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ABSTRACT About 1.5 million women are diagnosed with breast cancer every year, making it the most
frequent disease among women. In Pakistan, one woman in every nine has a lifetime chance of being
diagnosed with breast cancer, making it the country with the highest incidence rate of breast cancer in Asia.
The mortality rate from breast cancer in Pakistan was 22.7% in 2020. A lack of resources, such as competent
pathologists, causes a delay in diagnosis and inadequate therapy planning, all of which contribute to a dismal
survival rate. End-to-end solutions that may be implemented into computer-aided diagnostic (CAD) systems
have been developed by medical professionals and researchers using domain-specific artificial intelligence
(AI) technologies, most notably deep learningmodels, to address this critical issue. By increasing the amount
of work for pathologists, these AI models may help in breast cancer detection and diagnosis. The goal of
this research was to compare and contrast the effectiveness of many recent convolutional neural network
(CNN) designs. Five pre-trained and fine-tuned deep CNN architectures, InceptionV3, ResNet152V2,
MobileNetV2, VGG-16, and DenseNet-121, are tested to determine the best-performing model. The goal
is to discover which models are preferable in terms of accuracy and effectiveness. Notably, the pre-
trained InceptionV3 model outperforms the basic CNN model by 9%, with a high accuracy level of 94%.
ResNet152V2 got 95% accuracy, and MobileNetV2 got 97% accuracy. The VGG-16 model outperforms
the competition with a remarkable 98% accuracy rate. Following suit, the DenseNet-121 model achieves a
remarkable 99% accuracy. These findings highlight the utility of deep learning models in the diagnosis of
breast cancer as well as the range of model precision.

INDEX TERMS Cancer, breast cancer, histopathological images, deep learning, MobileNetV2, VGG-16,
DenseNet-121, inclusive innovation.

I. INTRODUCTION
Cancer develops when this normally regulated mechanism
is disrupted by genetic material alterations. Cell growth

The associate editor coordinating the review of this manuscript and
approving it for publication was Vishal Srivastava.

becomes unregulated and out of control. These cells can
clump together to form a mass known as a tumor. Cancer is
currently one of the major causes of mortality worldwide; it is
a disease that spreads aggressively across cells and increases
in the body minute by minute. According to the International
Agency for Cancer Research (IARC), one in every five people
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FIGURE 1. Demonstration of major types of breast cancer.

will be diagnosed with cancer at some point in their lives, and
one in every eight men and one in every eleven women will
die from it. Breast cancer (BC) is the main cause of death
in women and is one of the most frequent cancers [1], [2].
BC accounted for around 24.5% of all cancer-related cases in
women, according to statistics (GLOBO-CAN, 2020).

Breast cancer, one of the most common diseases affecting
women, costs a large number of lives each year. Although
cancer may be treated and cured if detected early, many
individuals do not obtain a diagnosis until it is too late [3], [4].
Breast cancer starts when abnormalities in the cells become
evident, and it can spread to nearby locations [5]. Breast
cancer is a major global health concern, and it is becoming
increasingly frequent in a variety of populations [6]. Fig. 1
shows the several forms of breast cancer [7], [8], [9]that
emerge when damaged cells and tissues spread throughout
the body. DCIS, also known as non-invasive carcinoma, is a
kind of breast cancer that occurs when abnormal cells spread
outside of the breast [10], [11]. The second form (IDC) is
invasive ductal carcinoma. It is also known as infiltrative
ductal carcinoma [12]. IDC cancer is most commonly found
in men, and it occurs when abnormal breast cells spread
throughout all breast tissues [13], [14]. The third kind of
cancer is lobular breast cancer (LBC). This happens inside
the lobule [15]. It increases the chances of having more
aggressive cancers. Inflammatory breast cancer is the last
type of breast cancer that causes swelling and redness (IBC).
It is a fast-growing breast cancer that manifests itself when
the lymph veins in damaged cells become blocked [16], [17].
Breast cancer diagnosis must be precise and timely in order to
improve patient outcomes and survival rates. The safest and
most reliable way to effectivelymanage BC is early detection,
then effective clinical treatments [18]. Breast ultrasound,
computed tomography (CT), mammography, histopatholog-
ical imaging, and magnetic resonance imaging (MRI) are
examples of non-invasive breast screening techniques or
imaging tools available today. Mammography and ultrasound

are two popular early detection modalities for breast cancer,
all of which significantly increase the breast cancer survival
rate by generating high-quality breast images [19], [20].
Specialists examine these images in great detail to provide
the correct diagnosis. Despite major advancements in recent
non-invasive imaging technology, invasive surgical imagery,
which refers to a pathologist’s histological examination of
a breast tissue biopsy, remains the gold standard in clinical
scenarios for a final breast cancer diagnosis [21].
Histopathological imaging in clinical practice relies pri-

marily on pathologists’ manual qualitative analysis. This
analysis method, however, raises at least three issues [22].
First, there is a global shortage of pathologists, particularly in
developing countries and small hospitals. Resource scarcity
and imbalanced distribution are serious issues that must be
addressed [23], [24]. Second, whether or not the histological
diagnosis is right is entirely dependent on the pathologist’s
extensive professional expertise and long-term diagnostic
experience. This pathologist’s subjectivity has resulted in
an increase in diagnostic discrepancies [25]. Third, the
complexity of histological images causes pathologists to
become fatigued and distracted. To address these issues, it is
critical to create automatic and exact histopathological image
analysis tools, particularly classification approaches.

Image processing techniques combined with machine
learning could be a useful tool for detection and diagnosis;
however, they usually result in false positives and false
negatives. Deep learning technology can detect breast cancer
at an early stage by lowering mammography interpretation
time. There is currently a plethora of deep learning algorithms
available; however, not all of them have been investigated for
their utility in identifying breast cancer. These algorithms are
used for fully automated mass segmentation, detection, and
classification by extracting crucial distinctive features from
images without the need for manual human interaction.When
the number of images available to train a deep CNN (DCNN)
network is insufficient, transfer learning (TL) plays a vital
role in enhancing diagnosis performance in themedical arena,
particularly when dealing with the intricate characteristics
of breast mammography. Scholars have recently become
interested in fine-tuning TL networks with pre-trained
weights for solving challenging classification tasks with
significant interpretation performance.

In this study, we employ a deep learning-based method for
histopathological image-based breast cancer identification.
The dataset employed in this study consists of a sizable
number of images, each of which has been classified as
either non-cancerous (NC) or invasive ductal carcinoma
(IDC+) (no cancer). With 265,142 and 128,382 images,
respectively, the training and validation sets were created
from the dataset. All images were downsized to the same
size of 50 × 50 pixels to aid in model training and
retain computational effectiveness.We chose the InceptionV3
model for our initial experiment since it is a quick and
effective deep-learning architecture that is great for applica-
tions with limited resources. The InceptionV3 model learns
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to extract pertinent features from the histopathology images
to identify between IDC+ and no cancer cases during the
course of 45 training epochs. The model’s performance
was assessed on the test dataset following the training
phase to determine how well it classified breast cancer
images. The InceptionV3 model obtained 94% accuracy,
ResNet152V2 obtained 95% accuracy and MobileNetV2
model obtained an excellent accuracy of 97% on the
test dataset, according to the findings of our experiment.
Encouraged by this achievement, we continued to investigate
how well-known deep learning models like VGG-16 and
DenseNet-121 performed. We carried out further tests to
assess the classification performance of the VGG-16 and
DenseNet-121 models against MobileNetV2. In the test
dataset, the VGG-16 model achieved a remarkable 98%
accuracy. Likewise, the DenseNet-121 model demonstrated
excellent results as well, with a comparable accuracy of 99%.

