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ABSTRACT Federated learning (FL) is a privacy-preserving approach in Artificial Intelligence (AI) that
involves exchanging intermediate training parameters instead of raw data, thereby avoiding privacy breaches
and promoting effective data collaboration. However, FL still faces several unresolved challenges, including
trust issues among participants because traditional FL lacks a mutual consensus auditing mechanism.
Another challenge is that when the number of participating nodes is large and resources are heterogeneous;
this can lead to low efficiency. To overcome these challenges, we propose a Blockchain-based Auditable
Semi-Asynchronous Federated Learning (BASA-FL) system. BASA-FL includes a smart contract that
coordinates and records the FL exchange process, enabling the ability to trace and audit the behavior of
participating workers. In addition, we proposed an efficient semi-asynchronous approach in blockchain-
based distributed FL as the main contribution to addressing heterogeneous problems. We designed a method
to quantify worker contributions and distribute rewards based on their contributions. We used a multi-index
comprehensive evaluation to motivate workers to maintain high-quality and efficient participation in FL
tasks. We conducted several simulations to evaluate the effectiveness of the semi-asynchronous mode, the
reliability of the audit mechanism, and the contribution quantification strategy.

INDEX TERMS Semi-asynchronous FL, blockchain, auditability, contribution quantification.

I. INTRODUCTION
In recent years, machine learning has significantly improved
in various fields, such as image recognition, natural language
processing, and recommendation systems. These successes
were closely linked to the availability of large amounts of
data. Federated data has been a topic of interest for many
years, from federated database system (FDBS) [1] technology
in the 1990s to federated cloud computing (FC) [2].
However, while federated data allow for collaboration among
multiple parties, it also poses a significant risk of privacy
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breaches. Federated learning emerged as a solution to this
issue after Google proposed the FedAvg [3] algorithm in
2016 because it offers a balance between data collaboration
and privacy protection. The core concept of FL is that
federated participants train AI models locally on their own
data and then exchange model parameters or gradients
for collaboration rather than exchanging raw data, thus
preserving privacy. Google implemented FL in its Gboard
mobile keyboard [4] and deployed it on multiple mobile
devices. This is known as the cross-device FL method. This
method inspired the emergence of transaction-based FL task
crowdsourcing [5], where individuals or organizations seek
to acquire a specific AI model but lack the necessary data to
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train it. Therefore, they can recruit workers with data to train
the model collaboratively. In this way, workers can engage in
data trading while ensuring their privacy. The emergence of
these markets further facilitates the circulation and utilization
of data, thereby driving the advancement of AI. Figure1
illustrates a data trading platform based on federated learning.

FIGURE 1. A data trading platform based on federated learning.

Inspired by the success of Gboard, FL utilization has
been promoted across a myriad of applications. In health-
care, Xu et al. [6] investigated how FL can address the
challenges posed by fragmented and private healthcare data,
particularly in the context of biomedical applications. Their
exploration involved connecting diverse data sources while
safeguarding privacy. Furthermore, Firdaus and Rhee [7]
employed FL to address the challenges in existing vehicular
networks by enhancing traffic prediction accuracy, user
privacy, and data security. In the financial realm, federated
learning can be integrated with the open banking concept,
facilitating decentralized data ownership and promoting the
development of a privacy-preserving model in open banking
data marketplaces [8]. Additionally, FL finds applications
in the manufacturing industry, fostering a collaborative
approach to data analysis and model training that results in
improved operational efficiency, higher product quality, and
compliance with regulations while maintaining data privacy
and security [9].
However, FL still faces certain difficulties and challenges.

First, there is the Byzantine problem among the participating
parties. Traditional FL systems lack an open and fair audit
mechanism. In addition, it is difficult to determine how to
reasonably calculate participants’ contributions and motivate
them to maintain reliable training. Second, the participants in
FL are distributed across various locations, and their device’s
computing power and communication environments are
heterogeneous. This heterogeneity can cause user dropouts
and significantly affect the FL convergence efficiency [10].
To address these challenges, Xie et al. proposed the concept
of asynchronous FL [11], which allows each worker to make
different training progress in each round, allowing stale local
models to be aggregated while updating the global model.
The asynchronous method means that the server will update
a new global model immediately after receiving the user
model update. Hence, there were no problems with idle

or lost workers. Thus, it improved the staleness problem
and designed the stale function as a dynamic aggregation
parameter, which can reduce the aggregation weight of the
aging update, making the algorithm faster than the existing
FL algorithm (e.g., FedAvg). However, the asynchronous
mode increases the number of global iterations and results
in higher communication costs. In addition, because each
round only aggregates the characteristics of a single device,
it can lead to unstable convergence and perform poorly on
non-iid data. Therefore, in order to bridge the gap between
the existing problems and solutions, we integrate blockchain
and a semi-asynchronous FL approach to design a fair
and trusted audit mechanism with reliable communication
costs by considering the nature of heterogeneous clients
or workers. The main contributions of this study are as
follows:
• We design a blockchain-based Auditable Semi-
Asynchronous Federated Learning (BASA-FL) system
that executes distributed federated learning tasks based
on blockchain smart contracts. BASA-FL introduces
a public audit and incentive mechanism to solve the
problem of Byzantine nodes in trustless federated
learning crowdsourcing scenarios.

