follows:

uc1(t) ≤ uc(t) ≤ uc2(t) (23)

In the following section, the values ofKx and uc are optimized
to obtain the best performance.

IV. DESIGN OF THE EMPSC
After estimating the periodic disturbance by using PDOB,
the design of the EMPSC is presented in this section. The
control diagram of EMPSC is illustrated in Fig. 1. The main
objective of EMPSC is to determine the optimal current
reference to achieve the best speed-tracking performance.
At each sampling instant, the optimal current is calculated
by minimizing a cost function (CF). First, a mathematical
discrete-time model is employed to predict the future
behavior of the system. Then, a quadratic cost function
is formulated to evaluate the control performance. Finally,
an explicit process is presented for minimizing the cost
function while reducing computational complexity.

A. DISCRETE-TIME PREDICTION MODEL
The speed model and observer model are expressed in
discrete-time domain as follows:

x(k + 1) = Ax(k) + Bu(k) + F(k)ρ (24)

x̂(k + 1) = Ax(k) + Bū(k) + F(k)ρ̂ (25)

where A = (1 + aTs), B = bTs, F(k) = f (k)Ts, ū(k) =

u(k) + uc(k) and Ts is the sample time. Let NP denote the
prediction horizon. Due to the convergence of PDOB, the
observer model (23) is employed to establish the prediction
model and predict the future states as follows:

x(k + 1|k) = Ax(k) + Bū(k) + FT (k)ρ̂(k)

x(k + 2|k) = Ax(k + 1|k) + Bū(k + 1) + FT (k + 1)ρ̂(k)
...

x(k + Np|k) = Ax(k + Np − 1|k) + Bū(k + NP − 1)

+ FT (k + Np − 1)ρ̂(k) (26)

where ū(k+i|k) and x(k+i|k) denote ith step ahead predicted
states from time instant k of ū(k) and x(k) respectively.
Furthermore, vector F(k) is slow dynamic and can be
considered as a constant vector during the prediction horizon.
Let ϵ(k) = FT (k)ρ̂, the prediction model (26) is rewritten in
matrix form as:

X (k) = Hx(k) +8uU (k) +8ϵϵ(k) (27)
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FIGURE 1. Control diagram of MPC for PMSM.

FIGURE 2. Explicit MPC methodology.

where prediction vectors X (k),U (k) and matricesH ,8u, and
8ϵ are given by:

X (k) =
[
x(k + 1|k), x(k + 2|k), . . . , x(k + Np|k)

]T
U (k) =

[
ū(k|k), ū(k + 1|k), . . . , ū(k + Np − 1|k)

]T
H =


A
A2
...

ANp

8u =


B 0 · · · 0
AB B · · · 0
...

...

ANp−1B ANp−2B · · · B



8ϵ =


1
A
...

ANp−1
+ ANp−2

+ · · · + 1

 (28)

B. MODIFIED COST FUNCTION FORMULATION
In conventional MPC, to evaluate the control performance,
the cost function is usually established by a quadratic form as
follows:

Jc(k) =
(
Xd (k) − X (k)

)TQ(
Xd (k) − X (k)

)
+ UT (k)RU (k) (29)

whereQ, and R are symmetric positive definite (denoted> 0)
weighting matrices, Xd (k) is reference vector. By optimizing
Jc(k), the optimal control signal U∗(k) will result in the
prediction model with good tracking performance. However,
the prediction model is established based on the estimated
value of ρ as described in (24) and (25). Consequently,
estimation errors can degrade the performance of the
actual speed model compared to the prediction model. This
performance difference is significant when the observer has
not reached a stable state, such as in a speed transition state or
when the external load torque suddenly occurs. To maintain
the performance of the real system, a modified cost function
with an additional terminal term is proposed as follows:

J (k) = Jc(k) +
(
x(k + 1) − x(k + 1|k)

)2 (30)

where the additional term
(
x(k + 1)− x(k + 1|k)

)2 expresses
the difference between the predictionmodel x(k+1|k) and the

actual model x(k+1). Thus, the addition of this term into the
cost function will ensure the performance of the actual model,
and reduce the influence of the estimation error. Considering
the speed model and the PDOB model, the predicted state
x(k + 1|k) is described as follows:

x(k + 1|k) = Ax(k) + B(u(k) + uc(k)) + FT (k)ρ̂(k)