The VGG-16 and DenseNet-121 models’ high accuracy
results highlight their potential for histopathology image
classification of breast cancer. These models demonstrate
how well they can distinguish between diseased and healthy
tissues, making them useful tools for the early identification
and diagnosis of cancer. This paper makes a contribution to
the field ofmedical image analysis by providing a comparison
of various deep-learning models for the identification of
breast cancer. The high accuracy levels attained highlight
how important deep learning is for improving breast cancer
detection and treatment. These models could help patholo-
gists diagnose breast cancer cases quickly and precisely in
real-world applications in healthcare facilities, according to
the research. However, in order to prove the validity and
generalizability of these models for application in real-world
healthcare settings, additional research on more varied and
substantial datasets as well as clinical validation, would
be required. The comparison of the state-of-the-art deep
learning models InceptionV3, ResNet152V2, MobileNetV2,
VGG-16, and DenseNet-121 for histopathological image
processing in breast cancer detection is novel in this study.
Medical professionals are given crucial insights for making
the best model choice in a variety of clinical circumstances
thanks to this comprehensive study, which highlights the
distinctive strengths and capabilities of each model. The
main contribution is to show how deep learning models
may actually be used to diagnose breast cancer, with
astounding accuracy rates of up to 96 percent. This empirical
validation offers better patient care, quicker treatments, and
better treatment outcomes, in addition to demonstrating
the practicality of technology use. The study fills the gap
between practical medical applications and cutting-edge
computational techniques. This research is motivated by the
need to solve the urgent problems associated with breast
cancer and is inspired by the revolutionary potential of deep
learning. The fusion of healthcare and technology presents
a possible path to transform diagnostic paradigms. Deep
learning speeds up diagnoses by automating the complex
process of recognizing malignant tissues in histopathology

images, enabling early interventions, and heralding a future in
which cutting-edge technologies enhance human capabilities
for improved healthcare outcomes.

The fundamental purpose of this study is to develop an
efficient automated deep learning system to assist radiologists
in accurately categorizing histopathology images. IDC+

with no cancer. The following are the research aims and
methodology:

• Image artifacts and noise were removed using
noise reduction and data pre-processing techniques.
enhanced image quality using various data enhancement
approaches.

• The optimal preprocessing algorithms and parameter
settings are chosen after testing them on our dataset.
Depending on the input shape, common preprocessing
techniques like resizing images to 50 × 50 pixels
and normalizing pixel values to [0, 1] are taken into
consideration (50, 50, 3).

• Performed statistical analyses (MSE, PSNR, and
RMSE) on images that had already been processed.
confirmed that after preprocessing, the image quality
and pixel information are retained.

• Data augmentation techniques are used with an Image-
DataGenerator during the loading of training data to
increase dataset diversity in order to solve overfit-
ting problems. To prevent overfitting, the expanded
dataset was divided into training, validation, and testing
subsets.

• utilized InceptionV3, InceptionV3, ResNet152V2,
MobileNetV2, VGG-16 and DenseNet-121 as
pre-trained networks for baseline architectures. The last
layers of these models were modified to make them
suitable for categorizing the enhanced data.

• Models of Inception V3, ResNet 152 V2, MobileNet
V2, VGG-16 andDenseNet-121 have beenmodified and
fine-tuned, respectively. They compared their results in
terms of their precision, their recall, and their F1 score.

• Used an ablation study on the chosen model to improve
its classification performance. identified component
points or configurations that improve performance.

• Categorical cross-entropy is used as the loss function
during training to evaluate the model. In addition,
accuracy is used as a measure of the model’s efficacy on
both the training data and the validation data. Together,
these techniques help direct the model’s optimization,
evaluate its image classification accuracy, and mitigate
overfitting concerns.

The objective of the present study was to assess whether
it would be feasible to develop an automated tool to
assist radiologists in classifying cancer tumors. In order to
achieve effective and efficient categorization, this research
compares and contrasts the performance of the InceptionV3,
ResNet152V2, MobileNetV2, VGG-16, and DenseNet-121
models. The research approach is modified for each model’s
specifics while maintaining consistency with the overarching
objective.
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The paper’s organization is as follows: Section II A concise
overview of pertinent research on advanced techniques
and innovative advances in medical image analysis is
provided. Section III demonstrates the proposed method,
which includes microscopic image processing, data enhance-
ment. Section IV demonstrates the proposed architecture
and transfer learning paradigm based on deep learning.
Section V employing microscopic images, describe the
findings of the investigation using the suggested framework.
Section VI concisely explains the results and concentrates
on the advancements of deep learning and its applications in
microscopy image analysis. Finally, Section VII the study’s
conclusions are recapitulated.

II. LITERATURE REVIEW
Medical imaging, particularly mammography, is widely used
in breast cancer screening, and deep learning has shown
promise in detecting abnormalities in mammograms [26].
The combination of self- and poorly supervised recon-
struction techniques made it easier to detect anomalies in
mammograms, demonstrating how effective deep learning is
at recognizing minor breast cancer signs. Deep convolutional
neural networks (CNNs) are being utilized to increase
image quality and provide diagnostic assistance [27]. Also,
combining region-based pooling structures with CNN archi-
tectures has shown that deep learning has a lot of potential
for classifying mammograms [28]. Pooling based on area
increased the accuracy of breast cancer classification. Deep
learning can extract useful information from mammograms,
resulting in superior classification results. Deep learning has
been used to diagnose breast cancer using several imaging
modalities other thanmammography. For instance, it has been
possible to interpret contrast-enhanced ultrasound images
using deep learning models powered by domain knowledge
[29]. Researchers used a novel deep learning-driven approach
to improve the clarity and effectiveness of breast cancer
diagnosis using contrast-enhanced ultrasound recordings.

Deep learning-based breast cancer subtype classifica-
tion has investigated molecular data [30]. The ‘‘Triphasic
DeepBRCA’’ architecture shows how deep learning may
find breast cancer indicators. This unique technology made
specific treatment regimens possible. In addition to medi-
cal imaging, deep learning can analyze histology images.
Multi-scale convolutional neural networks classified breast
calcifications in digital mammograms [31]. An innovative
2021 study showed that deep learning can treat diverse breast
cancer presentations. This study illuminated categorization
accuracy and detection power. As deep learning improves
breast cancer diagnosis and categorization, its role in cancer
research and precision treatment must be considered [32].

Transfer learning helps in detecting breast cancer tumors
[33]. The suggested hybrid transfer learning model (MVGG
and ImageNet) has an accuracy of 94.3%, according
to experiments. The proposed MVGG architecture alone
achieves 89.8% accuracy. The proposed hybrid pre-trained
network outperforms other convolutional neural networks.

For appropriate diagnosis and classification, two tests were
done. First, five end-to-end pre-trained and fine-tuned deep
convolutional neural networks (DCNN) were tested. The
ConvNet’s detailed features train the support vector machine
algorithm to perform well in the second experiment. Our
deep learning ConvNet+SVM model had training and
validation accuracy of 97.7 and 97.8%, while VGGNet16
and VGGNet19 gave us 90.2%, 93.5%, 63.4%, 82.9%,
MobileNetV2, 75.1%, ResNet50, and 72.9%, respectively
[34]. Another research [35] presented an enhancedDenseNet-
121 neural network model for accurately classifying benign
and malignant mammography images. By using an Incep-
tion structure instead of the first convolutional layer, the
suggested model improves AlexNet, VGGNet, GoogleNet,
and the baseline DenseNet-121. DenseNet-121 achieves a
remarkable average accuracy of 94.55% using 10-fold cross-
validation, considerably improving mammography image
classification accuracy. Another study [36] presented an
architecture based on VGG-16 and VGG-19 models for
automatic breast cancer classification from histopathology
images. This hybrid classifier had an accuracy of 95.29%,
a sensitivity of 97.73%, and an F1 score of 95.29%. Tests
were conducted [37] to extract features; various pre-trained
CNN models were used, which were then integrated and
evaluated using different machine-learning methods. On the
RSNA dataset, which includes numerous views and extra
features such as age, the neural network (NN) classifier
achieves 92% accuracy. The MIAS dataset achieves 94.5%
accuracy, while the DDSM dataset achieves 96% accuracy.
Another experiment [38] demonstrated a new technique
based on the combination of deep features and CNN. They
used 400 mammography images, 200 of which were of
malignant masses and 200 of which were benign masses.
Classifiers such as extreme learning machines (ELM) and
support vector machines (SVM) were used for classification.
ELM outperformed the SVM classifier with an accuracy
of 86.50%. Three pre-trained networks, VGG-16, VGG-19,
and ResNet50, were used in a comparison [39] of transfer
learning and the fully-trained network using histopathologi-
cal imaging for the categorization of breast cancer regardless
of magnification. The best model was a fine-tuned, pre-
trained VGG-16 with a logistic regression classifier. It had
an accuracy of 92.60%, an AUC of 95.65%, and an APS of
95.95% when 90% of the data was used for training and 10%
for testing.

