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ABSTRACT Predicting the ship fuel consumption constitutes a prerequisite for speed, trim, and voyage
optimization. In spite of the rise of deep learning and transformers in many domains, research works train
shallow machine learning (ML) algorithms for predicting ship fuel oil consumption (FOC). Although the
auxiliary machinery is in support of the main propulsion engines and the emissions from ships’ auxiliary
engines contribute to the environmental pollution, most existing research initiatives train ML algorithms
for predicting only the main engine FOC. Additionally, all the existing research initiatives use the mean
squared error (MSE) as the loss function. However, recent studies have shown that neural network models
tend to replicate the last observed value of the time series, thus limiting their applicability to real-world data.
To address these limitations, this is the first study proposing transformer-based approaches and a multitask
learning (MTL) framework. Firstly, the authors introduce Single-Task learning (STL) models consisting of
BiLSTMs and MultiHead Self-Attention for predicting the main and auxiliary engine FOC. Secondly, the
authors introduce the first MTL setting, which predicts the main and auxiliary engine FOC simultaneously
allowing one task to inform the other. A loss function is introduced, which includes a regularization term for
penalizing the replication of previously seen values. The authors evaluate the proposed approaches using data
from three fishing ships and compare these approaches with traditional ML algorithms. Extensive experiments
show that the introduced MTL models can improve the R2 score, mean bias error, root mean squared error,
and mean absolute error in comparison with shallow ML algorithms.

INDEX TERMS Maritime industry, main engine fuel oil consumption, auxiliary engine fuel oil consumption,
deep learning, MultiHead self-attention, multi-task learning, loss function.

LIST OF ABBREVIATIONS AND ACRONYMS
In this section, the definitions of abbreviations and acronyms
used in the paper are summarized in Table 1. Each abbreviation
and acronym is ordered from A to Z.

I. INTRODUCTION
The maritime vessels emit around 940 million tonnes of
CO2 annually and are responsible for about 2.70% of global
greenhouse gas (GHG) emissions [1]. Even worse, according
to the 3rd International Maritime Organization (IMO) GHG
study, shipping emissions are projected to increase between
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50% and 250%by 2050, if business goes as usual, undermining
the objectives of the Paris Agreement. The study of [2] also
points out that ships consume large amounts of fuel oil and
consequently GHGs are released causing serious damage
to the environment, climate, and human health. Wave and
wind conditions affect significantly the fuel consumption.
Specifically, the study in [3] analyzed changes in wind and
wave conditions over the last 27 years. After conducting
numerical simulations for six voyages, the authors stated
that the difference between fuel consumption, travel time,
average ship speed is significant for to and fro direction. For
instance, travelling from ‘‘Sydney to Valparaiso’’ requires
more time and fuel than ‘‘Valparaiso to Sydney’’ in both
summer and winter seasons due to the direction of wave
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and wind. Slow steaming, i.e., sailing at reduced speed.
constitutes one of the measures proposed throughout the
years for mitigating CO2 emissions [4], [5]. Slow steaming
seems to be effective, since ship resistance is lower at the
reduced speed. However, according to the study [4], one should
analyze several locations along the sailing route and determine
local sea states for quantifying the benefits of slow steaming
more accurately. Additionally, sailing at reduced speed often
leads to a deterioration of the main and auxiliary engines
[6]. Apart from the careful examination of the operation of
the main engine under lower loads, one should also carefully
examine the operation of auxiliary engines, since the electrical
consumption of auxiliary engines has a significant role in
fuel consumption under slow steaming conditions [7]. Trim
optimization can also lead to savings in fuel consumption.
Grlj et al. [8] conducted a study for a containership and
stated that trim has an effect on wind and air resistance.
Specifically, findings suggested that trim by bow causes lower
values of air resistance, while trim by stern leads to higher
values in comparison to an even keel condition. To reduce
CO2 emissions in maritime transport, the IMO has introduced
the Energy Efficiency Design Index (EEDI), which is used
for new ships solely. Contrary to EEDI, the IMO has also
introduced the Energy Efficiency Existing Ship Index (EEXI)
[9]. Specifically,1 from 1 January 2023 it is mandatory for all
ships to calculate their attained EEXI to measure their energy
efficiency.

Although deep learning approaches and transformer-based
models are used in many tasks outperforming the traditional
machine learning algorithms, existing research initiatives
still train shallow machine learning regressors for predicting
fuel oil consumption. In addition, only few works have
proposed methods for estimating the auxiliary engines fuel
oil consumption [10]. Although the auxiliary machinery
is in support of the main propulsion engines [11] and
the emissions of ships’ auxiliary engines contribute to the
environmental pollution, existing research initiatives train
machine learning algorithms for predicting only the main
engine fuel consumption. Additionally, existing research
initiatives use limited sets of features for training machine
learning algorithms and predicting fuel oil consumption [12],
[13], [14]. In addition, all the existing research initiatives
minimize the mean squared error (MSE) loss for predicting
the fuel oil consumption. However, according to [15], one
limitation of this approach is the fact that the model just
replicates the last observed value of the time series. The
authors in [15] define this problem as ‘‘mimicking’’ in time-
series forecasting.
To tackle the aforementioned limitations, this is the first

study employing BiLSTM and MultiHead Self-Attention
layers in a multitask learning setting. Firstly, the authors
introduce single-task learning (STL) models which predict
the main and auxiliary engine fuel oil consumption separately.