= x(k + 1) + Buc(k) + FT (k)(ρ̂(k) − ρ) (31)

Besides, the speed model (24) at time instant k − 1 given by:

x(k) = Ax(k − 1) + Bu(k − 1) + FT (k − 1)ρ (32)

and combine with assumption that F(k) is a slow dynamic
vector

(
F(k) ≈ F(k − 1)

)
, the equation (31) is rewritten as:

x(k + 1|k) = x(k + 1) + Buc(k) + dx (33)

where dx is a certain part given by:

dx = FT (k)ρ̂(k) − x(k) + Ax(k − 1) + Bu(k − 1) (34)

Then, the CF (30) is reformulated as:

J (k) = B2u2c(k) + 2Bdxuc(k) + UT (k)
(
8T
uQ8u + R

)
U (k)

+ 28T
uQ

(
Hx(k) +8ϵϵ(k) − Xd

)
U (k) + C (35)

where uc(k) and U (k) are the optimal variables; C is a
component independent of the optimal variables and can
be ignored in the cost function. Furthermore, one of the
advantage of MPC is dealing with constraints. In design of
EMPSC, the constraints of J (k) are set as:

iminq ≤ u(k + i) ≤ imaxq (36)

where iminq and imaxq represent the constraints on the control
signal u(k). By using the constraint (36), the motor will be
ensured that operate in normal stages and avoid overloading.
Combined with the condition (23) for the compensation
signal, the optimal control signal is computed as the solution
of the following QP optimization problem:

min
uc(k),U (k)

J (k) = B2u2c(k) + UT (k)
(
8T
uQ8u + R

)
U (k)

+ 2Bdxuc(k)+28T
uQ

(
Hx(k)+8ϵϵ(k) − Xd

)
U (k)

subject to: iminq ≤ u(k + i) ≤ imaxq i = 0, 1, ..(Np − 1)

uc1 ≤ uc(k) ≤ uc2 (37)

In the MPC framework, according to the receding horizon
principle, only the first component in the optimal sequence
control vector U (k) is applied to the optimal control signal.
The current reference is then calculated as follows:

irefq (k) = u∗(k) = [1, 0, . . . 0]U∗(k) − u∗
c (k) (38)

where U∗(k) and u∗
c (k) are the optimal solutions of QP

problem (37).
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FIGURE 3. Flowchart for EMPSC.

C. EXPLICIT PROCESS
As aforementioned, the optimal control signal is calculated
by solving the QP optimization problem (37) at each
sampling instant. However, solving online QP problems
usually requires a significant computational effort and can
be challenging to implement in real-time. In this section,
an explicit process is introduced to efficiently solve online
optimization problems. First, the optimization problem is
reformulated as follows:

OP: min
z(k)

J (k) =
1
2
zT (k)Q̄z(k) + σ T (k)h̄T z(k)

subject to: Gz(k) ≤ W +Mσ (k) (39)

where weighting matrices Q̄, h̄, G, W and M are given in
the Appendix. B; vector z(k) denotes the optimal variables
and σ (k) is a parametric vector representing parameters in
the optimization problem.

z(k) = [uc(k) U (k)]T ∈ RNp+1

σ (k) = [dx(k), xd (k), x(k), ϵ(k), uc1(k), uc2(k)]T ∈ R6

(40)

The key idea of explicit MPC is to pre-solve the QP offline
for the entire set of the parametric vector σ (k) to obtain the
universal optimizer function z(k), which only depends on
σ (k). The explicit MPC consists of two stages:
1) Offline stage: In this stage, the optimization problem

(39) is pre-computed using the multi-parametric pro-
gramming (MPP) algorithm [30] over the feasible set
of parametric σ (k). The optimal solution is defined as a
continuous and piecewise affine (PWA) state-feedback
law:

z∗(k) =


V1σ (k) + Y1 if σ (k) ∈ P1

...