• Our system supports a semi-asynchronous federated
learning mode that balances model exchange fre-
quency and round duration, which can resist device
heterogeneity and improve efficiency. This is a novel
approach compared to existing research on distributed
FL combined with blockchain.

• We provide an efficient multi-metric evaluation
method to quantify worker contributions under semi-
asynchronous conditions.

• We conduct multiple simulations to verify the per-
formance and reliability of the BASA-FL mechanism
through simulation results and analysis.

The remainder of this paper is organized as follows.
Section II reviews previous studies in this field. A com-
prehensive overview of the background knowledge pertinent
to the components of FL and blockchain is presented in
Section III. Our proposed Blockchain-based Auditable Semi-
Asynchronous Federated Learning (BASA-FL) system is
introduced in Section IV. The role of smart contracts in the
proposed model is explored in Section V. The numerical
results are discussed in Section VI, followed by conclusions
in Section VII.

II. RELATED WORKS
The traditional FL with a client-server architecture uses a
centralized server to aggregate the global model. However,
it is prone to single-point failures that lead to system
collapse [12]. Moreover, a centralized server lacks a publicly
transparent audit mechanism; thus, it cannot ensure fair
decisions [13]. To address these problems, Majid et al. [14]
proposed a decentralized structure to store the global model
and local updates in the blockchain to address single
points of failure and track malicious behavior. Other similar
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studies [15], [16], [17], [18], [19], [20], [21] also deprecated
the central aggregator, where model aggregation occurs
in a trusted community in the blockchain. In addition,
some studies [15], [16], [17], [19], [20] further used the
trusted endorsement of the blockchain and the peer-to-peer
transaction mechanism to design an incentive strategy that
can effectively encourage the enthusiasm of workers to
participate in FL, thereby improving training quality. Thus,
blockchain can be used as an ideal complement to FL.

Blockchain has been used differently depending on the
application scenario. Lu et al. [16], Feng et al. [22], and
Majeed and Hong [14] utilized permissioned or private
chain structures to design an industrial IoT paradigm
combined with edge computing. Moreover, their work is
classified as a blockchain architecture design, which has the
advantage of optimizing the system and developing targeted
strategies. However, they are not suitable for building public
markets [23].
Building an FL trading market using public blockchain is

a promising research direction. The emergence of Ethereum
has improved the scalability of blockchain technology and
marked the beginning of the ‘‘blockchain 2.0’’ era. It has
also secured a solid position as infrastructure for various
applications. Ethereum’s Turing completeness and flexible
smart contracts allow the deployment of federated learning
algorithms on the blockchain [24]. Cai et al. [25] proposed
two collaborative protocols (2cp) that use Ethereum smart
contracts to coordinate multiparty joint machine learning
in a trustless environment and distribute fair shares to
trainers. Mugunthan et al. [26] proposed using Ethereum
smart contracts to build federated learning accountability in
BlockFLow. This study aims to prevent user collusion by
coordinating smart contracts.

Research on blockchain-based federated learning must
address device heterogeneity. In real-world cross-device
federated learning (FL) environments, there are significant
differences in the networking, power supply, storage, and
device computing power between different activity states.
This can lead to the loss of some workers in the collaborative
learning process and negatively affect efficiency [27]. One
solution to this issue is the use of asynchronous algorithms
that can fully utilize the intermittent client computing
power [28]. Liu et al. [29] and Feng et al. [22] discussed
a combined architecture of blockchains and asynchronous
federated learning. However, although an asynchronous
algorithm can speed up convergence, it also increases the
frequency of the model exchange, resulting in higher com-
munication costs and poorer convergence performance under
non-iid settings [30]. Semi-asynchronous FL is a hybrid
approach that combines synchronous and asynchronous
methods. The aggregation server stores the first models
to arrive and aggregates them based on a specific time
or number. Late-arriving models may either be used in
the next training round or discarded depending on their
staleness. Semi-asynchronous FL has a lower aggregation
frequency than asynchronous FL but a higher frequency than

classical FL [31]. For example, in the semi-synchronous
mode designed by Shi et al. [32], aggregation is implemented
in the cache model according to a given time window.
Ma et al. [30] performed aggregation based on the number
M of models arriving at the server successively and
designed an algorithm to determine the optimal Wu et al.
[33] introduced a cache-based lag tolerance mechanism on
the aggregation server and divided all workers into three
categories: latest, deprecated, and tolerable. Our study builds
on the semi-asynchronous FL algorithm proposed byMa et al.
[30] with the number of arrivals as the aggregate window.
We combine this with blockchain technology to design
a distributed semi-asynchronous FL protocol coordinated
by smart contracts. Our goal is to provide an FL data
trading system with a transparent audit mechanism and to
optimize the system’s efficiency in heterogeneous equipment
environments.