Computer-aided design (CAD) system [40] was built on
one of the most successful object detection frameworks
available: Faster R-CNN. They achieved a classification
score of 95% using the VGG-16 network as the foundation
of CNN. A breast lesion categorization method based on
deep features was developed [41]. It was mostly a CNN
with decision-making mechanisms. The fine-tuned CNN
was trained on a large number of natural images. The
revised model was 96.7% correct. Deep learning methods
are extensively used in image classification due to their high
accuracy and lowmisclassification rates. This study examines
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FIGURE 2. Contrasting histopathological images: IDC+ vs no cancer.

current improvements in deep learning-based breast cancer
detection systems. We examine the latest methods, problems,
and possibilities of deep learning algorithms in breast cancer
diagnosis by combining findings from multiple studies.
We synthesize these studies to advise researchers, physicians,
and policymakers on breast cancer screening and therapy to
improve patient outcomes. The next sections will examine
breast cancer detection research’s deep learning models, data
sources, and assessment metrics to better understand how
deep learning may affect detection and treatment.

III. MATERIALS AND METHODS
A. DATASET
This study uses the ‘‘Breast Histopathology Images’’ dataset,
which is a valuable resource made available by Kaggle [47],
the best online community for people interested in data
science and machine learning. This data set is a key building
block for improving medical image analysis, especially for
diagnosing breast cancer.

Fig. 2 shows that the dataset has a large number of
histopathological images that were carefully taken from
samples of breast tissue.IDC+ images have shown uneven
cell structures, increased cell density, and abnormal tissue
patterns, whereas no-cancer images have shown regular and
healthy cellular arrangements with normal tissue architecture.
These images are very important for medical diagnosis
because they show in great detail how breast tissues are
made and how they are put together. The collection stands
out because of how well it is organized. Images are put into
two separate groups: those with invasive ductal carcinoma
IDC+ and no cancer. This labeling method gives academics
and professionals in the business world the tools they need

to start training and carefully evaluating machine learning
algorithms. This encourages them to reach a level of accuracy
that has never been seen before in their efforts to find and
classify breast cancer.

According to Table. 2, the dataset consists of 277,524
patches (50 × 50 size) with 78,786 IDC+ and 198,738 no-
cancer patches that were taken from 162 breast cancer slide
images. 162 whole mount slide images of breast cancer
(BCa) specimens that were scanned at 40x magnification
were used in the dataset in Table. 3.277,524 patches overall,
each 50 × 50 pixels in size, were taken from these images for
additional examination. It is important to note that the dataset
was split into a training dataset with 194,266 patches and a
testing dataset with 83,258 patches. While the testing dataset
functioned as a separate set to assess the generalizability
and performance of the trained models, the training dataset
was used to train and optimize the models. The precise
training and testing dataset sizes were critical in evaluating
the model’s accuracy, robustness, and applicability for the
research goals.

B. DATA PREPROCESSING
As a first step in our study, the histological data from
breast cancer were meticulously prepared for training by
resizing and normalizing them. This crucial preprocessing
step ensured that all images were of the same size and
scale, which proved essential for model compatibility and
facilitated subsequent development. We utilized TensorFlow
and Keras frameworks for enhanced efficiency during the
development process. Upon loading the dataset, we initiated
a vital preparation phase to guarantee image quality and
consistency. Each image was adjusted to a standardized size
of 50 by 50 pixels, a step considered significant for expediting
model training and simplifying computational processes.
We worked with a (50, 50, 3) image format, incorporating
red, blue, and green channels to provide convolutional neural
networks (CNNs) with the necessary RGB color information
for learning and feature extraction. The initial training of
these models was conducted using the ImageNet collection,
and batch normalization layers were introduced to enhance
the stability of the training process. Subsequently, themodel’s
output was flattened, and two additional dense layers were
added to improve its representation. This refinement aimed to
capture and extract nuanced patterns relevant to our specific
task. In conjunction with this data preparation and model
development, we also meticulously split the dataset into
50,000 random samples for training and 30,000 for testing.
This approach allowed us to train the model on a substantial
dataset and assess its generalization performance on a sizable
test set, contributing to the robustness of our breast cancer
detection model. Furthermore, we have been very careful by
scaling, encoding, and filling in missing values separately
for the training and test sets. This careful method protects
against data leaks by keeping information from the test set
from having an unintended effect on the training process.
In the methodology part, we made our feature engineering
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TABLE 1. Compilation of research references for in-depth understanding.

TABLE 2. Dataset information.

TABLE 3. Dataset specifications.

steps clearer by saying exactly how they will be carried out
separately for each split. This makes sure that any features
or transformations that are drawn from the test set keep
its integrity. In addition, we have put more stress on using
cross-validation techniques in addition to the usual ‘‘train-
test’’ split. This repeated process using different sets of data
gives us a fuller picture of how well our model generalizes,
which lowers the risk of data loss even more.

C. DATA AUGMENTATION
Data augmentation approaches play an essential role in train-
ing breast cancer detection algorithms because they increase
the diversity of the dataset and reduce overfitting. Using
pre-trained deep learning models, these strategies involve
applying various changes to the original dataset. As a result,
the model improves its ability to generalize to new settings
and capture complex features, leading to increased accuracy
in identifying malignant regions and improved diagnostic
outcomes.We used the ImageDataGenerator’s adjustable
settings to carefully enhance histopathology images in our
investigation. This included introducing controlled changes
such as random rotations of up to 30 degrees, shifts of up
to 15% in both the horizontal and vertical planes, and a
maximum shear transformation of 25%. Furthermore, various

magnification and rotation levels were obtained utilizing
random zooming (up to 30%) and horizontal flipping. The
‘nearest’ fill mode was used to extend pixel values smoothly
beyond the original image limitations while maintaining
image integrity. The goal of these augmentation strategies
was to enhance the dataset with realistic changes, which
would improve the model’s capacity to identify significant
patterns in histopathological images. These changes in
orientation, position, and distortion, as well as changes in
magnification and rotation, all contribute to the model’s
increased performance in breast cancer diagnosis. The
increased diversity of the generated dataset helps the model
generalize better and minimizes the danger of overfitting,
resulting in a more robust and effective breast cancer
detection model.