VIσ (k) + YI if σ (k) ∈ PI

(41)

where Pi(i = 1, . . . , I) represents I nonoverlapped
active regions; the matrices Vi and Yi are obtained
through the MPP algorithm. The condition for the
parametric vector σ (k) to fall into the ith region is:

σ (k) ∈ Pi if Hiσ (k) ≤ Ki (42)

with Hi and Ki are also given by the MPP algorithm.
The pairs (Vi,Yi,Hi,Ki) are used to formulate the

FIGURE 4. Structure block diagram of the proposed EMPSC.

TABLE 1. The proposed control algorithm.

optimal solution law and stored in a look-up table
(LUT).

2) Online stage: The task of the online stage involves
searching for the active region that contains the current
parametric vector by evaluating the condition (42).
Then, the LUT is retrieved to compute the optimal
solution using equation (38).

The explicit process is illustrated in Fig. 2. In our
implementation, the multi-parametric toolbox (MPT) [35] is
employed in Matlab environment to offline solve the MPP
problem (39) and export the PWA solution to the LUT.
Additionally, the binary tree search (BTS) method [36] is also
utilized to reduce the search time in the online stage. The
flowchart of EMPSC is shown in Fig. 3.

D. OVERALL CONTROL STRUCTURE
Fig. 4 illustrates the overall control structure diagram of the
proposed EMPSC for PMSM. This structure is built from the
cascaded field-oriented control (FOC), where the proposed
EMPSC is employed as the speed controller for calculating
the reference for the q-axis current, while the PI controller is
used for the current loop. The speed controller consists of two
main blocks:

1) The PDOB for fast and accurate estimation of the
lumped periodic disturbance in the dynamic model.

2) The EMPSC for computing the optimal current refer-
ence irefq , which can achieve good control performance
and reduce the torque ripple.

The real-time implementation of the proposed control
strategy is summarized in the following Table 1.

V. IMPLEMENTATION AND SIMULATION STUDY
To evaluate the control performance of the proposed
methodology, a simulation model has been constructed using
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FIGURE 5. Simulation results of the three methods under a step speed
profile and the load torque suddenly occurs.

FIGURE 6. Effective of the modified cost function.

TABLE 2. PMSM parameters.

Matlab/Simulink. The details of the PMSMmodel, including
the presence of torque ripple, are is built based on the FEA
model [36]. The motor parameters are listed in Table 2.

A. TUNING GUIDELINES FOR CONTROLLER GAINS
The control gains are presented in Table 3. An important
parameter of EMPSC is the prediction horizon length Np.
In theory, the length Np should be selected to be as long
as possible to optimize performance. However, in practical
applications, a very long Np will significantly increase
the computational complexity of MPC-based algorithms.
In this paper, Np = 8 is chosen based on an evaluation
of the computational capabilities of the hardware system.
Weighting matrices Q and R in the cost function are selected
by trading off between control performance and control
effort. A large value of Q provides a fast-tracking ability,
while a large value of R implies an energy-efficient controller.
Yamashita’s guideline [37] suggests a simple selection of
Q = I and R = αI , where α is a very small value.
Here, we use α = 0.01. The major harmonics in PDOB
design are presented in Appendix. A. The parameters of the
PDOB (Kρ , κ1, and κ2) are tuned by evaluating the simulation
and experimental results. Across results conducted in the
entire admissible speed range, it is observed that Kρ ∈

[15; 50], κ1 ∈ [2; 10], and κ2 ∈ [20; 45] achieve better
performance.

FIGURE 7. Experimental PMSM platform.

TABLE 3. Parameters of the proposed EMPSC.

B. IMPLEMENTATION AND SIMULATION RESULTS
To assess the control performance of the proposed method-
ology, three additional control strategies were employed for
comparison: a conventional PI speed controller, an MPC
based on iterative learning control (MPC-ILC) [27], and an
MPC based on extended state observer (MPC-ESO) [28]. The
parameters of the PI controller were tuned using the pole-zero
cancellation technique with a cut-off frequency of 125 Hz.
Additionally, an anti-windup compensation strategy [38]
was applied in the PI controller to mitigate the effect of
the integrated component during speed jumping. For a fair
comparison, the MPC-ILC and MPC-ESO control methods
were also implemented in the simulation environment. The
MPC-ILC and MPC-ESO methods are recently published
MPC papers for torque ripple minimization, and they also
have a similar structure to the proposed EMPSC. All the
control schemes adopted the FOC architecture and utilized
the same PI current controller, which was tuned using
the pole-zero cancellation technique at 1000 Hz. In the
simulation setup, the sampling times for the current and
speed controllers were set at 50 µs and 0.5 ms, respectively.
Furthermore, the influence of quantization speed errors
caused by the encoder was taken into consideration. Tomodel
this effect, a 20000 pulse/rev encoder block was integrated
into the position feedback signal.