In addition, it is crucial to design a suitable incentive
mechanism in FL [34] that can mobilize the enthusiasm
of all parties involved and maintain the sustainability of
the system [35]. Designing incentive strategies based on
worker contributions is one of the most common methods,
and the way to evaluate contributions can be divided into
two categories: data quality and data quantity [27]. Because
FL completes the learning process by passing intermedi-
ate parameters under latent data assumptions, reasonably
quantifying worker contributions is challenging. The Shapley
value [36] is a classic concept in cooperative game theory
and one of the methods used to calculate the quality of
data. Although the Shapley value is a useful method for
quantifying the quality of data in FL, its high calculation cost
and exponential time complexity render it difficult to use in
scenarios with many participating workers. To evaluate the
contribution of the data quantity, Qu et al. [37], Liu et al.
[29], and others proved that the size of the dataset can
directly affect the finalmodel accuracy. However, supervising
workers to reflect on the correct data quantity in FL scenarios
is difficult. Although the Trusted Execution Environment
(TEE) technology has been proposed as a solution to this
problem, its application is limited. Therefore, the use of
data quality to evaluate worker contributions is not robust
in actual cross-device FL environments. Our purpose is to
design a contribution calculation method suitable for the
semi-asynchronous mode and distribute rewards according
to worker contributions to motivate workers to provide
high-quality data and maintain stable training provisions.
Furthermore, our system guarantees the transparency and
credibility of the audit and distribution processes through
blockchain.

III. PRELIMINARY
A. FEDERATED LEARNING
The concept of FL is based on the principles of Distributed
Machine Learning (DML), as outlined in a survey by
Verbraeken et al. [38]. At its core, both Federated Learning
and DML involve collaborative training by exchanging
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intermediate parameters such as model parameters or gradi-
ents during model training. However, whereas DML focuses
on using computer clusters to train large-scale machine
learning models and address issues such as computational
complexity, data scale, and model size, FL was first proposed
by Google [3] with the goal of leveraging data distributed
across multiple mobile devices to perform machine learning
while addressing user concerns over data privacy.

FL has several distinct characteristics compared to DML.
First, the computing nodes in FL are sourced from the
recruited users who have full autonomy over their partic-
ipation, meaning that they can choose to stop computing,
communicate, and withdraw from the learning process at
any time. Second, the data of the computing nodes in FL
are independently generated; thus, they may exhibit different
distribution characteristics (non-iid) and have varying data
volumes. Third, computing nodes are situated in varying
communication environments or use different equipment,
resulting in an unstable participation process in joint learning
and the risk of disconnection at any point. Finally, as the com-
puting nodes are typically located in different geographical
locations, the communication cost is significantly higher than
that of DML.

To address the challenges associated with FL, Google
proposed an optimization algorithm called FedAvg [3]. The
FedAvg algorithm is defined as follows: the number of
local data users participating in FL for a terminal server is
represented by I , where D represents the dataset of the ith
local data user and the volume of the dataset is Di = |Di|.
Then, the objective function can be written as

f (ω) =
I∑
i=1

Di
D
Fk (ω) (1)

where Fk (ω) = 1
Di

∑
j∈Di

fj(ω) = g
((
xj, yj

)
, ω
)

At the beginning of the T round, the terminal server
calculates the current global model parameter ωT and
distributes it to each local data client. The clients use their
local data to generate a gradient descent based on the ωT

model, and after E rounds of iterations, the local models ωi
are obtained.

ω← ω − η∇g(ω; b) (2)

After collecting all the local modelsωi from the clients, the
terminal server aggregates ωi and generates a global model
for the next iteration ωT+1 based on the following equation:

ωT+1
←

I∑
i=1

Di
D

ωi (3)

In this representation, D =
∑

i∈UDi denotes the sum of the
data volumes of all local data users participating in training,
and η represents the learning rate. In each training round,
a subset of local data users, represented by I ≪ U (where
U is the total number of local data users), participated in the
model training by utilizing the stochastic gradient descent
(SGD) [43] as the local optimization method.

The FedAvg algorithm requires users to iterate multiple
rounds of Stochastic Gradient Descent (SGD) locally to
update the model parameters before performing average
aggregation. It reduces the number of transmissions by
increasing the number of local calculations, thus optimiz-
ing the communication costs. In addition, in the FedAvg
algorithm, the average calculation is used to aggregate all
submitted local models in each round, and the aggregated
model is unified as the shared starting model for the next
iteration of each worker. This method has been shown to
exhibit good convergence properties and is robust to non-i.i.d.
data distributions.

1) SYNCHRONOUS AND ASYNCHRONOUS FL
FL algorithms can be classified into synchronous, asyn-
chronous, and semi-asynchronous modes, based on different
aggregation rules. The FedAvg algorithm is considered
synchronous. In this method, the worker’s local iteration
and corresponding model aggregation must be performed
simultaneously. All the workers were trained using the same
starting model. After aggregation, the global model is shared
as the initial model for each worker to train in the next
round. However, this mode can cause problems, such as
fast computing workers spending too much time waiting for
delayed workers or losing them, especially in heterogeneous
equipment environments, which can negatively impact the
efficiency of FL, as illustrated in Figure 2.

However, asynchronous algorithms differ from syn-
chronous algorithms in that they allow each worker to be
at a different training progress in each round, allowing
stale local models to be aggregated while updating the
global model [11]. As shown in Figure2, no limitations exist
when aggregation occurs in a pure asynchronous approach.
Once the server receives a model uploaded by a worker,
it updates the corresponding global model. Therefore, there
were no problems with idle or lost workers. However, pure
asynchronousmode increases the number of global iterations,
resulting in higher communication costs. In addition, because
each round only aggregates the characteristics of a single
device, it can lead to unstable convergence and perform
poorly on non-iid data.