1https://www.imo.org/en/MediaCentre/HotTopics/Pages/EEXI-CII-
FAQ.aspx

TABLE 1. List of abbreviations and acronyms.

These models comprise a BiLSTM layer and a MultiHead
Self-Attention layer for allowing the model to jointly attend
to information from different representation subspaces at
different positions. Secondly, motivated by the fact that
multitask learning (MTL) has been proved to be effective in
many domains [16], [17], [18], including both related and
unrelated tasks [19], the authors introduce the first MTL
framework consisting of a primary task, i.e., prediction of
main engine fuel oil consumption, and auxiliary task, i.e.,
prediction of auxiliary engine fuel oil consumption. MTL
allows tasks to be learned jointly, thus sharing knowledge
and features between the tasks. To address the phenomenon
of ‘‘mimicking’’ in time series forecasting, the authors
add a regularization term in the loss function. the authors
exploit sensor data with a great number of features from
three fishing ships for conducting the experiments. The
authors train shallow machine learning algorithms, including
BaggingRegressor, RandomForestRegressor, etc. and use them
as baselines. Findings suggest that the introduced approaches
offer valuable advantages over state-of-the-art ones.

The main contributions of this study can be summarized as
follows:
• The authors utilize a multihead self-attention mechanism
for allowing the model to jointly attend to information
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from different representation subspaces at different
positions.

• There is no prior work proposing a multitask learning
framework for predicting main and auxiliary engine fuel
oil consumption simultaneously.

• This is the first study addressing the problem of
‘‘mimicking’’ in maritime series data by adding a
regularization term in the loss function.

• The authors use data from three vessels and exploit a
large number of features in comparison with existing
research initiatives.

• The authors compare their proposed approaches with
shallow machine learning algorithms and show that the
introduced architectures outperform the traditional ones.

II. RELATED WORK
A. FUEL OIL CONSUMPTION PREDICTION TASK
Reference [20] used two types of datasets, namely noon-
reports and Automated Data Logging & Monitoring systems
for predicting main engine fuel oil consumption (FOC).
The authors exploited a limited set of feature set consisting
of 12 features, including vessel speed, draft aft, engine
speed, etc. Finally, the authors trained multiple regression
algorithms, including Support Vector Machines (SVMs),
Random Forest Regressors (RFRs), Extra Trees Regressors
(ETRs), AdaBoost Regressors, Artificial Neural Networks
(ANNs), Linear Regressors (LR), Ridge & Lasso Regressors,
and k-Nearest Neighbours Regressors. The authors stated that
the proposed models can accurately predict the FOC of vessels
sailing under different conditions.

The study in [21] used noon-reports and exploited an ANN
consisting of one hidden layer with 12 units for predicting fuel
consumption. The authors used seven input variables, namely
ship speed, revolutions per minute (RPM), mean draft, trim,
cargo quantity on board, wind and sea effects.
The authors in [22] introduced a publicly available set of

high-quality sensory data collected from a ferry over a period
of two months. The authors introduced a non-linear ANN
model to model ship fuel consumption efficiency.

Amodel for estimating the energy use and fuel consumption
was proposed by [23]. The authors exploited Automatic Iden-
tification System (AIS) data and some technical information
about cruise ships, including the service speed, total power,
and number of engines. A multivariate regression model was
trained.
Reference [12] trained a multiple regression model used

for fuel consumption prediction. The authors used a limited
feature set consisting of ship average speed, sailed distance,
wind speed in knots, and displacement.

Similarly, the authors in [24] used a multiple linear
regression model, where the amount of ship fuel consumed (in
litres) was designated as the output dependent variable, while
factors such as the travelled distance in Nautical Mile (nm),
travelled hours (HRS), Ship speed (V), Deadweight in metric
tonnes (DWT) and Wind Speed (W) in knots were designated
as the input (independent) variables.

Reference [25] trained and compared multiple regression
models for predicting CO2 emissions. The authors used a
set of 22 features, namely shaft generator power, speed over
ground, arrival draught, departure/arrival trim, etc. Next,
the authors exploited variable selection approaches (forward
stepwise regression), penalized regression models, latent
variable methods, and tree-based ensemble methods.

An artificial neural network was also proposed by
[13]. After using data denoising methods, data clustering
approaches, and data compression & expansion methods,
the authors employed an ANN for predicting the ship’s fuel
consumption. The authors used seven features, including the
average draft, trim, main engine power, shaft speed, speed
through water, Speed over Ground (SOG), and relative wind
speed in knots. Results showed that ANN is a more accurate
and efficient model to predict the fuel consumption of the
main engine than polynomial regression and support vector
machine.
In [26], the authors used data from noon reports, engine

logbook, and sensors to predict fuel oil consumption. They
used the following features as inputs to machine learning
algorithms: Bearing temperatures, Fuel mass flow, Air coolers
cooling water temperature, Shaft power, and more. Finally,
the authors trained Multiple Linear Regression, Kernel Ridge
Regression, Ridge and Lasso Regression, Support Vector
Regression (SVR), Tree-Based Regression as Random Forest
Regression and Decision Tree Regression and Boosting
Algorithms including AdaBoost Algorithm and Gradient
Boost Algorithm.
In [27], the authors introduced a hybrid machine learning