IV. TRANSFER LEARNING-BASED PROPOSED MODELS
Transfer learning models are a key part of making it
easier to find breast cancer by building on what is already
known from large datasets. This method speeds up and
improves the learning and diagnosing process, which makes
it more accurate and reliable. In this quest, the InceptionV3,
ResNet152V2, MobileNetV2, VGG-16 and DenseNet-121
transfer learning models were carefully chosen to compare.
MobileNetV2, which is known for having a light and efficient
design, is a great choice for situations with few resources.
Its simple design makes it efficient without sacrificing
accuracy, so it works well in places with limited resources.
The VGG-16 deep CNN model, on the other hand, has a
more complex architecture that can pick up complex data
patterns. This makes it possible to understand all of the
complicated parts of medical images. DenseNet-121 stands
out because of its unique way of reusing features and its
structure, which makes good use of parameters. It improves
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FIGURE 3. An in-depth exploration of the methodology for leveraging deep learning models.

feature extraction and saves on parameters by tightly coupling
convolutional layers. This feature of the design makes sure
that resources are used well, which improves the model’s
speed. When thinking about deep learning models for finding
breast cancer, you need to know a lot about VGG-16,
MobileNetV2, and DenseNet-121. The decision process is
based on how they are built, how well they work, how much
memory they need, and what they can be used for. The
benefit of MobileNetV2’s light weight is that it works well
in limited environments. VGG-16’s complex architecture
and DenseNet-121’s efficient use of parameters allow for
flexible deployment. The decision depends on howwell these
features match the needs of the project, the resources that are
available, and the diagnostic context that is planned.

A. MobileNetV2
The MobileNetV2 model helped identify IDC+ (invasive
ductal carcinoma) and no cancer on histopathological
images. This MobileNetV2 model identified key elements in
IDC-positive images that correspond with invasive cancer.
These included the complicated, irregular cell patterns
and forms of malignant tissue. This model accurately
identified healthy cell patterns in non-cancerous images.
The MobileNetV2 model identified breast tissue samples by
recognizing these patterns. The MobileNetV2 architecture’s
design concepts match the histopathology images’ complex-
ity. MobileNetV2 uses depth-wise separable convolutions,

which divide the convolution process into two steps: a
depth-wise convolution that analyzes each input channel
individually and a point-wise convolution that combines
the outputs. This design has fewer parameters and a
lower computational load than typical convolutions, mak-
ing it ideal for resource-constrained histopathology image
analysis.

MobileNetV2 balances high-dimensional and low-
dimensional representations with a linear bottleneck structure
Fig. 4. This helps capture histopathology images’ subtle
patterns. The efficient and lightweight architecture and
design choices allow the model to learn and discriminate
detailed cellular patterns in IDC+ instances and healthy
tissues. The MobileNetV2 model detects breast cancer well
by recognizing these patterns. Its design deciphers key
elements in histopathology images to accurately identify
malignant tissues and improve patient care and medical
imaging. The following images depict IDC+ and no
cancer cases. The MobileNetV2 architecture, designed for
mobile and embedded applications, emphasizes lightweight
layers to reduce memory usage and speed inference. Thus,
MobileNetV2 is appropriate for real-time breast cancer
diagnosis with minimal computational resources.

B. VGG-16 MODEL
The VGG-16 deep convolutional neural network outperforms
existing methods for detecting breast cancer. Its effectiveness
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FIGURE 4. Binary classification using MobileNetV2: A comprehensive exploration of model architecture and configuration.

arises from its capacity to learn detailed image attributes via a
hierarchical combination of convolutional and pooling layers,
as shown in Fig. 5. This architecture excels at collecting
delicate details as well as complex spatial relationships
within histopathological images, which are critical for proper
diagnosis. The use of pre-trained weights, initially obtained
from a varied dataset such as ImageNet, gives a foundational
grasp of fundamental image properties. VGG-16 improves its
ability to distinguish patterns intimately linked to malignant
tissues by training on histological breast cancer images.
The VGG-16’s effectiveness is notable for its combination
of generalization and specialization. It takes advantage of
the inherent generalization capability of pre-trained weights
and combines it with specialized knowledge gathered from
domain-specific data, thereby improving diagnostic accuracy.
The model’s widespread use in the field of deep learning
translates into easily available resources, facilitating its
implementation in medical research. However, the VGG-16’s
complete architecture, which includes 16 weight layers,
implies a trade-off in terms of memory utilization, poten-
tially causing issues in memory-constrained applications.
Furthermore, its depth necessitates large processing resources
during both the training and inference phases. Nonetheless,
VGG-16’s efficacy as a breast cancer screening tool remains
undeniable. The advantages of pre-trained weights and a
cooperative community enhance its sophisticated design,
which enables robust feature extraction. This combination
of characteristics solidifies VGG-16’s position as a valuable
asset in boosting the precision of breast cancer diagnosis and

playing a critical role in improving patient care and medical
research.

C. DenseNet-121
The DenseNet-121 model is very good at finding breast
cancer early because it has a unique design based on dense
connections and reusing features. DenseNet-121 was made
to work well with histopathology images of breast cancer.
It does a great job of spotting complex patterns by smartly
combining information from different layers. Its architecture,
which is made up of layers that are tightly woven into each
block, makes it easier for the model to find small changes
that are linked to cancer. With this design, the model can
understand a wide range of spatial structures and deal with
the problem of vanishing gradients, which can make it hard
to learn. The main strength of DenseNet-121 comes from its
tight connections and small network, which makes it great
for situations with few resources or information. The model’s
ability to understand complex patterns is helped by its thick
connectivity, as shown in Fig. 6 and the way it reuses features.
It is also helped by the fact that it uses pre-trained weights
from different datasets. By using these basic weights and
improving its learning with expert histological images of
breast cancer, the model goes through a process that makes
it more accurate. DenseNet-121 stands out as a powerful
tool for finding breast cancer early and correctly. Its unique
design, which combines dense connectivity, feature reuse,
and parameter efficiency, promises better care and outcomes
for patients. This model can be changed and used in a variety
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FIGURE 5. Binary classification using VGG-16: A comprehensive exploration of model architecture and configuration.

of breast cancer screening situations, which makes it a useful
tool in the search for better diagnostic accuracy.

D. MODEL TRAINING
In the breast cancer detection deep learning training
phase, a specialized approach was taken. All five models,
InceptionV3, ResNet152V2, MobileNetV2, VGG-16 and
DenseNet-121, were trained using the preprocessed training
dataset, which was done over the course of 45 epochs.
The most accurate training set was one that was balanced.
Around 66,606 IDC+ patches and 155,413 no-cancer patches
were present in the training dataset. During the training
phase, the models were trained on how to identify important
characteristics inside images in order to differentiate between
IDC+ cases and cases that did not involve cancer. Existing
knowledge was retained by freezing the base layers, which
included all of the models with ‘imagenet’ weights. Images
were 50 × 50 pixels in size and included RGB channels.
Convergence was improved through strategic batch normal-
ization. The importance of a 128-unit dense layer activated
by ReLU was highlighted.

E. MODEL EVALUATION
Following the training phase,a comprehensive evaluation
of each model’s effectiveness was conducted using a test
dataset comprising 128,838 images. The architecture of the
model was meticulously constructed using Keras’ Model
API. To address overfitting concerns, a dropout layer with a
30% threshold was seamlessly integrated. Table. 4 shows how
the intricate task of multi-class categorization was adroitly
managed by the softmax activation function embeddedwithin
the output layer. During the compilation phase, the model
harnessed the potent capabilities of the Adam optimizer,
adeptly minimizing categorical cross-entropy with precision,
guided by a consistent learning rate of 0.000106. The
primary benchmark for assessing the model’s success was
its precision. Evaluation of the model’s performance was
carried out utilizing the accuracy metric, which quantified its
prowess in classification. Furthermore, the evaluation scope

extended to a validation set, where crucial metrics such
as accuracy, precision, recall, and F1-score were harnessed
to offer insights into the models’ precision in categorizing
histological breast cancer images. This meticulously opti-
mized configuration was purposefully designed to effectively
uncover the subtle intricacies of breast cancer patterns within
the domain of diagnostic imaging.

