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ABSTRACT The computing world is rapidly evolving and advancing, with new ground-breaking
technologies emerging. Quantum Computing and Quantum Machine Learning have opened up new
possibilities, providing unprecedented computational power and problem-solving capabilities while offering
a deeper understanding of complex systems. Our research proposes new variational methods based on a
deep learning system based on an optical quantum neural network applied to Machine Learning models for
point classification. As a case study, we considered the binary classification of points belonging to a certain
geometric pattern (the Two-Moons Classification problem) on a plane. We think it is reasonable to expect
benefits from using hybrid deep learning systems (classical + quantum), not just in terms of accelerating
computation but also in understanding the underlying phenomena and mechanisms. This will result in the
development of new machine-learning paradigms and a significant advancement in the field of quantum
computation. The selected dataset is a set of 2D points creating two interleaved semicircles and is based on
a 2D binary classification generator, which aids in evaluating the performance of particular methods. The
two coordinates of each unique point, x1 and x2, serve as the features since they present two disparate data
sets in a two-dimensional representation space. The goal was to create a quantum deep neural network that
could recognise and categorise points accurately with the fewest trainable parameters possible.

INDEX TERMS Quantum computing, variational methods, deep learning, quantum feed-forward neural
networks, optical quantum computing.

I. INTRODUCTION
The phases of human understanding have always alternated
between awe at the vastness of the phenomena in front of
us and joyous mastery of the goals established. Galileo’s
insight that mathematics is the simple language that allows
us to communicate with nature has been confirmed by
the gradual development and introduction of a formidable
mathematical arsenal into science. Our faith in positivist
determinism at the turn of the 20th century was severely
undermined by emerging phenomena that eventually gave
rise to quantum mechanics. Machine learning techniques
are used to calculate enormous amounts of data [1], [2].
The study of theoretical and practical parallels between
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particular physical processes and learning systems, such as
neural networks, is known as quantum machine learning [3],
[4]. Though basic molecular structures can be described by
simulating them with automatic calculation tools that require
ever-increasing computational power, the observation that
deterministic chaos can be generated from models with a
seemingly simple apparatus of differential equations and the
apparent need suggest that the time has come for a profound
reflection on our methods of scientific inquiry.

Feynman claimed that the key to exponentially reducing
the computational complexity of the system in issue and ade-
quately regulating the predictive power for the model would
be to describe the world around us, which is fundamentally
quantum, through a sort of computation based on quantum
mechanics. We could also state further that the advent of
quantum computing devices would also resolve the issues
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associated with the impending passing of the construction
limit of present-day computers (Amdahl’s law), the potential
for a significant reduction in the energy required by current
computing devices due to computational reversibility, and the
advancement of nanotechnology. Due to such possibilities’
potential, there is increasing global interest in such devices
and significant investment in the necessary research. As a
result, quantum computing devices may answer inquiries
that would be impossible for genuine old-style equipment
to be quickly processed since they would require the whole
time of the universe to do so. That is made possible by
various quirks of quantum mechanics that appear at minor
scales, such as superposition, entanglement, and interference
[5], [6]. Though theoretical research on quantum algorithms
points to the prospect of overcoming computer issues that
are now insurmountable [7], the technology is still in its
infancy and does not yet provide meaningful advantages. The
age of Noisy Intermediate-Scale Quantum (NISQ) [8] is still
in effect. Implementing a gate-based quantum algorithm is
complicated by NISQ-devices’ aforementioned limitations
on quantum resources and noise. Numerous characteristics
of circuit design, including depth, width, and noise, should
be taken into account to ascertain if a gate-based algorithm’s
implementation will function properly on a specific NISQ
device [9], [10].

In physics, variational methods are often employed [11],
[12], most notably in quantum mechanics [13]. Variational
Quantum Algorithms (VQAs), their direct descendants, have
emerged as the most powerful method for obtaining a
quantum advantage onNISQ devices.Without a doubt, VQAs
are the quantum counterpart of powerful machine learning
methods like neural networks. Furthermore, as VQAs use
parametrised quantum circuits to operate on the quantum
computer and subsequently contract out parameter optimisa-
tion to a classical optimiser, they make use of the classical
optimisation toolkit. Contrary to quantum algorithms created
for the fault-tolerant period, this approach has the added
advantages of minimising noise andmaintaining a light quan-
tum circuit depth [14]. Finding the precise or reasonably close
collection of parameter values that minimises a particular
cost (loss) function is the goal of this kind of approach. That
depends on the parameters themselves as well as, obviously,
on the input values, which are the non-trainable portion
of the schema. Regulators comprise an output measuring
device and a parameter modification circuit. We may argue
that the system mimics a traditional physical feedback
system (Figure 1), which attempts to minimise a well-defined
starting loss function while optimising the set of its
parameters.