2) SEMI-ASYNCHRONOUS FL
The semi-asynchronous mode combines the benefits of
both synchronous and asynchronous methods while avoiding
their respective drawbacks. In this approach, a predefined
aggregation condition was established (i.e., RoundDuration
or UploadNum). Then, the worker models that meet this
condition are aggregated synchronously, whereas those that
fall outside are queued as stale models for subsequent
aggregation rounds. For example, Ma et al. [30] proposed
the FedSA algorithm, which is based on the order of arrival
of local updates in the server queue and utilizes a specified
number M as the threshold for model aggregation. Models
uploaded beyond this threshold were queued for aggregation
in future rounds and treated as stale versions. Algorithm 1
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FIGURE 2. Aggregation process of sync,async and semi-async.

describes the detailed process of the semi-synchronous
federated optimization (FedSA) approach.

The semi-asynchronous FL mode balances the three key
elements of round time, iteration frequency, and convergence.
Ma et al. [30] proposed an efficient algorithm for determining
the optimal value of M that minimizes the training time,
given the communication budget. In addition, the algorithm
is extended to dynamic and multi-task scenarios. As a
result, the FedSA algorithm has a superior convergence
performance compared to pure asynchronous algorithms
on non-iid data. Furthermore, compared with synchronous
algorithms, its round waiting time depends on the objective
transmission status of the worker, and the condition M is
dynamically optimized through the algorithm, resulting in
faster convergence. Stale models are incorporated into the
next round of aggregation, which prevents worker loss and
improves the generalization of the final model.

B. BLOCKCHAIN
A blockchain is essentially a distributed shared ledger,
database, and storage structure. As shown in Figure 3,
a blockchain is a chain structure that is connected by a hash.
Taking Bitcoin [39] as an example, the block header stores
the version number, hash value of the previous block (parent
hash), timestamp, Merkle root, difficulty value, and a random
number. The block body contains transaction information.
The transactions are stored in a Merkle tree structure [40].
The hash pointer can uniquely identify the block and connect
each block so that each piece of data in the block can be traced
back to the source, and the timestamp ensures the order of the
block. The chain is maintained at all nodes of the blockchain
system. It uses a distributed node consensus algorithm
to generate and update data and cryptography to ensure
the security of data transmission and access. Therefore,
the blockchain has the characteristics of decentralization,

Algorithm 1 Semi-Asynchronous Federated Learn-
ing(FedSA) [30]

1 T = 0
2 while F(ωT )− F(ω∗ > ε) do
3 Processing at Each Worker ui
4 if Receive ωT from the server then
5 Update local model ωτ

← ωT
i − η

`
g(ω, b)

6 τ = T
7 Upload local model ωτ

i

8 Processing at parameter server
9 UT

= φ

10 while |UT
| < M do

11 Receive local model ωτ
i from worker ui

12 UT
= UT

∪ {ui}

13 Update global model
ωT+1

← (1−
∑

ui∈UT
Di
D )ωT

+
∑

ui∈UT
Di
D ωτ

i
14 for each ui ∈ U do
15 if ui ∈ UT orτTi > τ 0 then
16 Distribute update model ω and learning

rate ηi

17 T = T + 1

18 return the final global model ωT

immutability, traceability, collective maintenance, openness,
and transparency [41].

The decentralized nature of blockchain technology allows
it to operate without the need for a central authority, instead
relying on consensus among the participating nodes. This
consensus mechanisms play a crucial role in ensuring that all
nodes in the network agree on the validity of transactions. Dif-
ferent blockchains employ various consensus mechanisms,
such as Proof of Work (used in Bitcoin) and Proof of Stake,
to validate transactions and add new blocks to the chain.
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FIGURE 3. Blockchain structure.

Hence, it maintains transparency of transactions, where All
transactions are recorded on a public ledger that anyone
can access and verify [42]. However, while the transaction
details are transparent, the participants’ identities can be kept
pseudonymous, enhancing privacy. Blockchain technology
encompasses various types of networks, each tailored to
specific needs. Public blockchains, like Bitcoin, offer open
access to anyone without requiring permission, ensuring
high decentralization through consensus mechanisms. On the
other hand, private blockchains restrict access to authorized
participants, allowing for controlled decentralization, and
are often managed by a central authority or consortium.
Consortium blockchains strike a balance, being shared among
a select group of known nodes or organizations, providing a
semi-open environment with partial decentralization [43].

Ethereum [44] differs from Bitcoin and can be described
as a distributed-state machine. Ethereum Virtual Machine
(EVM) is a crucial part of the Ethereum architecture, which
acts as a ‘‘world computer,’’ provides an operating environ-
ment in a decentralized system, and has the characteristics of
‘‘Turing completeness.’’ A smart contract is a code that can
be compiled and executed in EVM. A smart contract refers to
code compiled by the developer and executed in the EVM.
When a smart contract is deployed, its code is packaged
as a contract-type transaction maintained in a blockchain
that cannot be altered. The concept of ‘contract’ is regarded
as ‘‘autonomous agents’’ in the execution environment of
Ethereum. It has an independent account and automatically
executes a piece of logic after receiving a transaction. The
piece of logic code can interact with the ‘‘state’’ information
stored in the blockchain and implement state transitions.
Thus, developers can design applications in a decentralized
environment through smart contracts, which improves the
scalability of the blockchain.