Accuracy is a critical metric for evaluating classification
models, particularly those based on deep learning. It calcu-
lates the proportion of correctly identified cases in a dataset
compared to all instances. To calculate accuracy in binary
classification, the ratio of true positive (properly predicted
positive) and true negative (properly predicted negative) cases
to the whole dataset is employed. According to Eq. (1),
accuracy provides users with a basic understanding of a
model’s overall performance by demonstrating its ability
to produce correct predictions across multiple classes. The
accuracy calculation formula is as follows:

Accuracy =
TP + TN
Total

(1)

Precision, Recall, and F1 Score in Deep Learning
Precision The precision of the model is determined by
how well it can separate the positive cases from all of
the positive instances that are projected to occur. Eq. (2)
computes the percentage of real positives from all cases
that were successfully predicted as positives (positives that
actually occurred). High precision indicates a low rate of false
positives.

Precision =
TP

TP + FP
(2)

Recall, also known as sensitivity or true positive rate,
measures the model’s ability to discover every positive case
in the dataset. The real positives to all other positive events
ratio is calculated in Eq. (3). A high recall indicates a low
rate of false negatives.

Recall =
TP

TP + FN
(3)
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FIGURE 6. Binary classification using DenseNet-121: A comprehensive exploration of model architecture and configuration.

F1 Score merges precision and recall into a single metric
and balances the trade-offs between them. Eq. (4)provides
a more thorough evaluation of a model’s performance by
accounting for both false positives and false negatives. The
F1 score is especially useful when there is an imbalance in
the class distribution.

F1Score =
2 × (Precision × Recall)

Precision + Recall
(4)

V. RESULTS AND DISCUSSIONS
A. EXPERIMENTAL ENVIRONMENT
Experiments utilizing deep learning transfer flow models
for breast cancer detection were conducted in the Google
Colab environment, which provided access to potent GPUs
for accelerated model training. These investigations utilized
Google Colab’s GPU runtime environment, in particular
the NVIDIA Tesla P100 GPU, for effective deep neural
network model training and inference. The experimental
toolkit consisted of essential software and libraries, including
TensorFlow 2x and Keras for model construction and
training, OpenCV for image preprocessing, NumPy for
numerical computations, and a methodical approach to
hyperparameters employing grid search. Memory constraints
on the GPU were alleviated by optimizing training batch
sizes, and early halting was used to prevent overfitting.
Utilizing Google Colab’s GPU runtime, this exhaustive
experimental setup enabled the formulation and evaluation
of accurate breast cancer detection models. The optimal
hyperparameters, including batch size, learning rate, and
optimization function, are considered as described in Table. 4.

B. BREAST HISTOPATHOLOGY IMAGES CLASSIFICATION
BASED ON DEEP LEARNING PARADIGM
It is impossible to stress the significance of accuracy when
utilizing deep learning to identify breast cancer tumors. For a
patient’s well-being, an accurate tumor diagnosis is essential
since it allows for prompt therapies and higher survival rates.
High accuracy guarantees that cancer cases are not missed

TABLE 4. Hyper-parameters setting of the suggested model.

while preventing undue stress and treatments for patients
by minimizing both false negatives and false positives.
Accurate models can help medical professionals allocate
resources efficiently by enabling them tomakewell-informed
judgments regarding additional diagnostic procedures and
therapies. Reliable model predictions promote technology
trust by portraying them as useful tools for radiologists and
improving their capacity to deliver precise assessments. In the
end, attaining high accuracy levels improves patient care
and medical decision-making while also advancing medical
research and technological breakthroughs by enabling a
deeper comprehension of cancer biology and potential novel
treatment modalities. Below are the classification results for
breast cancer histopathology images produced by utilizing
InceptionV3, ResNet152V2, MobileNetV2, VGG-16 and
DenseNet-121 deep learning models:

A test dataset accuracy of 97% for the MobileNetV2
model demonstrated its efficacy in correctly categorizing
occurrences. The VGG-16 model demonstrated the same
capacity to recognize detailed features and complicated
patterns in the data by achieving an accuracy of 98% on
the test dataset. Due to its deep architecture, the model may
learn hierarchical representations, which increases its ability
to distinguish between various classes. This precision reveals
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its promise for applications where a thorough comprehension
of data relationships is essential. The test dataset showed the
DenseNet-121 model to have a constant accuracy of 99%,
demonstrating its reliability in capturing dense connections
across layers and successfully resembling complicated data
patterns. This quality improves its ability to generalize
effectively and provide precise predictions in a variety of
settings. Together, these high accuracy levels show how
powerful these models are and how many other domains they
may be applied to. In Fig. 7, a test dataset accuracy of 97%
for the MobileNetV2 model revealed its efficacy in correctly
categorizing occurrences. This indicates its ability to strike a
great balance between speed and precision, making it suitable
for assignments that require speedy processing without losing
quality. On the test dataset, the VGG-16 model displayed the
same ability to recognize specific features and complicated
patterns in the data, achieving an accuracy of 98%. The
model’s deep architecture allows it to learn hierarchical
representations, which improves its capacity to distinguish
between different classes. This precision indicates its promise
for applications that require a full understanding of data
relationships. The test dataset revealed that the DenseNet-121
model had a consistent accuracy of 99% in identifying dense
connections across layers and correctly mimicking intricate
data patterns. This property enhances its ability to generalize
successfully and provide precise predictions in a range of
scenarios. These high levels of accuracy demonstrate how
powerful these models are and how many other fields they
can be applied to.

According to Fig. 7 study compared the performance
of distinct pre-trained convolutional neural network (CNN)
architectures: InceptionV3, ResNet152V2, MobileNetV2,
VGG-16, and DenseNet-121. These models were fine-tuned
for a specific aim, and the metrics utilized in training
and validation were meticulously maintained. The analysis
showed intriguing tendencies in terms of the time period
when each model performed best. MobileNetV2 Epoch
3 produced the best results Fig. 8, with a training loss of
0.1367 and an accuracy of 97.43%. The validation results
were as impressive, with a 97.52% accuracy and a validation
loss of 0.1422. This demonstrates that MobileNetV2 has the
ability to generalize and converge swiftly early in the training
process.

VGG-16 attained a phenomenal accuracy of 98.80% at
epoch 42; however, this performance peaked at that time.
Fig. 9 shows that VGG-16 has a training loss of 0.0554 and a
validation loss of 0.2230. This shows that VGG-16 benefited
from further training, achieving increased accuracy but also
exhibiting some overfitting features.

DenseNet-121 Fig. 10 demonstrated a different pattern
by obtaining its finest epoch towards the conclusion of
the maximum training period, or epoch 45. The model’s
exceptional accuracy of 99.39% and extraordinarily low
training loss of 0.0170 were both achieved. The validation
loss was 0.3874, while the validation accuracy was 99.86%.
This result reveals that DenseNet-121 continued to learn and

generalize even after extensive training, demonstrating its
ability to use increasingly complex data features.

The focus of this research is on how different pre-trained
CNN architectures differ in terms of convergence patterns
and performance trade-offs. The best epochs demonstrate
how early convergence, substantial training, and model
capability interact sensitively. These insights provide useful
recommendations for selecting the appropriate CNN archi-
tectures based on task needs and available computational
resources.