model consisting of a Long Short-Term Memory (LSTM)
Recurrent Neural Network (RNN) and an Elman Neural
Network (ENN). The authors used as features the number
of passengers, the average speed of the vessel, the wind force,
etc. The authors compared the proposed architecture with:
Radial Basis Function Neural Network (RBFNN), General
Regression Neural Network (GRNN), Elman Neural Network
(ENN), SVR, Group Method of Data Handling (GMDH)-
based neural network, Relevant Vector Machine (RVM), Feed-
Forward Neural Network (FFNN), and Multiple Regression
Model (MRM).

The authors in [28] used two datasets for predicting the fuel
consumption. With regards to the first dataset, the authors
exploited the following set of features: ship shaft, speed,
average draft, trims, current speed, current direction, wind
speed knots, wind direction, wave height, and wave direction.
In terms of the second dataset, the authors used the following
feature set: ship shaft, speed, average draft, and trim. Finally,
the authors used Back-Propagation Neural Network (BPNN)
and Gaussian Process Regression (GPR) techniques.
Reference [29] used voyage, weather, and sea data

for predicting fuel consumption. The authors trained a
LASSO regression model and compared it with ANNs, SVR,
and Gaussian Processes (GP). Findings showed that the
proposed LASSO-based method outperforms other traditional
methods.
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A straightforward approach was also proposed by [30].
The authors trained traditional machine learning algorithms,
including ANN, SVR, LASSO, and RF. They also used
bayesian optimization for tuning the hyperparameters. The
authors used as features the relative wind direction, main
engine speed, fore and aft draft, and wind speed (knots).
In [31], the authors trained Gradient Boosting Regression

(GBR), Random Forest (RF), BP Network (BP), LR, and K-
Nearest Neighbor Regression (kNN) to estimate the energy
consumption of ships in port. 15 features were exploited
including inherent ship features and external port features.
Findings showed that net tonnage, deadweight tonnage, actual
weight, and efficiency of facilities are the top four features for
predicting the energy consumption of ships.
A different approach was proposed by [32], where the

authors exploited the engine temperature as feature for the
estimation of fuel consumption for the first time and trained
an LSTM neural network. They compared the LSTM with
traditional machine learning algorithms, including linear
regression, and ANNs and stated that the LSTM outperformed
these approaches. Finally, the developed models have been
implemented in optimisation of the engine speed to minimize
the total fuel consumption and the total cost of the whole
voyage. Specifically, the authors employed the Reduced Space
Searching Algorithm for solving the optimization problems.
The study in [33] used in-service data collected from a

13,000 TEU class container ship to predict fuel consumption.
The authors used 11 features, including Speed over Ground
(SOG), speed through water, trim, displacement, etc. to train
machine learning algorithms. They trained a Multiple Linear
Regression model and an ANN and showed that ANNs yielded
the best performance.
The authors in [34] used data of two real-world voyages

from bulk carrier and introduced a hybrid model for predicting
fuel consumption. Specifically, the introduced hybrid model
is based on stacking theory consisting of two-level layers.
The first layer is the base model, consisting of extremely
randomized trees (ET), RF, and XGBoost (XGB). The second-
level layer is a meta-model consisting of multiple linear
regression (MLR). Finally, the authors presented a newmethod
based on the developed hybrid model in combination with the
enumeration method to optimize the fuel consumption from
the perspective of trim adjustment.

A similar approach was proposed by [35], where the authors
used sensor data collected from an ocean-going container
ship. The first-level layer is composed of multiple base-
models, namely ET, RF, and XGB, while the second-level
layer is a meta model, i.e., multiple linear regression (MLR).
The authors used nine features: GPS speed, mean draft,
wave direction and height, wind direction, wind speed in
knots, etc.

In [36], the authors introduced a two-stage fuel consumption
prediction and reduction model. At the first stage, they trained
a random forest regression model using 11 features, including
weather conditions, sea conditions, wind force, wave height,
and many more. Next, based on the random forest regression

model, the authors introduced a speed optimization model
between two ports.

The authors in [37] trained an ANN and polynomial regres-
sion models to predict ship’s power and fuel consumption. The
authors used data from two voyages and exploited a limited
feature set, including the water depth, cargo conditions, and
more.
Similarly, the authors in [38] trained an ANN consisting

of one hidden layer with 10 units. The authors exploited
voyage report data and used the following features as input to
the deep neural network: sailing speed (knots), displacement
(MT), trim (m), wave height (m), wave direction, wind
force (Beaufort scale number), wind direction, and sea water
temperature (◦C). The output of the network was the fuel
consumption rate.
In [39], the authors introduced methods for predicting

energy efficiency and addressing the optimal energy efficiency
route planning challenge. Specifically, for the energy
efficiency prediction model, they utilized an ANN with a
single hidden layer. For the optimal energy route planning
issue, they presented an enhanced Ant Colony Algorithm.
Reference [14] introduced methods for estimating the

required shaft power or main engine fuel consumption of a
container ship sailing under varied conditions. The authors
exploited data acquired from the operation of a container
ship. This dataset consists of 14 features, including longitude,
latitude, draft aft, speed over ground, speed through water,
and many more. Next, the authors applied data preprocessing
techniques, including time-series filtering, statistical outlier
detection, smoothing, etc. Then, data quality control was
performed. After that, the authors extracted a set of four
features and applied feature selection approaches. Finally, the
authors trained an ANN consisting of two hidden layers.