In the following simulation study, the PMSM is assumed
to operate at a speed of 2000 rpm with an external load
torque of 0.1 Nm applied from 7 s to 9 s. The simulation
results obtained from the three methods are depicted in
Fig. 5. As shown in Fig. 5, the proposed EMPSC exhibits
better performance with zero overshoot, the shortest settling
time, minimized speed-torque ripple, and reduced speed
fluctuation induced by the external load torque.

C. MODIFIED COST FUNCTION
As mentioned in Section IV, the modified cost function
is proposed to reduce the influence of estimation error.
To validate the effectiveness of the modified cost function,
the motor system is tested at 2000 rpm and the load torque
of 0.1 Nm is applied. In this test, the estimation errors at
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FIGURE 8. Comparative experimental results. Dynamic performance. a) PI controller, b) MPC-ILC, c) EMPSC.

TABLE 4. Computation efficiency comparison.

times that load torque applied and released are significant.
Thus, by evaluating the motor behavior, we can verify the
impact of the modified cost function. Fig. 6 shows the speed
performance comparison between the modified cost function
and the conventional cost function. As can be observed in
Fig. 6, themodified cost function exhibits better performance,
reducing speed fluctuation compared to the conventional cost
function. Therefore, the modified cost function enhances the
robustness of the proposed control strategy against external
disturbances.

D. COMPUTATION EFFICIENCY COMPARISON
To assess the feasibility of implementing the proposed
method in a real system, we evaluate the computation time
of EMPSC in this section. Table 4 presents a comparison
of the computation time for EMPSC with other algorithms
commonly used for deploying MPC, such as the Matlab
toolbox (active-set), the CasADi package (interior-point)
[39], and RNN [19]. All simulations were conducted on
a PC equipped with an AMD 3500x CPU, 32GB RAM,
and an RTX 3050 GPU. The comparison in Table 4 reveals
that the Matlab toolbox and CasADi require a significant
amount of time to solve the optimization problem, limiting
their practical applicability, especially in high-frequency
sampling systems. The RNN algorithm has been successfully
applied in real implementation but is most suitable for
short-horizon controllers (e.g., Np = 5 in [19]), and it also
exhibits longer execution times when applied to long-horizon
MPC. In contrast, EMPC exhibits an average execution time
of only 0.02 ms, making it highly suitable for real-time
implementation.

VI. EXPERIMENT RESULTS
This section provides a comprehensive description of the
laboratory experimental setup of a VSI-fed PMSM drive

prototype to investigate the effectiveness of the proposed
EMPSC. Subsequently, the experimental results compared
with the conventional PI and MPC-ILC are presented.

A. EXPERIMENTAL TEST BENCH SETUP
Fig. 7 depicts the experimental hardware setup of the PMSM
platform. The test motor is a 30W servo brushless with the
parameters listed in Table 2. The rotor position is measured
via an incremental optical encoder with a resolution ratio of
20000 pulses/rev. The speed feedback is accurately calculated
by using the first-order adaptive window (FOAW) method
[40]. A coaxially mounted RCS-20KC torque sensor is
utilized to measure the generated torque. The load side
comprises load disks for inertia adjustment and a ZKG-20AN
Mitsubishi powder clutch to generate external load torque TL.
The CTA3200 board is used to control the powder clutch.
The control algorithm is implemented using a C-program
in the arm cortex STM32F446VC-based motor drive. The
sampling times of the speed controller and current controller
are 0.5 ms and 50 µs, respectively. The switching frequency
for the SV-PWM inverter is set to 50 kHz. All experimental
data are transmitted from themotor driver to a computer using
RS232 communication.