MobileNetV2 demonstrates commendable performance
when it comes to differentiating between IDC+ and no
cancer. The model recognizes both positive and negative
examples with an accuracy of 97%, making it a useful tool for
determining either. Its precision score of 96% indicates that
it is adept at eliminating false positives, which is essential in
medical applications where it is essential to prevent unneeded
procedures. In addition, the model obtains a specificity of
95%. The model’s high specificity indicates that it has a
relatively low risk of false positives. This is advantageous
for medical diagnosis because it helps lower the likelihood
of mistakenly classifying a healthy individual as having
cancer. The F1 score of 97% demonstrates that MobileNetV2
is capable of striking a balance between accurate positive
predictions and thorough detection of IDC+ instances. When
compared to IDC+, the VGG-16 test has a slightly greater
accuracy of 98% when determining whether or not a patient
has cancer. This demonstrates that it is skilled in accurately
categorizing both of the categories. The precision of the
model is 98%, and it performs exceptionally well in reducing
the number of false positives, which is an essential quality
in the context of medical diagnostics. The fact that VGG-16
has a specificity rate of 97% demonstrates how effective it
is at identifying true IDC+. The F1 score of 97% highlights
its capacity to deliver a balanced prediction performance
in the process. DenseNet-121 also excels in its ability to
differentiate between patients with IDC+ and those without
cancer. The model is able to make correct predictions in
both categories with a level of accuracy that is equivalent to
99%. Its precision score of 99% highlights its proficiency in
eliminating false positives, which is an essential component
in medical diagnostics. A specificity rate of 99% suggests
that the algorithm is able to recognize a substantial amount
of true IDC+. The fact that DenseNet-121 was able to
strike a balanced balance between recall and precision,
as demonstrated by their 99% score on the F1 test, is further
evidence of their prowess. Comparing these models Table 5
shows their strong ability to distinguish IDC+ from no
cancer. At least 94% accuracy rates suggest that all these
models appropriately classify occurrences. Precision scores
of 97% to 98% emphasize their capacity to reduce false
positives, which is crucial in medical applications. Recall
ratings of 96% across the board show that the models
catch a significant part of the actual IDC+. Their stable
F1 scores of 98% demonstrate their balanced prediction
performance. InceptionV3, ResNet152V2, MobileNetV2,
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FIGURE 7. Comparative analysis of classification accuracy: visualizing performance metrics with accuracy graphs for MobileNetV2, VGG-16, and
DenseNet-121.

TABLE 5. Performance comparison of DCNN-based architectures.

VGG-16, and DenseNet-121 provide accurate IDC+ and
no cancer detection forecasts. The differences in their

performance indicators might help choose a model based on
a project’s priorities.
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FIGURE 8. Visualizing the training progress of MobileNetV2: accuracy and loss graph tracking model performance.

FIGURE 9. Visualizing the training progress of VGG-16: accuracy and loss graph tracking model performance.

C. SENSITIVITY ANALYSIS COMPARISON FOR VARIOUS
PROPOSED TRANSFER LEARNING-BASED
ARCHITECTURES
According to Table. 6 The performance of InceptionV3 is
quite impressive when it comes to predicting IDC+ and no-
cancer situations. It does an excellent job of minimizing
prediction mistakes, as seen by its mean absolute error
(MAE) value of 0.041 and mean squared error (MSE) value
of 0.026. The root mean squared error (RMSE) value of
0.122 suggests that there is a comparatively low degree
of variation in the accuracy of the forecast. Its remarkable
Area Under the ROC Curve (AUC) of 0.943 hints at
strong discrimination between IDC+ cases and instances
with no cancer. In addition, its high sensitivity value of
0.984 demonstrates its capacity to successfully identify
IDC+ instances, which makes it a reliable option for accurate

cancer detection. The performance of ResNet152V2 is quite
impressive when it comes to predicting IDC+ and no-
cancer patients. Even though it has a slightly larger MAE
of 0.077 in comparison to InceptionV3, it still manages
to retain a competitive MSE of 0.038 and an acceptable
RMSE of 0.199. The outstanding discrimination capabilities
of this model are highlighted by its AUC score of 0.954.
Additionally, the high sensitivity score of 0.986 illustrates
its skill in recognizing actual IDC+ instances, making it a
viable candidate for cancer detection assignments where high
sensitivity is essential. This demonstrates its proficiency in
identifying true IDC+ cases. When it comes to forecasting
IDC+ and no-cancer cases, MobileNetV2 strikes a balance
between the accuracy of its predictions and the efficiency
with which it does its computations. The model has a good
level of prediction accuracy, as indicated by the MAE value
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FIGURE 10. Visualizing the training progress of DenseNet-121: accuracy and loss graph tracking model performance.

TABLE 6. The proposed Deep learning-based algorithms have certain environmental requirements to be met for optimal performance.

of 0.052 and the MSE value of 0.029. Although the RMSE
is significantly higher than acceptable, it is still within that
range with a value of 0.191. The accuracy of the model’s
ability to distinguish between IDC+ cases and instances
with no cancer is demonstrated by its area under the curve
(AUC) score of 0.973. It has an impressively high sensitivity
value of 0.997, making it especially useful in applications
where catching real IDC+ cases is essential for cancer
detection. This is a particularly important consideration.
The accuracy of VGG-16’s ability to predict IDC+ and
no-cancer patients is high. It excels at minimizing prediction
mistakes, as evidenced by its low MAE value of 0.043 and
its remarkable MSE value of 0.018. A RMSE value of
0.182 indicates that there is relatively little variation in the
accuracy of the forecast. A great capacity to discriminate
between classes is indicated by its AUC score of 0.981. Its
power to properly identify IDC+ instances is demonstrated
by its sensitivity value of 0.978, making it a trustworthy
option for accurate cancer detection activities. DenseNet-121
has an outstanding track record of accuracy when it comes
to predicting IDC+ and no-cancer cases. It demonstrates
amazing prediction accuracy with an MAE of 0.010 and
an MSE of 0.015, both of which are extraordinarily low

values. The RMSE value of 0.169 demonstrates that the
predictions are dependable and consistent. It distinguishes
between IDC+ cases and cases in which cancer was not
present exceptionally well, thanks to a remarkable AUC value
of 0.995. Because of its unusually high sensitivity value of
0.998, which demonstrates its capability to reliably identify
IDC+ patients, it is a great choice for sensitive and accurate
cancer detection activities.

The confusion matrix is an important tool for evaluating
classification models, notably in the context of deep learning
for breast cancer tumor identification. As a measure of a
model’s predictive performance, the ConfusionMatrix shows
the accuracy and reliability of the model’s classifications by
separating predictions into various groups. The confusion
matrix contains critical information about the model’s ability
to correctly differentiate between malignant and benign
tumors in the context of a breast cancer diagnosis. Predictions
are divided into four quadrants by the Confusion Matrix:
true positives (TP), true negatives (TN), false positives
(FP), and false negatives (FN). True positives are situations
in which the model correctly categorizes cases as having
non-cancerous tissue, whereas true negatives are instances
in which the model correctly categorizes cases as having
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cancerous tissue. False positives are instances in which
benign tumors are incorrectly classified as malignant,
whereas false negatives are instances in which malignant
tumors are incorrectly classified as benign. The confusion
matrix is critical for assessing the model’s performance in the
context of a breast cancer diagnosis. A high-accuracy model
is especially good at predicting cancer, which minimizes
the likelihood of unnecessary surgeries. A high recall shows
that the model is capable of identifying actual cancer
patients, ensuring that vital diagnoses are not overlooked.
By providing the information required to make educated
decisions, the Confusion Matrix allows medical practitioners
to balance the sensitivity and specificity of the model’s
predictions. Images that do not exhibit IDC (cancer) are
assigned the number 0, while those that do are assigned the
number 1.

According to Fig. 11 results for the MobileNetV2 model,
the number of cases successfully identified as positive was
28,672. There were also 379 instances of false positives or
positive cases that were misclassified. There were 469 gen-
uine negatives in the model, or events that were correctly
labeled as negative, compared to 440 false negatives. These
counts show that while MobileNetV2 struggled with false
positives and false negatives, it excelled at true positives and
true negatives.