IV. PROPOSED SYSTEM
A. SYSTEM OVERVIEW
This section provides an overview of our proposed
Blockchain-based Auditable Semi-Asynchronous Feder-
ated Learning (BASA-FL) system, which serves as a
trust-agnostic platform for participation in the FL crowd-
sourcing marketplace. Our system leverages blockchain
smart contracts to facilitate the coordination and endorsement
of the FL process, thereby establishing trust among all

the parties involved. Moreover, we address the issue of
heterogeneous participating nodes by proposing a system
design that integrates the semi-asynchronous mode, which
balances the tradeoff between communication cost and
convergence rate.

1) ROLE
Our system comprises three participants: requesters, workers,
and validators.
• The requester is defined as an institution or individual
who wishes to complete the training of a specific model.
They require an AI model for a specific task but lack the
necessary data to train the model. As such, they initiate
the FL task and provide remuneration for its completion.

• The workers are defined as data owners. They possess
data that meets the requester’s requirements and has a
certain degree of privacy. By participating in FL, they aid
the requester in fulfilling the specified requirements and
receive corresponding compensation from the requester.

• The validators are defined as trusted third-party audit
groups elected by the blockchain. They evaluate and
audit the accuracy of the local model submitted by
each worker during the FL training process, flag
malicious submitters, and ultimately submit a form
to evaluate worker scores and receiving corresponding
compensation from the requester.

2) ADVERSARIAL MODEL
We identify three types of malicious actors in FL: cheat-
ing requesters, malicious workers, and infected validators.
To address these malicious behaviors, we designed the
following solutions:

a: CHEATING REQUESTER
• The requester breaches the contract when paying the task
remuneration. To mitigate this, we use smart contracts
to automatically distribute profits after satisfying the
designed logic conditions.

• The requester provides false evaluation results for each
worker for profit. To address this, we entrust model
quality evaluation to a third-party VRF committee and
use smart contracts to endorse the entire process.

• The requester server has a risk of a single point of failure.
To mitigate this, we have designed a distributed FL
protocol coordinated by smart contracts, which does not
require a centralized aggregator and allows each worker
to aggregate models locally.

b: MALICIOUS WORKER
• Workers are malicious or lazy to train. To address
this, we use the blockchain to provide a traceable
environment and use a third-party committee to review
the model quality of worker updates during the training
process. For low-quality updates, the verifier compares
workers based on τ rounds, excludes and penalizes
abnormal workers whose accuracy is extreme outliers,
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and assigns lower contribution scores to low-quality
workers within the range. For high-latency updates, the
smart contract endorses andmanagesworker submission
time, submission version, and other information and
designs statistical data as indicators for evaluating
worker contribution.

c: INFECTED VALIDATORS
• Sybil attack of the validator, the attacker joins the task as
the validator and the worker simultaneously by forging
an alias. To mitigate this, we chose to use Chainlink
VRF nonces for validator selection, which provides
an integrity-verifiable source of randomness for smart
contracts to ensure fairness.

• The verifier takes the score calculated by others and free
rides to cheat the reward. We prevent this behavior with
an encrypted commit scheme: Divided into two phases,
commit and reveal [45].

3) NOTATION AND AGGREGATION ALGORITHM
DESCRIPTION
The protocol adopts a semi-asynchronous FL mode, and this
subsection describes the FL aggregation algorithms in detail.

TABLE 1. Describes the notation.

The semi-synchronous learning process is illustrated
in Figure 4. Referring to the method proposed by the
FedSA [30], each round aggregates a fixed number of M
model parameters based on the arrival order. Furthermore,
arriving versions other than M are queued in the next round
of M as stale versions.

FIGURE 4. Semiasynchronous federated learning process.

FedAvg has exceptional advantages in terms of non-iid
resistance and convergence accuracy, and for its asyn-
chronous mode, it has advantages in terms of worker
computing power utilization efficiency. The FedSA algorithm
incorporates the benefits of both synchronous and asyn-
chronous modes and can be optimized to an ideal state. For
example, in the traditional client-server structure of FL, the
algorithm is defined as follows:

The server assigns a machine learning task. In accordance
with the task description, data provider workers willing to
participate were called upon to start FL. The initial model
parameters, denoted by ω0, are distributed to each worker,
and the global round is set to T0. The role of each worker was
defined as follows:

ωτ
i ← ωT

− ηi∇g
(
ωT
; dij

)
(4)

Minimize the Loss function with the local data d(i, j) to obtain
an optimal vector and go through multiple local iterations.

Subsequently, upload the local model update ωτ
i and

mark the initial model version τ . This version number τ

is described as the label of the global model version used
by the worker to start local model training. (Because the
synchronization process forces all nodes to be trained on the
same version of the global model, there is no difference in τ .
However, the asynchronous mode is different, allowing the
aggregation of the uploaded model training based on an older
global version of the model.)