B. CONTROL PERFORMANCE COMPARISON
1) DYNAMIC PERFORMANCE
First, the speed-tracking performance of the three control
schemes is verified. A step speed reference of 2000 rpm
is commanded. In this test, the dynamic performance is
revealed through the overshoot and settling time of the speed
response. The experimental results obtained from the three
methods are shown in Fig. 8. It can be seen that the PI
speed controller exhibits poor dynamic performance with a
speed overshoot of 28 rpm and a settling time of 0.32 s.
Despite the addition of the anti-windup compensator, the
PI controller still inevitably generates a larger overshoot
due to the impact of the integral part. The speed feedback
of MPC-ILC shows a faster dynamic response of 0.28 s
but the speed overshoot is still significant. The reason for
this weakness is that the MPC-ILC ignores the current
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FIGURE 9. Comparative experimental results. Steady-state performance. a) PI controller, b) MPC-ILC, c) EMPSC.

FIGURE 10. Comparative experimental results. Anti-fluctuation performance. a) PI controller, b) MPC-ILC, c) EMPSC.

limitations in control design. Consequently, when the current
becomes saturated during the speed-raising phase, the control
performance of MPC-ILC is diminished. On the other hand,
as depicted in Fig. 8c, the proposed EMPSC can achieve good
dynamic performance with zero overshoot and the fastest
settling time. By considering current constraints in the control
design, the proposed EMPSC has overcome the overshoot
problem in MPC-ILC. Additionally, the short settling time of
EMPSC and MPC-ILC in this test also demonstrates the fast
dynamic response ability of the MPC-based control method.

2) STEADY-STATE PERFORMANCE
To evaluate the torque ripple minimization performance of
the three methods during the steady-state, the reference speed
of 2000 rpm is maintained from 2s to 6s. In this test, the
generated torque and the stator current are also analyzed.
To quantitatively measure the torque ripple, the torque ripple
factor (TRF) is defined in [12] as follows:

TRF(%) =
Tpk−pk
Trated

× 100 (43)

where Tpk−pk represents the peak-to-peak torque ripple,
and Trated is the rated value of the electromagnetic torque.
Additionally, the peak-to-peak value of speed ripple (SR) and
the total harmonic distortion (THD) of the stator current are
also employed to compare the control performance of the
three methods. The experimental results are shown in Fig. 9.
As shown in Fig. 9a, the conventional PI controller reveals
poor steady-state performance, resulting in large speed
oscillation (SR 21 rpm), large torque ripple (TRF 37.5%),
and significant current harmonics (THD 21%). In contrast,
the experimental results obtained from MPC-ILC and the
EMPSC demonstrate excellent torque ripple minimization
performance. Especially, the proposed EMPSC achieves a
slightly better control performance on in terms of both speed
oscillation, torque ripple, and current distortion.

Moreover, to ensure the torque ripple minimization
performance across different speed ranges, the three methods
are also evaluated at speeds of 300 rpm, 1200 rpm, 2000 rpm,
and 3000 rpm. The experimental results are summarized in
Table 5, where the values of speed ripple, torque ripple factor,
and current THD are observed to evaluate the three methods.
As shown in Table 5, the proposed EMPSC exhibits superior
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TABLE 5. Steady-state performance comparison of the three methods.

performance in torque ripple minimization, speed smoothing,
and current harmonic rejection across the entire speed range.

3) ANTI-FLUCTUATION PERFORMANCE
Finally, to demonstrate the robustness of the proposed
EMPSC, an experiment is conducted using a powder clutch
to generate an external load torque of TL = 0.1 Nm
from 7 s to 9 s. Fig. 10 compares the anti-fluctuation
performance of the three methods. As depicted in Fig. 10a,
the conventional PI controller reveals a significant speed error
when the load torque is applied and released, with a speed
fluctuation of 40 rpm. The experimental results obtained
from MPC-ILC also exhibit a large speed fluctuation of
28 rpm. These experimental results demonstrate the weak
robustness of both the PI controller and MPC-ILC against
external disturbances. On the other hand, by considering
the disturbance in the observer design, the proposed method
provides strong robustness with the smallest speed error of
20 rpm.