A more detailed diagram than Figure 1 can be found
in Figure 2, where the individual components that make
the mentioned transformations possible are highlighted;
conceptually, it is possible to divide the system into two parts:
a classical information part and a quantum processing part.
The latter aims to speed up the calculation and subsequent
determination of the final result.

FIGURE 1. Classical feedback system’s scheme.

FIGURE 2. General scheme for quantum variational method circuit.

In the classical processing part, a conventional calculator
has the purpose of transforming the input data, adapting them
to the subsequent quantum processing, and verifying through
a function whether the configuration resulting from the
quantum calculation is a result of minimum cost concerning
a particular function, chosen in the initial phase of analysing
the problem.

In the quantum processing part, the appropriately adapted
input data modulate the physical parameters of the quantum
network; subsequently, the measuring devices detect the
eigenstates of the collapsed quantum system, on which
the expected value is calculated. This value is returned
to the classical part for the processing described above.

Our approach is based on using a feedforward neural
network (FFNN), usually referred to as a multilayer per-
ceptron, whose layers have been built utilising quantum
photonic circuits in this particular instance. Eq.1 is the
mathematical function that accurately depicts the transfor-
mation provided by an FFNN. The fundamental structure,
however, is essentially the same: a horizontal stacked
multi-layer arrangement with each layer being composed of
an initial linear transformation (an affine transformation) and
a nonlinear function called ‘‘activation’’ (Eq.2)

ȳ = f (x̄, θW , θb ) = Lk ◦ Lk−1 ◦ . . . ◦ L2 ◦ L1(x̄) (1)
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with x ∈ Rn is the input vector, θW ∈ Rp1 , θb ∈ Rp2 are
the parameter values’ vectors and (k, n, p1, p2) ∈ N4.

Li : Rni → Rni+1

Li(xi) = ϕi

(
Wixi + bi+1

)
(2)

with i = 1..k and (n1, n2, . . . , nk−1, nk , nk+1) ∈ Nk+1.
Moreover

• Wi ∈ Rni+1×ni is the i-th matrix for the i-th layer, called
the weight matrix

(
containing θW

)
,

• xi is the i-th input vector,
• bi ∈ Rni+1 is the i-th vector, called the bias vector(

containing θb
)
,

• ϕi is the non-linear activation function for the i-th layer
Usually, we are dealing with a n-qubits quantum ansatz,
whose transformation is represented by the n × n unitary
matrix U that depends on the vector of parameters θ , with
dimensions m ϵ N (Eq.1); the loss function we refer to is
the expectation valuemeasured on every single qubit channel
(Eq.3); the observable is the operator Oi, where Zi is the
Z-Pauli Operator, acting on i-th qubit (Eq.4); the quantum
state on which to operate the measurements will be the state
resulting from the ansatz (ψ in Eq.3).∣∣∣ψ (θ ) 〉 = U (θ ) · |0⟩⊗n (3)

Oi = Zi , i ∈ {1..n} ⊂ N (4)〈
Ei (θ )

〉
=

〈
ψ† (θ )

∣∣∣ Oi ∣∣∣ ψ (θ )〉 (5)

The ability of quantum computers to resolve particular
problems more quickly than classical ones is widely recog-
nised. Nevertheless, packing data into a quantum computer
is not so simple because the information should be encoded
as quantum bits. They may interact with the data in various
ways, making awide range of information encodings possible
[15]. There are several ways to incorporate data; the most
popular ones are Basis Encoding [16], [17], Amplitude
Encoding [18], [19], [20], and Angle Encoding [21], [22].

However, an alternative approach may be used to achieve
the same results: an optical-quantum layer-based FFNN [23].
Thus, the following transformation (Eq.6) can be ensured by
using the Singular Value Decomposition (SVD - Eq.7):

f : | x ⟩ →

∣∣∣ ϕ (
W x + b

) 〉
(6)

with | x ⟩ =
⊗n

i=1 |xi⟩, n is the dimension of the feature
space and x the generic feature entering the system. Data can
be encoded in position eigenstates.