The server aggregates M models according to the arrival
order of local parameter submissions. Calculated as follows:

ωT
←

1−
∑
ui∈UT

Di
D

ωT−1
+

∑
ui∈UT

Di
D

ωT
i (5)

After averaging the local model parameters, the global
model parameter ωT was updated, and the global model
of this round, version T, was returned to the corresponding
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M workers. The worker who receives the global model
immediately starts the next iteration. The two processes of
local training and global aggregation were repeated until the
global model converged to the preset conditions.

The algorithmwe use allows for stale version models when
synchronizing averaging (if models submitted after M are
considered stale versions and placed at the front of the next
round); thus, it can be generalized as a mixed mode about
M -conditional synchronization in asynchronous.

As shown in Figure 4, there are model updates from
different τ versions of the agg() function. Therefore, the
concept of staleness refers to the interval (T−τ ) of the global
and local versions during aggregation.

Numerous studies have proven that large staleness can
lead to training glitches and affect convergence performance.
Xie et al. [11] proposed defining a staleness function to
dynamically reduce the aggregation weight of stale models.

Contant : s(T − τ ) = 1

Polynomial : sa(T − τ ) = (T − τ + 1)−at

Hinge : sa,b(T − τ ) =

 1 if T − τ ≤ b
1

a(T − τ )+ 1
otherwise

(6)

Drawing inspiration from this, we employ the staleness
function to count the staleness caused by workers as a metric
for evaluating worker contributions. In addition, owing to
the negative effects of staleness on training, we designed
a staleness threshold function in the smart contract-based
aggregation protocol to exclude model submissions beyond
an acceptable range.

B. SYSTEM ARCHITECTURE
We constructed a data-trading platform based on FL,
as shown in Figure 5. The requester provides task details
and deploys a task contract. Workers, who are data providers,
interact with smart contracts to submit local models trained
using their own data. Validators act as third parties to
audit the quality of the worker-submitted models and
calculate the contribution score of each worker. Thus, the
requester, workers, and validators jointly complete an FL
crowdsourcing task under the coordination of smart contracts.
Finally, the requester obtains the AI model after FL, the
worker receives a reward share based on their contribution
score, and validators receive work rewards. The interaction
flow of the protocol is illustrated in Figure 6.
The requester deploys the contract to the Ethereum

blockchain and specifies the task-related information, includ-
ing (task description, target performance/target rounds,
number of workers and validators, and payment amount). The
federated task was then divided into five steps and connected
the steps by the EVM events mechanism.

Step 1: After the Requester deploys the contract, it enters
the recruitment stage. Interested workers join the task by
invoking the contract’s signUp() function and submitting

a deposit to the contract. Simultaneously, using the verifiable
random source provided by the Chainlink VRF [46], several
nodes are randomly selected as the validators group among
the willing nodes. The selected validators must also submit
a deposit to a smart contract to prevent malicious audit
behavior.

Step 2: After the recruitment is completed, an event
notification is generated, and the initialization stage begins.
The requester calls the setGensis() function, passing the
initialization values, which include these status parameters:
the genesis model’s CID, the number of aggregation models
per round, the maximum time per round, the staleness
threshold, the key, and CID about securely sharing validation
dataset.

Step 3: The training state begins. Each worker queries
the initial model parameters through ViewGenesis() and
then uses their own data to train the model parameters. The
process is as follows:

ωτ
i ← ωT

− ηi∇g
(
ωT
; di,j

)
(7)

After the worker completes training, it stores the trained
model parameters on IPFS and calls the addModel
Update() method to submit the CID value of the model.
Each call triggers a round calculation function to mark the
version information. When the number of submissions M or
the maximum round-time condition is reached in the contract,
the time parameter is updated, leading to the next round.
Worker nodes that successfully join this endorsement round
must obtain a global model of the corresponding round.

The contract provides the ViewUpdates() inter-
face, which allows workers to query the submit set{
[CID1, . . . ,C IDi]T , [CID1, . . . ,C IDi]T−1 , . . .

}
of all

rounds within the authority. Authority refers to the latest
round that does not exceed one’s own participation. Then,
based on their own degree of lag, workers can find the set of
required rounds and calculate and update them independently.

ωT
←

1−
∑
ui∈UT

Di
D

ωT−1
+

∑
ui∈UT

Di
D

ωT
i (8)

Thus, the addModelUpdate() function is used to
upload the model, and the viewUpdates() function is
used to view the submitted set and aggregate the model
independently. These two processes are repeated to continue
the FL task. Simultaneously, a third-party audit is added to
the FL process. The validators calculated the accuracy of
all the models and audited outlier models. Here, we exclude
outlier accuracies grouped by τ . (The box plot method was
used to exclude abnormal models [47]). When validators find
outliers, they mark the outlier worker as malicious in the
contract. Subsequently, the worker’s submission is rejected
and the deposit is deducted as punishment.

Step 4: The above process will continue to iterate. The
smart contract establishes the current round by adjusting
and calculating the relationship of the time parameters
(including the initial timestamp, maxNumUpdates,
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FIGURE 5. BASA-FL system architecture.