Through the above-mentioned experiments, the effec-
tiveness of the proposed method has been verified. When
compared to the PI controller and MPC-ILC, the proposed
method achieves better speed-tracking performance, stronger
robustness against disturbances, and notably, a superior
torque ripple minimization capacity.

VII. CONCLUSION
This paper proposes a simple EMPSC control structure
to improve the performance of PMSM with torque ripple
minimization. The main contributions of this study are as
follows: 1) The design of PDOB has been proposed for the
online estimation of parasitic torque pulsation in PMSM. 2)
An EMPSCwith a novel cost function is proposed to enhance
the control performance and suppress the torque ripple.
The computational volume of the entire control scheme
has also been taken into account to ensure the real-time
implementation of the proposed method. The simulation and
experimental results demonstrate the practicability of the
proposed control method with performance improvements
such as the removal of speed overshoot, a substantial 39%
reduction in torque ripple, and a remarkable 28% decrease in
current distortion compared to the conventional FOCmethod.

Moreover, the robustness against external disturbances was
also verified with a reduction in speed fluctuation by 50%.

Future work based on this paper may consist of:
1) Improve EMPSC with considering the parameters

mismatches.
2) Extend EMPSC for current control.

APPENDIX A
ANALYSIS OF TORQUE RIPPLES
Torque ripple in PMSMs primarily arises from three sources:
cogging torque, flux harmonics, and current measurement
errors. According to research [10], [27], a brief analysis of
these sources is presented below:

1) Cogging torque: Cogging torque emerges due to the
interaction between the magnetic flux and stator slots.
It can be represented by a Fourier series as follows:

Tcog =

∞∑
k=1

T kcog sin(mkθe) (44)

where T kcog is the Fourier coefficients, m represents
the least common multiple of stator slots Ns and the
number of poles 2p. In the case of our PMSM, Ns =

6 and p = 5, yieldingm = 30. Consequently, the orders
of cogging torque include 6, 12, 18,..

2) Flux harmonics: Flux harmonics result from the
nonsinusoidal distribution of flux density in the air gap.
The torque ripple associated with flux harmonics is
expressed as follows:

Tflux =

∞∑
k=1

T kflux cos(6kθe) (45)

where T kcog is the (6k)
th harmonic amplitude.

3) Current measurement error: TheDC offset in stator cur-
rent measurements and scaling errors also contribute to
pulsating torque at specific frequencies.

Tcur = kce

(
cos(2θe +

π

3
) +

1
2

)
(46)

where kce is the current measurement error factor.
Combining (45), (46), and (47), it can be concluded that
torque ripple consists of harmonic components such as the
2nd, 6th, 12th,. . .

Furthermore, based on the FFT analysis of the stator
current, as shown in Fig. 9, the major harmonic components
of torque ripple in our PMSM test bench are the 2nd, 6th,
and 12th harmonics. Higher harmonics (above 12th) are
disregarded due to the inertia characteristics of the load.
Therefore, in our implementation, we focus on mitigating
the major harmonics, specifically the 2nd, 6th, and 12th
harmonics.

APPENDIX B
DEFINITION OF MATRICES

Q̄ =

[
2B2 [0]1×Np

[0]Np×1 28T
uQ8u + R

]
134208 VOLUME 11, 2023



T. T. Nguyen et al.: EMPSC for PMSM With Torque Ripple Minimization

h̄ =

[
B 0 0 0 0 0
0 −8T

uQ[1]Np×1 8T
uQH 8T

uQ8ϵ 0 0

]
G =

[
G1
G2

]
W =

[
W1
W2

]
M =

[
M1
M2

]
G1 =

[
−[1]Np×1 INp
[1]Np×1 −INp

]
W1 =

[
[1]Np×1imax

−[1]Np×1imin

]
M1 =

[
0

]
2Np×6

G2 =

[
1 [0]1×Np

−1 [0]1×Np

]
W2 =

[
0
0

]
M2 =

[
0 0 0 0 0 1
0 0 0 0 −1 0

]
(47)

where G1z(k) ≤ W1 +M1σ (k) represents 2Np constraints in
(36), which are used for limiting the value of control signal
and G2z(k) ≤ W2 + M2σ (k) is the condition (21) for the
compensation signal uc.
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