The Singular Value Decomposition theorem, which guar-
antees the factorisation of W into three matrices, two
orthogonal and one as a positive diagonal matrix, may be
used to decompose the matrix itself. That ensures we can
utilise specific quantum gates that can mimic the behaviour
determined by the corresponding matrices.

W = U ·6 · V T (7)

with

• Un×n(R) | U−1
= UT

• 6n×m(R) | 6 = diag(σ1, σ2, . . . , σp)
• Vm×m(R) | V−1

= V T

• (m, n) ∈ N2

Regarding the physical implementation, squeezer gates may
be utilised to obtain the diagonal transformation, while
interferometers (a combination of beamsplitters and rotation
gates) can be employed to achieve the orthogonal ones.
The addition operation using the bias vector, b, is then
obtained by appending position displacement gates. Hanging
a Kerr gate as the final circuital block might be a potential
option to produce a non-linear transformation; this is the
most common choice. Figure 3 shows the circuit diagram
of a single layer relating to the input use of a single
q-mode, while Figures 4 and 5 represent the situations
with two q-modes and four q-modes, respectively. Our
research intends to investigate several facets of quantum
computation’s applicability to machine learning. Concerning
learning a straightforward classification task, we specifically
compared the abilities of a fundamental OQ-FFNN (Optical
Quantum FFNN) with dense layers with an identical network
only made up of photonic quantum components.

The aim of this work is the development of a quantum
deep neural network able to recognise and classify points
accurately with the fewest trainable parameters possible.

Furthermore, this investigation intends to continue a study
theme initiated in one of our previous papers, in which the
identical classification issue was solved using a conventional
quantum network [24].

II. RELATED WORKS
Since 2010, there has been a growing interest in applying
machine learning techniques [25] to quantum computing
[26], [27], [28]. Early attempts to efficiently simulate the
quantumworld were prosperous to the extent that small phys-
ical systems [29], [30] (with few particles) were considered;
the use of high-performance computers was necessary due
to the large dimensions involved [31], [32], [33], [34], [35].
The introduction of virtual and augmented reality to better
explain the concepts of quantum mechanics is interesting
from a didactic point of view [36]. Quantum machine
learning [37], [38], [39] integrates quantum algorithms into
machine learning programmes. The phrase is most frequently
used to describe machine learning algorithms that analyse
classical data and are executed on a quantum computer.
Quantum machine learning uses qubits, quantum processes,
or specialised quantum systems to speed up computation [40].
A wide range of concepts with varying degrees of

similarity to conventional neural networks are included in
current QNN proposals [41], [42], [43]. The challenge of
integrating the linear and non-linear parts and the unitary
framework of quantum mechanics is at the heart of quantum
neural network theory. Quantum neural networks are only
one form of the most recent type of machine learning
models implemented on quantum computers. They broadly
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FIGURE 3. Circuital block diagram for a single layer, single q-mode, related to an optical-quantum layer-based FFNN.

FIGURE 4. Circuital block diagram for a single layer, two q-modes, related to an optical-quantum layer-based FFNN.

FIGURE 5. Circuital block diagram for a single layer, four q-modes, related to an optical-quantum layer-based FFNN.

use quantum phenomena like superposition, entanglement,
and interference to exploit possible benefits such as quicker
training and processing [44], [45], [46].

It has recently been proposed that the representation of
quantum information need not be binary or discrete. Instead,
it is also possible to leverage the innately ‘‘continuous’’
quantum features of matter, which would inevitably result in
encoding the information in continuous variables (CV). The
position and momentum of a particle are typical examples
[47], [48], [49], [50]. It needs a quantum circuit with a
universal layer structure so that we can manufacture any CV
state with no more than polynomial complexity in order to
do arbitrary proper transformations for the learning process
by the machine [51], [52]. Therefore, the architecture to be

selected must be composed of layers, with parameterised
Gaussian and non-Gaussian gates present in each layer
[53], [54], [55]. The non-Gaussian gates provide the model
with both nonlinearity and universality [56], [57], [58]. The
application of photonic quantum machine learning is proving
effective in both traditional classification and regression
issues, which is undoubtedly a fascinating finding [59], [60],
[61], [62]. However, more importantly, it is fast improving
our knowledge of quantum processes themselves [63], [64].