FIGURE 6. TBASA-FL workflow.

roundDuration, timeSkipped, etc.). When the global
round reaches the preset number, some workers can actively
call the stopTraining() function to stop the itera-
tive learning. Alternatively, if the accuracy of the output
model reaches the requester’s expectations, the requester

can actively call the stopTraining() function to
stop.

After the training was stopped, the process of validators
scoring workers and agreeing on the results began. Finally,
the scores were used to distribute the rewards of each node.
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Themethod for calculating the contribution score is explained
in detail in Chapter 5. We outsource the evaluation work to
the validators, as proposed by Lu et al. [45]. They proved
that under the incentive method, the selected validators would
submit the correct scoring results because malicious behavior
would result in a loss of deposits. Additionally, to prevent
validators from peeking at the results submitted by others and
free-riding for profit, the methods of commit and reveal were
used.

Step 5: Finally, the consensus scoring result is obtained,
and the reward is distributed to each worker according to the
proportion of the score.

V. SMART CONTRACT-BASED BASA-FL
Traditional FL [3] controls the model exchange through a
central aggregator, which carries the risk of a single point
of failure and does not provide an auditing mechanism to
guarantee trustworthiness [22], [48]. Therefore, we combined
blockchain technology to design a distributed FL protocol
based on smart contracts, providing model integrity and
identity proof relying on cryptography. Smart contracts are
self-executing agreements encoded with specific terms and
conditions, designed to operate on blockchain technology.
These contracts automatically execute and enforce their pre-
defined rules once triggering conditions are met, eliminating
the need for intermediaries. Initially conceptualized by Nick
Szabo [49], they have gained prominence with the advent of
platforms like Ethereum [44]. Furthermore, smart contracts
offer transparency, security, and efficiency. They can handle
various transactions, from asset transfers to complex multi-
party agreements. Additionally, a smart contract endorses the
intermediate FL process to form an open audit mechanism
(inspired by [30] and [50]).

A. STATUS PARAMETER
To effectively coordinate the FL process and record the
behavior of the participating parties, we designed a set of
status parameters, as outlined in Table 2. These parameters
include the number of model aggregations per round M ,
the maximum duration of each round, the initial value of
the model’s CID, and the creation timestamp. The requester
initializes these values, and the smart contract uses them
to govern the coordination of the FL process. Furthermore,
we leverage the mapping data type within a smart contract
to provide high-performance query functionality. To this end,
we established mappings between participant addresses and
the CID and the round number of their submissions, thus
enabling the recording and querying of participants’ behavior.
By designing appropriate contract functions, we can facilitate
serverless distributed aggregation, access control, and trace-
ability of participant behavior.

B. FUNCTIONAL DESIGN
The entire FL processes are supported by three main
functions: setGenesis(),addModeupdate(), and
viewUpdates(). The detailed design of the contract

TABLE 2. Status Parameter.

function is shown in Algorithms 2. Federation training
begins after the requester calls setGenesis() to ini-
tialize the parameters. Subsequently, two processes are
conducted: updating the local model and aggregating
the global model. In the local model-update phase, the
addModeupdate() function provides the interface of
the submitting model to the worker. In contrast to the
traditional server aggregation method, we allow workers
to independently query the local model submitted in
each round through the viewUpdates() interface to
complete autonomous aggregation in the global model
aggregation phase. Moreover, we designed the corresponding
access control according to the processing logic of the
semi-asynchronous FL. In this sense, the condition for
changing the global round in a semi-asynchronous FL
depends on whether the number of workers received meets
maxNumUpdates or the time reaches roundDuration.
Therefore, by designing the adjustment and calculation of
time parameters, such as timeElapsed, timeSkipped,
and genesisTimestamp, the round at each moment can
be determined to control the FL process.

We used the status parameter to record the corresponding
version of the model submitted by each worker, evaluated
the staleness through the dissimilarity between two adjacent
submissions, and designed the staleness threshold function.
In addition, when the worker calls addModelupdate()
but exceeds the staleness threshold, it is recorded as a negative
contribution.

C. CALLING PROCESS
The interactive process of semi-asynchronous FL based
on smart contracts blockchain is shown in Algorithm 3.
The requester initializes the parameters based on the
circumstances required to start the training task, obtains
a satisfactory global model, and automatically distributes
the rewards after stopping the training process by calling
stopTraining(). The workers then run the AI model
calculations in parallel and repeat the two steps of local model
update and global model aggregation. Here, the aggregation
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Algorithm 2 Semi-Asynchronous Federated Learning Smart Contract (SAFL-SC)
Statues Variable:
address: Requester;
uint: totalRound; roundDuration; maxNumUpdates; genesisTimestamp; stalenessThreshold; timeSkipped;
bytes: genesis;
mapping(address => bytes[]): updatesFromAddress;
mapping(uint => bytes[]): updatesInRound;
mapping(bytes => uint): updateRound;
mapping(address => uint[]): uploadRound; updateStaleness;
mapping(address => uint): punish;

1 func setGenesis(_cid, _roundDuration, _maxNumUpdates, _stalenessThreshold):
2 if msg.sender is not Requester or genesis is not 0 then
3 send a msg ‘‘Not the registered evaluator’’ or ‘‘Genesis has already been set’’
4 return Require Failed;