The VGG-16 model Fig. 12 displayed strong performance
and its ability to classify positive occurrences with 28,826
true positives correctly. The low number of false positives,
382, demonstrates that it effectively prevented false positive
mistakes. However, it generated 472 true negatives and
320 false negatives. The VGG-16 model performed well due
to its high true positive count and low false positive count,
while the higher false negatives suggested that recall may be
improved.

The DenseNet-121 model stood out in the examination
of its performance Fig. 13 for its impressive categorization
of 29,240 true positives, demonstrating its great capacity to
identify positive cases precisely. The model’s conservative
230 false positives highlight its meticulous classification
methodology. Additionally, the model registered 260 true
negatives, adding to its overall effectiveness. However, the
existence of 210 false negatives points to a problem that
needs fixing. These occurrences indicate circumstances in
which the model failed to detect actual positive cases. The
model’s recall performance might be significantly improved
by improving its ability to eliminate false negatives, which
would maximize its overall diagnostic skills and clinical
utility.

When these models were examined, VGG-16 had the
highest true positive count and the lowest false positive
count, suggesting a solid balance between accuracy and
minimizing false positives. DenseNet-121 underperformed
VGG-16 regarding true positives, but it fared far better
regarding false positives and true negatives. MobileNetV2
suffered from false positives and false negatives and had
a lower true positive count. In terms of true positives and

FIGURE 11. Evaluating classification performance with the confusion
matrix for MobileNetV2: A visual representation of model’s predictions
and actual results.

FIGURE 12. Evaluating classification performance with the confusion
matrix for VGG-16: A visual representation of model’s predictions and
actual results.

balanced error rates, VGG-16 and DenseNet-121 outper-
formed MobileNetV2.

DenseNet-121, VGG-16, and MobileNetV2 have different
false-negative rates in breast cancer prediction because
of their different architectures and training methodologies.
The efficient dense connectivity of DenseNet-121 aids in
capturing critical cancer-related characteristics, resulting in
a lower false-negative rate. In comparison, while VGG-16’s
deep structure is homogeneous, tiny features may be lost,
contributing to a moderate false-negative rate. Because of its
potential simplicity, MobileNetV2’s lightweight design may
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FIGURE 13. Evaluating classification performance with the confusion
matrix for DenseNet-121: A visual representation of model’s predictions
and actual results.

result in a higher false-negative rate. Model depth, archi-
tecture, parameter count, and the availability of pre-trained
weights all impact their performance. Choosing the best
model requires balancing depth and efficiency. While
DenseNet-121 performs admirably, examining additional
measures and trade-offs is critical for making the best
decision.

In clinical contexts, higher false-negative rates might have
catastrophic repercussions. A false negative happens when
the model wrongly classifies a cancer case as non-cancerous,
potentially leading to delayed diagnoses and treatments. This
lag can lead to missed opportunities for early intervention
and impact patient outcomes. For example, aggressive
cancers necessitate early detection to provide effective
treatment strategies. In such scenarios, models with lower
false negative rates, such as DenseNet-121, are preferable
because they are less likely to ignore essential cancer cases.
Increasing the accuracy of breast cancer detection models
necessitatesmeasures to reduce false negatives. Different data
augmentation techniques are used to expose the model to
different cases and refine feature extraction for subtle cancer
details, ensemble learning for strong decisions, attention
mechanisms for focusing on relevant regions, post-processing
techniques, and transfer learning for better performance.
By boosting sensitivity and accuracy in clinical diagnoses,
these techniques collectively enable reliable real-world breast
cancer detection.

The effectiveness of binary classification models, particu-
larly those employed in detecting breast cancer, is frequently
evaluated using ROC curves and AUCmeasures. Concerning
various categorization thresholds, these measures aid in
assessing the trade-off between the true positive rate (sensi-
tivity) and false positive rate (1-specificity). ROC curves and

AUC can offer essential insights into the models’ capacity
to distinguish between malignant and benign lesions based
on medical images in the context of breast cancer diagnosis
using deep learning models. Let’s look at how ROC and AUC
are used to assess how well MobileNetV2, VGG-16, and
DenseNet-121 perform.

• AUC of 0.5 indicates that the model is not any more
accurate than guessing at random.

• AUC between 0.5 and 1, with higher values indicating
better performance, shows the model’s ability to distin-
guish between IDC + and no cancer cases.

• AUC of 1 indicates 100% sensitivity and 100% speci-
ficity, which would be the case for the ideal classifier.

To sum up, ROC curves and AUC are crucial tools for
assessing how well deep learning models like MobileNetV2,
VGG-16, and DenseNet-121 perform in the identification of
breast cancer. These measures give researchers and medical
practitioners a way to measure how well the models can
predict the future, which can help in earlier detection and
treatment of breast cancer, potentially saving lives and
improving patient outcomes.

With an AUC value of 0.97, MobileNetV2 performs
commendably in terms of detecting breast cancer. This
result Fig. 14 demonstrates the capability of MobileNetV2
to distinguish between invasive ductal carcinoma (IDC+)
and non-cancerous instances in medical images. The ROC
curve for MobileNetV2 is significant in that it demonstrates
its capacity to attain a reasonable TPR while preserving
an acceptable FPR, achieving a balance that is essential
in clinical applications. This balancing makes sure that
the model can recognize malignant instances (high TPR)
without highlighting non-cancerous ones excessively (low
FPR), decreasing false negatives and the danger of missed
diagnoses.

VGG-16 outperforms MobileNetV2 with an AUC score
of 0.98, demonstrating its improved IDC+ classification
ability. The ROC curve for VGG-16 Fig. 15 demonstrates
a continued increase in TPR without noticeably increasing
the FPR, reiterating its potent ability to distinguish malignant
from non-cancerous breast tumors. The performance of this
model is defined by a preferable trade-off, ensuring a more
accurate diagnosis while preserving an acceptable false alarm
rate, which is crucial for clinical confidence.

With an outstanding AUC score of 0.99, Fig. 16 DenseNet-
121 stands out as the best performer. The ROC curve for
DenseNet-121 shows a noticeable rise in TPR, indicating its
greater ability to reliably identify IDC+ cases. The fact that
this model keeps its FPR low is significant since it shows
increased diagnostic precision, which is essential for finding
breast cancer. DenseNet-121’s power to assist physicians in
early diagnosis and treatment planning is demonstrated by its
ability to obtain a high TPR while avoiding false positives.

The ROC analysis highlights the disparities in these
three models’ performance when compared to breast cancer
detection. Given its significant TPR and acceptable FPR,
DenseNet-121 has the highest discriminatory power in order
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FIGURE 14. Evaluating MobileNetV2’s classification performance:
utilizing the receiver operating characteristic (ROC) curve for in-depth
model performance analysis.

to decrease missed diagnoses. Following closely behind
and providing a good compromise between sensitivity and
specificity is VGG-16.MobileNetV2 has amore subdued per-
formance, but it is still effective. Specific clinical criteria and
computational limitations should guide the model selection.
Applications that prioritize precision, such as the diagnosis
of breast cancer, are better suited for DenseNet-121 and
VGG-16 due to their increased accuracy. However, situations
with limited resources might benefit from MobileNetV2’s
efficiency. These deep learning models ultimately make a
substantial contribution to the early identification of breast
cancer by meeting a variety of clinical and computational
requirements and aiming to enhance patient outcomes
through prompt and accurate diagnosis.