III. THE SYSTEM ARCHITECTURE
We tested three different types of OQFFNN, whose general
structure is identical, and the differentiation comes from the
distinct implementations of the quantum networks. All our
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models consist of a series of quantum layers (Li) followed
by a measurement apparatus whose outputs go into a classic
dense layer that enables the binary categorisation of the input
items (Figure 6). The Number Operator (n̂i = â†i âi, that is the
sequential action of the annihilation and creation operators)
has been selected as the observable in our experiments, and
the measure will be its average value, ⟨n̂i⟩, for each i-th
q-mode.

The chosen dataset is a set of 2D points, so it can be repre-
sented as a matrix whose shape is (number_of _features, 2).

A. IMPLEMENTED QUANTUM NETWORKS
We can now examine the three varieties of quantum layers we
implemented.

1) FIRST KIND OF NETWORK
The dataset features are entered into the network as values
for the two parameters (ρ, ϕ) of a classical coherent state
|α⟩, with α ∈ C | α = ρ · ei·ϕ . In order to allow a direct
correspondence between the coordinates of the point and the
geometric meaning of the parameters of the coherent state
given in input, the pair of coordinates (x1, x2) that identify
a point of the plane in an orthogonal Cartesian reference
are transformed into polar coordinates (ρ1, θ1) before being
transferred as input into the network. The quantum layer
(Figure 7) is composed of a Rotational Gate (R), a Squeezing
Gate (S), another Rotational Gate (R), a Displacement Gate
(D) and a Kerr Gate (K).

2) SECOND KIND OF NETWORK
The features of the input dataset are represented in the
network as the phases ϕ of an equal number of coherent
states, whose amplitude ρ is arbitrarily set to 1, to improve
the numerical simulation’s efficiency without straying too far
from the typical values of a physical implementation. The
quantum layer (Figure 8) is composed of two BeamSplitters
(BS), four Rotational Gates (R), two Squeezing Gates (S),
two Displacement Gates (D) and two Kerr Gates (K).

3) THIRD KIND OF NETWORK
The dataset features are entered into the network as values
for the two parameters (ρ, ϕ) of a two-mode squeezing
gate, whose inputs are Vacuum States. The quantum layer
(Figure 9) is composed of four Rotational Gates (R), two
single Squeezing Gates (S), two Displacement Gates (D) and
a Cross-Kerr Gate (K).

IV. DATA EXTRACTION AND PROCESSING
The two-moons database, which creates two interleaving
semicircles of 2D points and is typical for the study of
clustering and classification techniques, was chosen to solve
the classification challenge.

The Python Scikit-Learn library’s1 dedicated function was
used to create the dataset. The input domain is [−2.0, 3.0]×

1https://scikit-learn.org/stable/index.html

[−2.0, 2.5] ⊂ R2. One thousand five hundred samples were
randomly generated and uniformly distributed over the two
classes.

The number of samples in the dataset was divided in such
a way as to ensure the following quotas: 75% for the training
set, 15% for the validation set and the remaining 10% for the
test set (Figure 10).

Moreover, the features have been given as points of a plane
in polar coordinates (Figure 11) to improve the operation of
particular gates whose parameters operate on complex values
(in C set). The kind of input in the Cartesian or Polar form
shall be defined for each model in section V.

V. DISCUSSION OF RESULTS
All the models to be discussed have been implemented
using the known open-source Python library, PennyLane,2

with StrawberryFields3 backend for simulation, both by
Xanadu [65], [66]. Both can be perfectly interfaced with
the most famous Deep Learning frameworks, such as Keras,
TensorFlow and PyTorch.

All tests and simulations were performed using the
specialised open-source library for Deep Learning, Keras.4

Every model has a traditional dense layer as the last layer
(Figure 6), which serves as a classifier. Its input is the average
number of photons processed by the quantum network, and
its output is a float value between 0 and 1. The sigmoid
function is utilised as its activation function. All the models
were compiled using:

• optimizer: SGD (Stochastic Gradient Descent), with a
learning rate equal to 0.01

• loss function: binary cross-entropy
• metric: accuracy

1) MODEL 1
The simulations were conducted initially using a simple
structure, consisting of a single quantum layer, for a total of
9 parameters (Figure 12). Indeed, the number of parameters
to be trained for the first model is given by 2 (parameters for
the final Dense layer) and the product between the number of
quantum layers to be used and 7 (the sum of the parameters of
the single quantum gates making up the layer - see Appendix
A for details).