B. BACKGROUND
1) BIDIRECTIONAL LSTMS (BILSTMS)
Recurrent Neural Networks cannot capture the long-distance
dependencies effectively. To address this issue, Long Short-
Term Memory (LSTM) [40] neural models were proposed.
An LSTM cell consists of three gates, namely the forget gate,
the input gate, and the output gate. The structure of the LSTM
unit is illustrated in Fig. 1 and is given by the equations below:
• The ft is the forget gate:

ft = σ
(
Wf xt + Uf ht−1 + bf

)
(1)

• The it is the input gate:

it = σ (Wixt + Uiht−1 + bi) (2)

• The c̃t represents the candidate memory cell status at the
current time-step.

c̃t = tanh (Wcxt + Uiht−1 + bc) (3)

• The ct represents the state value of the current time-step
in memory cell and is calculated as follows:

ct = it ⊙ c̃t + ft ⊙ ct−1 (4)

VOLUME 11, 2023 132579



L. Ilias et al.: Multitask Learning Framework for Predicting Ship Fuel Oil Consumption

• The ot is the output gate:

ot = σ (Woxt + Uoht−1 + bo) (5)

• ht indicates the hidden layer state at time t:

ht = ot ⊙ tanh (ct) (6)

FIGURE 1. LSTM model.

However, the typical LSTM layer cannot capture effectively
the contextual information. LSTM can only process sequence
from one direction. For this reason, research works utilize the
bidirectional LSTM consisting of a forward LSTM layer and
a backward LSTM layer. A BiLSTM layer is illustrated in
Fig. 2. The equations governing the internal mechanism of a
BiLSTM layer are presented as follows:

−→
ht = LSTM (xt ,

−−→
ht−1) (7)

←−
ht = LSTM (xt ,

←−−
ht+1) (8)

Ht =
−→
ht ||
←−
ht , (9)

where xt denotes the input of time t ,
−−→
ht−1 denotes the

output of the forward hidden unit at time t − 1, while
←−−
ht+1

indicates the output of the backward hidden unit. || denotes
the concatenation operation.

FIGURE 2. BiLSTM model.

2) MULTIHEAD ATTENTION MECHANISM
In this section, the multihead attention mechanism introduced
in [41], is going to be described.

FIGURE 3. Scaled dot-product attention.

a: SCALED DOT-PRODUCT ATTENTION
A scaled dot-product attention can be described as mapping a
query and a set of key-value pairs to an output. As illustrated
in Fig. 3, the input consists of queries (Q), keys (K), and
values (V). Specifically, queries and keys have a dimension
of dk , while values have a dimension of dv. Firstly, the
dot products of the query with all the keys are computed.
Next, a scale operation is applied, where the result of the
dot product is divided by

√
dk . After that, a mask is applied

optionally. Finally, a softmax function is applied for obtaining
the weights on the values. It is worth noting that the scale
operation is important, since the dot products grow large in
magnitude, pushing the softmax function into regions where
it has extremely small gradients.
The scaled dot-product attention can be calculated as

follows:

Attention(Q,K ,V ) = softmax
(
QKT
√
Dk

)
V (10)

3) MULTIHEAD ATTENTION
To address the issue of performing one single attention, the
work in [41] introduces the multi-head attention mechanism,
which is illustrated in Fig. 4. Specifically, the multi-head
attention mechanism captures information from different
subspaces and strengthens the feature discrimination by
converting the original query matrix Q, key matrix K , and
value matrix V into H submatrices of the same size as
described in the equations presented below:

Qi = QWQ
i ,

...

K i
= KWK

i ,

...

V i
= VWV

i ,

, (11)
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where Qi ∈ Rn×dq ,K i
∈ Rn×dk , and V i

∈ Rn×dv represent
the ith subspaces of Q,K , and V respectively. Usually,
dq = dk =

dmodel
H and dv =

dmodel
H .

FIGURE 4. Multi-head attention.

Next, scaled dot-product attention operations are performed
on H subspaces in parallel as follows:

head1 = Attention(Q1,K 1,V 1),
...

headi = Attention(Qi,K i,V i),
...

headH = Attention(QH ,KH ,VH ),

(12)

Finally, the results learned by the multi-head attention are
concatenated as output and projected to dimensionality dmodel .
Formally:

p = MHA(Q,K ,V ) = Concat(head1, head2, · · · , headH )W 0,

(13)

where W 0
∈ RHdv×dmodel .

In case Q = K = V , then this attention can be called as
multi-head self-attention.