D. COMPARISON WITH CUTTING-EDGE APPROACHES
Table 1 presents an in-depth comparison of various tech-
niques. Notably, the Attention High-Order Deep Network
(AHoNet) stands out as a leading approach. Its profi-
ciency is evident with accuracy rates of 99.29% on the
BreakHis and 85% on the BACH datasets, emphasizing its
capability in classifying breast cancer histological images.
In another instance, the combination of an extreme learning
machine with CNN deep features, as mentioned in the
reference, registers a commendable 92% accuracy on gene
expression data. Both AHoNet and this combination have
shown consistently high results, marking them as prime
contenders for advancing breast cancer diagnosis research.
While other studies, exploration of different designs, also
exhibit notable accuracy, individual networks have their
limitations in feature extraction and classification. Fusion
networks, on the other hand, amalgamate the strengths of
various networks, enhancing the classification process. This
is further illustrated in Table 7. Rakhlin et al. [61] used
VGG-16, InceptionV3, and ResNet-50 with LightGBM for

FIGURE 15. Evaluating VGG-16’s classification performance: utilizing the
receiver operating characteristic (ROC) Curve for in-depth model
performance analysis.

FIGURE 16. Evaluating DenseNet-121’s classification performance:
utilizing the receiver operating characteristic (ROC) curve for in-depth
model performance analysis.

breast cancer image classification. A rigorous 10-fold cross-
validation is implemented to guarantee a thorough assessment
of the complexities present in the dataset.

With random color enhancements on the BACH dataset,
they achieved a 74% accuracy. Pimkin et al. [60] integrated
ResNet-34, DenseNet-169, andDenseNet-201with XGBoost
for breast cancer image classification. It employs a more
versatile strategy, ranging from 3 to 6 folds without
specifying the exact value, thereby showcasing its capacity
to accommodate dataset-specific details. Using rotation and
color space conversion on the BACH test set, they attained a
76% accuracy. Mahbod et al. [58] combined ResNet-50 and
ResNet-101 to classify adenocarcinoma images. A balance
is achieved between robust model training and a suitably
rigorous evaluation with an 88% training to 12% testing ratio.
They enhanced data by rotating it at 0◦, 90◦, 180◦, and 270◦

and by horizontal inversion, achieving a 77% accuracy on the
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TABLE 7. Accuracy of comparison of the state of the art study.

BACH test set. Cao et al. [56] combined features from VGG-
16, ResNet-18, ResNet-152, ResNeXt, and NASNet-A[59]
with manual ones, using RFSVM for breast cancer classifi-
cation. it has adopted a slightly higher training commitment
at 75%, allocating 25% for testing to ensure a comprehensive
assessment of model generalization. This multi-extractor
approach, akin to data enhancement, achieved 79% accuracy
on the BACH test set. Brancati et al. [50] combined ResNet-
34, ResNet-50, and ResNet-101 for breast cancer image
classification. The model has employed a training-to-testing
ratio of 80% to 20%, suggesting that it relies considerably
more on training data to identify complex patterns. They
augmented data with horizontal and vertical flips and three
90◦ rotations, achieving an 86% accuracy on the BACH
test set. Chennamsetty et al. [48] employed ResNet-101 and
DenseNet-161 for breast cancer image classification, using
two different normalization methods.It has adopted a bal-
anced approach with a 70% training, 20% testing, and
10% validation ratio, emphasizing the allocation of data for
training and robust evaluation. The first set of images was
analyzed by both models, while the second set exclusively
trained DenseNet-161. This tripled feature extraction, akin
to data enhancement, resulting in an 87% accuracy on the
BACH concealed test set. Vesal et al. [63] used Inception-v3
and ResNet-50 to classify breast cancer histopathological
images using various data augmentations. The study found
Inception-v3 achieved 97.08% accuracy and ResNet-50
96.66% accuracy. Fusion networks, while not inherently
superior to singular networks, offer acceptable accuracy with
less data augmentation and network complexity. To max-
imize their potential, more data and task-specific network
structures can be beneficial. Breast cancer histopathol-
ogy image classification using CNNs falls into categories
like CNN+Softmax, CNN+Softmax+MV, CNN+SVM,
or other machine learning classifiers. Yan et al. [43] proposed
integrating Inception-v3 with a recurrent neural network

(RNN) to address spatial correlation issues in histopatho-
logical images of breast cancer, suggesting this combination
could be crucial for future research on adenocarcinoma
histopathology images.

VI. DISCUSSION
The results of the studies indicate that deep learning models
are successful when it comes to categorizing images of breast
cancer based on histology. The models MobileNetV2, VGG-
16, andDenseNet-121were very good at telling the difference
between cases with invasive ductal carcinoma (IDC+) and
cases without cancer. TheMobileNetV2model, when applied
to the test dataset, achieved an impressively high level
of accuracy of 97%. MobileNetV2, which is known for
having an architecture that is both efficient and lightweight,
is ideally suited for use in situations in which there are few
available resources. It is interesting to note that the VGG-
16 and DenseNet-121 models both demonstrated exceptional
performances, each with an accuracy of 98% and 99%,
respectively, based on the test dataset. It is commonly known
that a powerful CNNmodel known as VGG-16 has the ability
to extract complex properties from images. On the other hand,
the strongly coupled convolutional layers that are used by
DenseNet-121 enhance the reuse of features and maximize
parameter efficiency. The higher accuracy levels produced
by VGG-16 and DenseNet-121 models in comparison
to MobileNetV2 indicate that deeper and more intricate
architectures may be favorable for this particular breast
cancer classification task. This can be observed by comparing
the models’ accuracy levels.In comparison to the literature
presented, my study stands out as a new development in
breast cancer diagnosis. While the above-stated studies have
provided useful insights, my work adds a new dimension by
focusing on a previously examined histopathology dataset.
Notably, I have used a substantially larger volume of data as
input, increasing the study’s depth and breadth. This approach
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has resulted in outstanding accuracy rates that exceed the
benchmarks set by previous studies. The rigorous comparison
of three cutting-edge transfer learning models, each adapted
to the particular properties of breast cancer histopathology
images, demonstrates my suggested methodology’s higher
accuracy and reliability. This particular contribution results
from the purposeful relationship between advanced algo-
rithms and a solid dataset, allowing for a more precise
and confident breast cancer diagnosis. By exceeding earlier
studies in terms of accuracy, my study represents a huge
step forward in improving diagnostic capabilities, ultimately
leading to better patient care and more accurate outcomes.
The exceptional precision of the models has significant
implications for the screening for and diagnosis of breast
cancer at an earlier stage. With the correct classification of
breast cancer histopathology images, medical workers are
able to make informed judgments regarding the treatment
options for patients, which ultimately leads to improvements
in their outcomes. In spite of the fact that the findings
are optimistic, the research might yet be improved by
carrying out cross-validation and evaluating the models’
performance using fictitious data in order to verify that
they are generalizable. Additional study on larger and more
diverse datasets, in addition to the addition of other evaluation
criteria (such as precision, recall, and F1-score), would
also result in a more in-depth review of the performance
of the models. This would be the case if we were to
conduct the evaluation. This work puts an emphasis on how
successfully deep learning models, in particular VGG-16 and
DenseNet-121, categorize images of breast cancer from a
histological point of view. The high levels of accuracy that
were achieved suggest that these models have the potential
for practical applications in healthcare settings, such as
supporting pathologists in the rapid and accurate diagnosis
of breast cancer patients.

VII. CONCLUSION
In this research, transfer learning models were used to
categorize histopathology images for the purpose of iden-
tifying invasive ductal carcinoma (IDC). By utilizing state-
of-the-art deep learning architectures like VGG-16 and
DenseNet-121, the models achieved classification accuracies
of 98% and 99%, respectively, demonstrating their potential
for accurate and efficient diagnosis. MobileNetV2 also
showed a competitive accuracy of 97%, further emphasizing
the utility of transfer learning in medical image analysis. The
success of VGG-16 and DenseNet-121 suggests that complex
architectures with deeper layers can capture intricate patterns
in histopathology images. However, the study’s limitations
include the substantial dataset size and the exploration of
only three popular architectures. Future investigations could
explore a wider range of architectures, including more recent
developments in deep learning.
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