Figures 13 and 14 show the metrics (LOSS: loss
function on training set, ACCURACY: accuracy on train-
ing set, VAL_LOSS: loss function on validation set,
VAL_ACCURACY: accuracy on validation set) for the
Model n.1, trained for 50 epochs. The outcomes are superb.
As shown in Figures 13 and 14, it is evident that the search
algorithm has found the best solution, enabling the model
to correctly classify all of the data, both the samples of the
training set and of the validation set, as early as the 46th

epoch. Specifically, Figure 14 represents the attempts of the

2https://pennylane.ai/
3https://strawberryfields.ai/
4https://keras.io/
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FIGURE 6. Common structure for the proposed OQFFNN (m is the input dimension).

FIGURE 7. First type of layer.

FIGURE 8. Second type of layer.

FIGURE 9. Third type of layer.

model to adjust the accuracy to the validation set; the initial
natural oscillations gradually dampen after many epochs of
training, showing the convergence of the model itself. The
optimal parameters’ values5 are displayed in Tab.1, while
for the dense layer are (w, b) = (−11.58, 6.2). The
results provided in Figure 15 indicate what happens when
the model is applied to the test set (150 samples), confirming
the model’s excellent performance (Test Accuracy: 100%).

Other simulations were run using more quantum layers,
but none of them showed a discernible improvement over
the single-layer experiment. Specifically, we conducted three
simulations using respective 2, 3, and 4 layers.

2) MODEL 2
The number of parameters to be trained for the model
n.2 is given by 3 (parameters for the final Dense layer)

5Coefficient k is in mV−2.

and the product between the number of quantum layers
to be used and 16 (the sum of the parameters of the
single quantum gates making up the layer). Following the
reasoning shown in section I (Introduction), it was decided
to utilise phaseless beamsplitters in this simulation so that
each item in its representation matrix might have a real
value.

The simulations were conducted initially using a simple
structure, consisting of a single quantum layer, for a total of
19 parameters (Figure 16).
Figures 17 and 18 show the metrics (LOSS: loss

function on training set, ACCURACY: accuracy on train-
ing set, VAL_LOSS: loss function on validation set,
VAL_ACCURACY: accuracy on validation set) for theModel
n.2, trained for 50 epochs.

The outcomes are satisfactory. The optimal parameters’
values6 are displayed in Tab.2, while for the dense layer, they
are w = (−7.64, 6.90)T and b = −0.33. The results
provided in Figure 19 indicate what happens when the model
is applied to the test set (150 samples), confirming the
model’s good performance (Test Accuracy: 96.67%).

By starting with this model, it is feasible to increase the
degree of categorisation and moderate the oscillations during
the solution research phase. The phase angle parameters
will be added to the individual BeamSplitters, taking the
reflectivity values from real to complex. The number of
training parameters for the quantum layer is 18; the final
number is 21.

Figures 20 and 21 show the usual metrics for theModel n.2,
with phase angles, trained for 50 epochs. The values of
the best parameters7 determined after network training are
displayed in Table 3.
We have got the following values for the dense layer’s

parameters: w = (−8.04, 7.08)T and b = −0.18. The
Test Set’s scores (Figure 22) are likewise quite good, with an
accuracy performance of 97.33%.

It was noticed that the model’s performance did not
meaningfully improve with the addition of more quantum
layers to the network.

3) MODEL 3
A hybrid of the first two, the third kind of layer (Figure 9)
contains two q-modes but does not employ beam splitters.
The interaction between states is achieved by using a
Two-Squeezing Gate, which serves the function of suitably
encoding and modulating the input information, while the

6Coefficient k is in mV−2.
7Coefficient k is in mV−2.
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FIGURE 10. Dataset: Distribution of pattern points on the plane.

FIGURE 11. Dataset: Distribution of pattern points on the plane in polar form.

Cross-Kerr Gate is found in the final step of the Quantum
Layer. They both carry out nonlinear transformations com-
monly utilised to generate entanglement in quantum models
with continuous variables.

The simulations were conducted initially using a simple
structure, consisting of a single quantum layer, for a
total of 16 parameters (Figure 23): 13 belong to quantum
layer.