C. RELATED WORK REVIEW FINDINGS
From the research works mentioned above, it is evident that
existing research initiatives rely on the feature extraction
and train of shallow machine learning algorithms. Only
few research works have experimented with deep learning
approaches. However, these approaches introduce simple
architectures. For instance, the authors of some research works
have employed ANNs and BiLSTMs instead of transformers,
which have achieved state-of-the-art results in many domains.
Additionally, all the research works minimize the mean
square error loss function without taking into consideration
the effect of ‘‘mimicking’’. Finally, the existing research
initiatives mainly predict the main engine fuel oil consumption
neglecting the auxiliary engine. However, the auxiliary
machinery operates as a support of the main propulsion
engines, while at the same time the auxiliary engines contribute

to the air pollution. Therefore, the prediction of both the main
and auxiliary engine fuel consumption is crucial.

Therefore, the present study is significantly different from
the state-of-the-art approaches, since the authors (a) introduce
approaches for predicting both the main and auxiliary engine
fuel oil consumption, (b) exploit for the first time themultihead
self-attention, (c) introduce a multitask learning framework
which jointly learns to predict the main and auxiliary engine
fuel oil consumption, (d) introduce a new loss function in
the task of main and auxiliary engine fuel oil consumption
which mitigates the effect of ‘‘mimicking’’, and (e) evaluate
the approaches on three publicly available datasets with a great
number of features.

III. DATASET & TASK
A publicly available dataset [42] is used, which includes
sensor data from three different fishing ships for a period
of one month. This data has been used in Work Package
(WP) 3 of DataBio project, which has received funding from
the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 732064. Also, this data
is used in the context of the VesselAI project. The authors
resample the dataset into 5 minute bins and sum the values of
the timestamps falling into a bin. A lag variable accounting
for 10 is used.
Given a feature set, the tasks are to predict: (i) main

engine fuel oil consumption and (ii) auxiliary engine fuel oil
consumption. Table 2 describes the features used for the task
of main engine fuel oil consumption, while Table 3 reports the
features used in terms of the task of the auxiliary engine fuel
oil consumption. As a preprocessing step, constant columns
are removed. Therefore, in these Tables, the features used per
dataset are mentioned.

IV. METHODOLOGY
In this section, the proposed models for predicting the
main engine and auxiliary engine fuel oil consumption
are described. Specifically, Section IV-A describes the
Single-Task Learning (STL) models that utilize either the
main engine Fuel Oil Consumption task or the auxiliary
engine Fuel Oil Consumption task as the sole optimization
objective. Section IV-B describes the proposed architectures
for jointly learning to predict main and auxiliary engine fuel
oil consumption. Finally, in IV-C the authors describe the
proposed loss function used in the experiments.

A. SINGLE-TASK LEARNING
The proposed STL architecture is illustrated in Fig. 5. Below,
the layers of the proposed architecture are mentioned.

1) INPUT LAYER
Let x ∈ Rn×T be the input representation, where n denotes the
lag variable and is equal to 10, while T denotes the number of
features. The dimension corresponding to the batch size is not
mentioned for the sake of simplicity.
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TABLE 2. Description of features - main engine.

In terms of the prediction of the main engine fuel oil
consumption, the authors use the feature set described in
Table 2.

Regarding the prediction of the auxiliary engine fuel oil
consumption, the authors exploit the feature set reported in
Table 3.

2) BILSTM LAYER
x is passed through a BiLSTM layer. A BiLSTM consists of
two LSTMs, a forward LSTM

−→
f which processes the input

sequence from left to right, and a backward LSTM
←−
f , which

processes the input sequence from right to left. Formally,

hi = [
−→
hi ;
←−
hi ], (14)

where
−→
hi ,
←−
hi ∈ Rl and hi ∈ Rn×2l , where l denotes the

hidden dimensionality of the BiLSTM.

3) MULTIHEAD SELF-ATTENTION LAYER
The authors exploit a MultiHead Self-Attention layer
introduced by [41]. Specifically, hi is transformed into a Query
Q ∈ Rn×Dq , Key K ∈ Rn×Dk , and Value V ∈ Rn×Dv matrix
as described via the equations below:

Q = QWQ,K = KWK ,V = VWV , (15)

whereWQ
∈ R2l×Dq ,WK

∈ R2l×Dk , andWV
∈ R2l×DV are

learnable parameters. As mentioned in [43], the authors set
Dq = Dk = Dv = 2l. The self-attention mechanism can be
calculated as follows:

Attention(Q,K ,V ) = softmax
(
QKT
√
Dk

)
V (16)

As an improved self-attention mechanism, MultiHead self-
attention divides self-attention into h heads to learn the
different levels of long-term information in the input sequence.

The equation for calculating the attention of the i-th head is
described below:

headi = Attention(QWQ
i ,KWK

i ,VWV
i ), (17)

where WQ
i ∈ R2l×dq ,WK

i ∈ R2l×dk ,WV
i ∈ R2l×dv . dq =

dk = dv = 2l
h

Finally, the results learned by the multi-head attention are
concatenated as output and projected to dimensionality d0.
Formally:

p=MHA(Q,K ,V )=Concat(head1, head2, · · · , headh)W 0,

(18)

where W 0
∈ R2l×d0 . d0 = 2l.
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TABLE 3. Description of features - auxiliary engine.

Next, p is passed through a Global Average Pooling layer.
Let the output of the Global Average Pooling layer be z ∈ R.