Figures 24 and 25 show the metrics (LOSS: loss
function on training set, ACCURACY: accuracy on train-
ing set, VAL_LOSS: loss function on validation set,
VAL_ACCURACY: accuracy on validation set) for theModel

n.3, trained for 50 epochs. The outcomes are satisfactory.
The optimal parameters’ values8 are displayed in Tab.4, while
for the dense layer, they arew = (−6.13, −7.14)T and b =

7.43. The results provided in Figure 26 indicate what happens
when the model is applied to the test set (150 samples),
confirming the model’s good performance (Test Accuracy:
89.33%).

Further investigations showed that increasing the number
of layers leads to a partial but meaningful improvement in
performance:

8Coefficient k is in mV−2.
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TABLE 1. Optimised parameters’ set for the quantum network.

TABLE 2. Optimised parameters’ set for the quantum network (Model without phase angles for beamsplitters.)

TABLE 3. Optimised parameters’ set for the quantum network (Model with phase angles for beamsplitters.)

FIGURE 12. (a) Number of training parameters; (b) Model 1 - layers’
scheme.

• Model 3, with 2 quantum layers

– Total trainable parameters: 29
– Test Accuracy: 91.33%
– ROC Curve Area: 0.90

FIGURE 13. Loss and validation loss for model 1.

FIGURE 14. Accuracy and validation accuracy for model 1.

• Model 3, with 4 quantum layers
– Total trainable parameters: 55
– Test Accuracy: 99.33%
– ROC Curve Area: 0.99

• Model 3, with 8 quantum layers
– Total trainable parameters: 107
– Test Accuracy: 100.00%
– ROC Curve Area: 1.0

VOLUME 11, 2023 131401
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FIGURE 15. (a) Confusion matrix for test set; (b) Normalised confusion
matrix; (c) ROC curve.

Furthermore, replacing the Cross-Kerr layer with a
Two-Squeezing Gate yields an excellent result after
50 epochs of training (Figure 27), hitting 100% in the
Accuracy Test, with only 17 trainable parameters.

So, the research presented in this chapter aimed to delve
deeper into the feasibility of using quantum computers for
machine learning purposes in the NISQ era by attempting to
train a simple network consisting of photonic quantum gates.
The study examined various essential aspects of a statistical
classifier, such as the convergence of the proposed model,
the accuracy of the result concerning a standard metric, the
minimisation of the number of trainable parameters (i.e.,
the number of quantum gates required in the implemented
circuit), and the scalability of the solution. The results
obtained from this research and other similar recent studies
[67] suggest that quantum computation can be used to
advantage in the field of Machine Learning.

FIGURE 16. (a) Number of training parameters; (b) Model 2 - layers’
scheme.

FIGURE 17. Loss and validation loss for model 2.

FIGURE 18. Accuracy and validation accuracy for model 2.

In a previous works [24] , the solution was a Fermionic
Quantum Machine Learning that leveraged two different
libraries to simulate the proposed network, which comprised
rotation gates and Cnot. It produced consistent results as the
noise level on the dataset changed. Only twenty epochs were
needed to effectively train the network, which achieved a
remarkable 100% recognition rate for samples belonging to
the Validation Set when the noise level was low. Moreover,
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TABLE 4. Optimised parameters’ set for the quantum network.

FIGURE 19. (a) Confusion matrix for test set; (b) Normalised confusion
matrix; (c) ROC curve.

it achieved an impressive 85% recognition rate for too high
noise levels. The progress of the Loss and Accuracy curves of
the model suggested that it was robust to noise and immune
to the drop-out phenomenon. Surprisingly, a similar network
for classical Machine Learning (e.g., a simple FFNN) needed
354 trained weights (although relatively few for networks of
this type) versus the 54 of the proposed solution. The degree

FIGURE 20. Loss and validation loss for model 2 with phases.

FIGURE 21. Accuracy and validation accuracy for model 2 with phases.

of scalability was excellent, as the size of the individual
dataset did not tie to the network structure.