4) OUTPUT LAYER
Finally, a dense layer consisting of 1 unit is used, in order to
get the final prediction.

FIGURE 5. The proposed STL model.

B. MULTI-TASK LEARNING
According to [11], the auxiliary machinery operates as a
support of the main propulsion engines. Auxiliary engine is
correlated with main engine as it can also assist the main
propulsion engines by incorporating heat exchangers and
compressed air, aid in ship and cargo handling through

propellers, shafting, steering gear, and deck cranes, or support
ship services like ballast water arrangements and sewage
systems. Additionally, multitask learning has been proved
to be effective in many domains [16], [17], [18], including
both related and unrelated tasks [19].
In this section, two deep learning architectures based on

multi-task learning are introduced [44]. Each architecture
consists of two tasks, namely the main task and the auxiliary
one. The main objective is to explore whether the auxiliary
task helps the main task in increasing its performance. The
main task constitutes the task of the main engine fuel oil
consumption, while the auxiliary task constitutes the task of
the auxiliary engine fuel oil consumption. The introduced
architectures are trained on the two tasks and updated at the
same time with a joint loss:

L = (1− α)LMEFOC + αLAEFOC , (19)

where LMEFOC denotes the loss of the main engine fuel oil
consumption, LAEFOC indicates the loss of the auxiliary engine
fuel oil consumption, and α is a parameter denoting the
importance the authors place to each task.

1) MTL-SIMPLE
In this architecture, the authors merge the features reported
in Tables 2 and 3 into one feature vector. The merging is
based on the correlation between the main engine and auxiliary
engines features, as the auxiliary engines, among others, are in
support of the main engine [11]. A lag variable of 10 is used.
Let x ∈ Rn×T be the input representation. n denotes the lag
variable, while T denotes the number of features. As illustrated
in Fig. 6, the input representation is passed through a shared
BiLSTM layer as described in Eq. 14. Let z ∈ Rn×2h be
the output of the BiLSTM layer, where h denotes the hidden
dimensionality of the BiLSTM. Next, z is passed through a
MultiHead Self-Attention layer as described via the Equations.
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FIGURE 6. The proposed MTL-simple model.

Let p ∈ Rn×2h be the output the MultiHead Self-Attention
layer. Next, the authors pass p through a global average pooling
layer and obtain s ∈ R2h. Finally, s is passed through two dense
layers, where each dense layer consists of one unit, which give
the final prediction per task.

2) MTL-DOUBLE ENCODERS
The introduced architecture is illustrated in Fig. 7. Similar
to the MTL-Simple architecture, the authors merge the
features reported in Tables 2 and 3 into one feature vector.
A lag variable of 10 is used. Let x ∈ Rn×T be the input
representation. First, the authors pass x through a shared
BiLSTM layer, which is updated by both tasks during training.
Let z ∈ Rn×2h be the output of the BiLSTM layer, where h
denotes the hidden dimensionality of the BiLSTM.
• Primary Task Prediction: This is a task-specific branch
pertinent to the primary task. Specifically, z is passed
through a task-specific BiLSTM, a MultiHead Self-
Attention layer, a Global Average Pooling layer, and a
Dense layer consisting of one unit which gives the final
output.

• Auxiliary Task Prediction: Here, the authors describe
the task-specific branch related to the prediction of
the auxiliary task. Specifically, z is passed through a
MultiHead Self-Attention layer followed by a global
average pooling layer. Finally, a dense layer consisting
of one unit is used, which gives the final output, i.e.,
auxiliary engine fuel oil consumption.

C. LOSS FUNCTION
In [15], the authors define the problem of ‘‘mimicking’’
in time series forecasting. Specifically, neural networks

minimizing the MSE loss, become often sensitive to noise.
This might result into the problem of predicting previously
seen values (usually the last seen observation in the time
series), rather than making predictions based on long-term
extracted patterns. To tackle this limitation, the authors
in [15] introduce a regularization term for mitigating to
some degree the effect of ‘‘mimicking’’. For this reason,
the following loss function is proposed for a sequence of n
time-steps.

L =
n∑
i=1

(zi − ẑi)2 + λ

n∑
i=1

[(zi − zi−1)(zi − ẑi)]2, (20)

where λ is a parameter used for controlling the importance of
the regularization term, i.e., how much penalty needs to be
imposed to alleviate ‘‘mimicking’’.

The loss function described in Eq. 20 is adopted in STL and
MTL frameworks. To be more precise, in terms of the MTL
setting, this specific loss function is exploited regarding both
LMEFOC and LAEFOC (see Eq. 19).

V. EXPERIMENTS
A. BASELINES
The introduced approaches are compared with shallow
machine learning algorithms, namely AdaBoostRegressor,
BaggingRegressor, ExtraTreesRegressor, GradientBoostin-
gRegressor, and RandomForestRegressor.