The most notable disadvantage during simulations was
the high run-time, but typical of machine learning hybrid
solutions (Classic + Quantum). In contrast, in this research,
the primary constituents of the quantum circuit are linear
and non-linear optical components. The elements of the
dataset modulate the incoming photons, transforming them
into specific prepared quantum states. Here, the goal, besides
the model’s convergence and classification ability, was to
limit the number of trainable parameters while retaining an
accuracy of more than 80%. The three models had sur-
prisingly comparable patterns, confirming their quality and
validity and proving their efficacy. This investigation, which
employed quantum mechanics, attempted to compare the
behaviours emerging from several circuit implementations
of the kernel method on a not overly complicated dataset.
The results are excellent for all the models investigated,
demonstrating the circuit structures’ effectiveness. Some
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FIGURE 22. (a) Confusion matrix for test set; (b) Normalised confusion
matrix; (c) ROC curve.

FIGURE 23. Number of training parameters.

models have achieved accuracy levels of 100%, while others
have never dropped below 90%, exhibiting classification
robustness far beyond expectations.

The first model is straightforward: it has seven trained
parameters. It receives in input a coherent state, the complex

FIGURE 24. Loss and validation loss for model 3.

FIGURE 25. Accuracy and validation accuracy for model 3.

components modulated by the two input values of the data
vector. It has an excellent answer: Once trained, it can
recognise all new samples proposed with a 100% Test
Accuracy.

The second model receives in input two consistent states,
the phase of which is modulated by the input data. The
confusion matrix and the ROC curve highlight a good model
response, with a recognition accuracy of the test data of 91%.

The third model has a very similar structure to the second.
Still, the interaction between the two photons in the final
stage reduces the performance to 88%, a very high value,
considering the low number of trained parameters (equal to
13). An excellent improvement is achieved by replacing the
Cross-Kerr stadium with a Two-Squeezing Gate: the results
obtained are comparable to those of Model 1.

The limit of the first model is its inability to be scalable
if taken in its original version, as its input is a coherent
state that depends solely on two parameters. Therefore,
datasets with many features cannot be directly encoded in
the network. The second and third models are more scalable
than the first one. In these models, each input photon contains
information about every feature in the dataset. However,
minimising the number of gates in the structure is essential
to ensure high performance. That is because other stages
that stack horizontally can significantly degrade the model’s
performance.

The research’s aim to be done shortly will concern
the capacity to categorise increasingly complicated and
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FIGURE 26. (a) Confusion matrix for test set; (b) Normalised confusion
matrix; (c) ROC curve.

structured data sets while leaving a suitably low number of
gates needed to accomplish the task.

VI. CONCLUSION
Variational circuits play a crucial role in the field of hybrid
algorithms, serving as a link between classical and quantum
computing. These circuits leverage a parameterised design
that can be adjusted to achieve a specific outcome, like
tuning a quantum circuit to simulate particular input-output
relationships based on training data.

However, despite the apparent simplicity of this concept,
the actual execution of variational circuits is incredibly
complex. One of the most significant challenges is selecting
the proper structure or ‘‘ansatz’’ for the efficient circuit
regarding depth, width, and parameters while remaining
robust and versatile. This challenge is similar to a fun-
damental problem in classical machine learning, which

FIGURE 27. (a) An interesting variant for Model 3; (b) Loss and
Validation Loss; (c) Accuracy and validation accuracy.

involves creating simple yet effective models. Nevertheless,
the challenge continues beyond model selection. Training
these quantum models differs from traditional approaches,
as they are based on physical quantum algorithms rather than
mathematical formulas. That raises questions about whether
we can improve upon traditional numerical optimisation
techniques. As a result, there are still some unanswered
questions and uncertainties. In the context of quantum
systems, choosing optimal parameterisation techniques is
crucial to achieving high-quality results. It is imperative to
consider whether classical iterative training strategies are
adequate or if new techniques should be devised to suit the
unique characteristics of quantum systems. As such, it needs
to address whether existing parameterisation methods are
fit for purpose or whether novel approaches need to be
developed to meet the specific requirements of quantum
systems. In essence, variational algorithms are not just
another tool; they may hold the key to a whole new dimension
in machine learning. They could pave the way for a broader
paradigm in which we use physical devices as machine
learning models, guided by our classical computers during
training.
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Transferring these investigations from quantum computer
simulators to real quantum computers is desirable once the
simple tests necessary to validate the model have been com-
pleted. Despite the excellent performance and optimisations
gained so far of both hardware and software on the enormous
amount of calculations to be performed, the simulators still
need to be able to exploit the quantum peculiarities of matter,
which allow parallelism in the calculation, which is not
classically attainable.

Future investigations will focus on this front. That will
provide insight into the problems arising from the physical
implementation and the feasibility of the proposed solutions.
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