B. EXPERIMENTAL SETUP
The authors scale the features and the output variable to a [0,1]
scale during training. After training, a simple post-processing
step is applied where the predicted values are scaled to the
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FIGURE 7. The proposed MTL-double encoders model. This model consists of a
shared BiLSTM layer and two task-specific branches. The shared BiLSTM layer is
updated by both tasks, while each task-specific branch is updated by the
corresponding task.

actual range of values. α of Eq. 19 is set equal to 0.1. λ of
Eq. 20 is set equal to 1. For STL and MTL-Simple models,
the hidden size of the BiLSTM layer is h = 150. For the
MTL-Double Encoders model, the hidden size of the shared
BiLSTM layer is h = 150, while the hidden size of the
BiLSTM corresponding to the task-specific branch of the
primary task is h = 200. The authors split the dataset into
a train and test set. Additionally, the authors divide the train
set into a train and validation set. A batch size of 64 is used.
The authors use EarlyStopping, where training is stopped if
the validation loss has stopped decreasing for 10 consecutive
epochs. Adam optimizer [45] is used for all the experiments.
The models are trained for a maximum of 200 epochs.
The authors repeat the experiments 20 times and report the
mean results. The authors use the t-test for significance
testing. The authors use PyTorch [46] for performing the
experiments. All experiments are trained on a single Tesla
P100-PCIE-16GB GPU.

C. EVALUATION METRICS
The authors utilize the metrics mentioned below for evaluating
the results of the introduced approaches. Specifically, yt
refers to the real value of the fuel oil consumption,
while ŷt refers to the predicted value of the fuel oil
consumption. y denotes the mean of the real values of fuel oil
consumption.

• Coefficient of determination:

R2 = 1−

∑n
t=1

(
yt − ŷt

)2∑n
t=1 (yt − y)2

(21)

• Mean Bias Error:

MBE =
1
n

n∑
t=1

(yt − ŷt ) (22)

• Root Mean Squared Error:

RMSE =

√√√√1
n

n∑
i=1

(yt − ŷt )2 (23)

• Mean Absolute Error:

MAE =

∑n
i=1 |yt − ŷt |

n
(24)

VI. RESULTS
The results of the proposed approaches mentioned in
Section IV are reported in Tables 4 and 5.

Regarding the Dataset 1, the authors observe in Table 4 that
MTL-Double Encoders constitutes the best performing model
achieving the best results across all metrics for predicting
the main engine fuel oil consumption. Specifically, the best
performing model improves R2 score by 0.22-17.06%, RMSE
presents an improvement of 0.05-2.37, while MAE is also
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TABLE 4. Performance comparison among traditional ML algorithms and proposed STL and MTL models on primary prediction task (prediction of main
engine fuel oil consumption). Results for STL and MTL approaches are averaged across 20 runs. Best results per evaluation metric are underlined. † indicates
significant improvement over STL and MTL-Simple (t-test, p-value<0.05).

TABLE 5. Performance comparison among traditional ML algorithms and proposed STL and MTL models on auxiliary prediction task (prediction of auxiliary
engine fuel oil consumption). Results for STL and MTL approaches are averaged across 20 runs. Best results per evaluation metric are underlined.

improved by 0.02-3.15. The authors observe that the AdaBoost
Regressor obtains the worst evaluation results yielding an
R2 score of 77.91%. MTL-Double Encoders outperforms
significantly both MTL-Simple and STL in terms of R2 score
by 0.23% (p-value=9.26e-14) and 0.32% (p-value=1.50e-
07) respectively. The best performing model obtains better
RMSE than MTL simple by 0.05 (p-value=3.50e-05) and
STL by 0.07 (p-value=1.50e-07). In terms of MBE, the
authors observe that the best performing model achieves
the lowest MBE accounting for -0.02 with an improvement
over STL and MTL-Simple of 0.05 (p-value=1.10e-05) and
0.12 (p-value=0.00278) respectively. Observing Table 5, the
authors observe that the proposed STL model outperforms
the introduced MTL approaches. This can be justified by
the fact that the authors have set α of Eq. 19 equal to
0.1, placing in this way importance to the task of the
prediction of main engine fuel oil consumption. As one
can observe in Table 5, the proposed STL model surpasses
the performance of traditional ML algorithms in R2 score
by 0.15-4.27% and in RMSE by 0.01-0.10. Although the
differences in performance are limited, the authors believe
that even a small improvement can make the difference in
this field. In terms of the MTL approaches, although the
authors do not place enough importance in this task, the
authors observe that their approaches yield competitive results
with traditional ML algorithms. Specifically, the authors
observe that MTL-Simple outperforms AdaBoostRegressor
in terms of R2, MBE, RMSE, and MAE. For instance,
MTL-Simple outperforms AdaBoostRegressor in R2 score

by 3.19%, in MBE by 0.10, in RMSE by 0.07, and in MAE
by 0.08.

In terms of the Dataset 2, the authors observe in Table 4 that
MTL-Double Encoders constitutes the best performing model
surpassing the rest of the approaches, i.e., traditional ML algo-
rithms and introduced approaches, in R2 score by 0.06-6.20%
and in RMSE by 0.01-1.21. It achieves a MAE of 1.02 which
is equal with the one obtained by ExtraTreesRegressor, while
it outperforms the rest approaches by 0.06-2.05. Compared
with the introduced approaches, MTL-Double Encoders
outperforms STL and MTL-Simple in R2 score by 0.57% (p-
value=1.99e-12) and 0.42% (p-value=6.51e-09) respectively,
in MBE by 0.17 (p-value=7.71e-12) and 0.15 (p-value=3.97e-
11) respectively, in RMSE by 0.13 (p-value=2.81e-12) and
0.10 (p-value=7.57e-09) respectively, and in MAE by 0.08
(p-value=1.89e-08) and 0.10 (p-value=1.14e-09) respectively.
As one can observe in Table 5, the proposed STL model
attains an R2 score of 94.37% outperforming the traditional
ML algorithms by 0.57-4.45%. Additionally, STL improves
RMSE over traditional ML algorithms by 0.04-0.14 and MAE
by 0.02-0.19.

With regards to the Dataset 3, the authors observe in Table 4
that MTL-Double Encoders constitutes the best performing
model obtaining an R2 score of 99.45%, a MBE of 0.16,
an RMSE of 0.99, and a MAE of 0.36. Specifically, MTL-
Double Encoders outperforms MTL-Simple in R2 score by
0.17% (p-value=7.89e-09), in MBE by 0.23 (p-value=7.03e-
15), in RMSE by 0.14 (p-value=3.11e-09), and in MAE by
0.22 (p-value=7.96e-16). Similarly, MTL-Double Encoders
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outperforms STL in R2 score by 0.24% (p-value=4.89e-08),
in MBE by 0.28 (p-value=2.09e-13), in RMSE by 0.19 (p-
value=4.33e-09), and in MAE by 0.26 (p-value=8.27e-16).
In comparison with the traditional ML regressors, MTL-
Double Encoders yields a better R2 score by 0.32-9.37%,
improves RMSE by 0.24-3.18, and MAE by 0.21-3.49. As one
can easily observe in Table 5, the proposed STL model can
predict the auxiliary engine fuel oil consumption attaining
an R2 score of 90.79% which is better than 2.22-20.68% in
comparison with the traditional ML algorithms. Regarding the
proposed approaches in the MTL framework, one can observe
that they achieve competitive results. Specifically, both MTL
approaches outperform three ML algorithms in R2 score.
Overall, one can observe that MTL-Double Encoders

constitutes the best performing model across all datasets.
We speculate that this is attributable to the fact that this
architecture consists of both shared and task-specific branches.

VII. CONCLUSION & FUTURE WORK
In this paper, the authors present the first study exploiting
transformer-based approaches for predicting both the main and
auxiliary engine fuel oil consumption. Specifically, the authors
introduce both single-task and multi-task learning models.
In terms of the single-task learning setting, the proposed
models consist of BiLSTMs and MultiHead Self-Attention
layers. The authors further use amulti-task learning framework
to jointly model the main engine fuel oil consumption and
auxiliary engine fuel oil consumption as an auxiliary task.
In order to address the phenomenon of ‘‘mimicking’’ in time-
series forecasting which is a consequence of minimizing the
MSE loss, the authors add a regularization term in the loss
function. The authors evaluate the proposed approaches in
three publicly available datasets, which include sensor data
from fishing vessels. Findings show that the proposed MTL
approaches outperform significantly the traditional ones.
The significantly increased performance and accuracy of

the introduced MTL approach can result to a number of
measures and technologies that can contribute to the overall
fuel oil consumption and thus the operating costs of shipping
companies. By predicting fuel oil consumption through the
feature sets of the main and auxiliary engine, more insights
can be provided for the ship performance with data based
on real operating conditions that can further impact different
sectors and activities of the maritime industry. For instance,
a better fuel consumption prediction model can further
improve the accuracy and performance fuel prediction services
of commercial fleet monitoring and stability management
software that has been tailored to specific clients/ships (main
and auxiliary engines features) and thus enables them for better
weather routing optimization planning. Moreover, they can
directly contribute to supporting the decision-making process
for ship energy design systems for feeding ship energy systems
simulations and optimization. Furthermore, it can provide
guidance and insights for adjusting a vessel’s trim, ballast,
and cargo distribution in order to improve its hydrodynamics
and reduce fuel consumption usage and optimal trim. For

example, an accurate fuel consumption prediction can inform
operators about the most fuel-efficient trim for the vessel
under different conditions. Moreover, by correlating accurate
fuel consumption predictions with varying ballast levels,
operators can identify the optimal amount and distribution of
ballast. Additionally uneven or suboptimal cargo distribution
can result in increased resistance and, consequently, higher
fuel consumption. Accurate predictions of fuel consumption,
based on different cargo distributions, can guide operators in
distributing cargo more efficiently, optimizing the underwater
part of the ship and its hydrodynamics. Lastly, it can contribute
to proactive maintenance and performance monitoring of the
vessel’s engines as well as their optimal tuning.

However, this study comes with some limitations. Specifi-
cally, the authors did not apply hyperparameter tuning, which
often leads to a performance improvement. In addition, the
authors did not apply explainability techniques for rendering
the proposed approaches explainable. Finally, the authors
experimented only with fishing ships and did not test other
ship types.
In the future, the authors aim to propose deep learning

approaches for the task of route optimization. Also, the
prediction of CO2 emissions is one of their future plans.
Additionally, the authors aim to apply the proposed models to
other ship types. Finally, the authors aim to contribute to this
field by proposing explainable deep neural networks.
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