5 Initiallize : gensis, roundDuration, maxNumUpdates, stalenessThreshold
6 genesisTimestamp← now

7 func currentRound( ):
8 timeElapsed← timeSkipped + now - genesisTimestamp;
9 round← 1 + (timeElapsed / roundDuration);
10 return round;

11 func secondRemaining():
12 timeElapsed← timeSkipped + now - genesisTimestamp;
13 remaining← roundDuration - (timeElapsed % roundDuration);
14 return remaining

15 func addModeupdate(_cid):
16 _round← currentRound();
17 staleness← _round - uploadRound[_address][-1] - 1;
18 storage updateStaleness[_address].push(staleness);
19 if updateRound [ cid in updateFromAddress] == _round then
20 send.msg ‘‘Already added an update for this round’’
21 return Require Failed;

22 if staleness >= stalenessThreshold then
23 storage punish[msg.sender] += 1;
24 storage uploadRound[msg.sender].push(_round);
25 send.msg ‘‘exceed the staleness threshold, Please get the latest round of updates to start over’’
26 return Require Failed;

27 storage updatesInRound[_round].push(_cid);
28 storage updatesFromAddress[msg.sender].push(_cid);
29 storage updateRound[_cid]← _round;
30 storage uploadRound[msg.sender].push(_round);
31 if maxNumUpdates > 0 && updatesInRound[_round].length >= maxNumUpdates then
32 storage timeSkipped += secondsRemaining();

33 func viewUpdates(_round):
34 if _round > uploadRound[_address][-1]: then
35 send.msg ‘‘the viewed round Exceeded your permission’’
36 return Require Failed;

37 return updatesInRound[_round];

38 func checkJoinRound():
39 return (uploadRound[msg.sender][-1]);

40 func stopTraining():
41 if msg.address == requester or currentRound >= totalRound then
42 Distribute rewards to workers;
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Algorithm 3 Calling Process. The Requester Defines
TotalRound, roundDuration, maxNumUpdates, stal-
enessThreshold, ωo,α According to Task Require-
ments and Recruitment Situation
1 Requester executes :
2 sc.setGenesis(cid(w0),roundDuration,
3 maxNumUpdates,stalenessThreshold);
4 get global Model;
5 sc.stopTraining();

6

7 Client executes // parallel:
8 W ← sc.genesis;
9 τ = 0;
10 while T ≥ TotalRound or Task interruption do
11 T← sc.currentRound();
12 update local model ωτ

←W − η
`
g(ω, b)

13 sc.addModelUpate(cid(ωτ ))
14 if Successful Transactions or Receive ‘‘exceed

staleness threshold. . . ’’ then
15 R← sc.checkJoinRound;
16 for i in [τ,R] do
17 W i[ ]← sc.viewUpdates(i)
18 aggregate

W ← (1− α)W + α
∑
W i[ ]

19 τ ← R;

20 else
21 wait Round change and upload again;
22 addModelUpate(cid(ωτ );
23 for i in [τ,R] do
24 W i[ ]← sc.viewUpdates(i)
25 aggregate

W ← (1− α)W + α
∑
W i[ ]

26 τ ← R;

27 sc.stopTraining()

process is different from the traditional aggregator method
(i.e., FedAvg [3]) because it implements local autonomous
aggregation.

In semi-asynchronous mode [33], the aggregation progress
of each worker and the missing updates are different.
In our BASA-FL, we use checkJoinRound() and
viewUpdates() to return the individual progress and
query the updates of each missing round, respectively. Thus,
the model training and aggregation processes are repeated
until the calculated value is returned by the contract and the
currentRound() function satisfies the requester’s preset
requirements of totalRound. Consequently, the workers
can call stopTraining() and obtain shared rewards
based on their contributions.

Figure 7 illustrates the blockchain-based FL in syn-
chronous and semi-asynchronous modes to reflect the
advantages of BASA FL. Figure 7 shows that when the
round aggregation numberM is three, the synchronous mode

FIGURE 7. Calling process.

(i.e., represented by Figure 7 (a)) does not receive stale
model updates. In contrast, the semi-asynchronous mode
(i.e., represented by Figure 7 (b)) accepts the stale model
updates and counts them in the next round. Therefore, the
semi-asynchronous mode does not waste any worker comput-
ing resources and enhances efficiency under heterogeneous
conditions.

VI. AUDIT AND EVALUATION IN SEMI-FL
A. τ -BASED AUDIT
Our system uses a third-party validator to audit the models
submitted by workers and locate the Byzantine nodes to
ensure training quality. The general method for defending
the Byzantine nodes is to compare the dissimilarities
between the submitted models in the same round to discover
outliers. However, we consider that the global round in
semi-asynchronous mode contains an obsolete model of
asynchronous aggregation that is far from the current model.
Hence, it is difficult to distinguish between stale and
malicious models in each round T . Therefore, we use τ

rounds as the reference unit to compare workers under the
same starting model with each other, calculate their accuracy,
and use boxplots to locate outliers beyond Q1-1.5QR (the
details are described in Figure 10 in Section VII). The
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correspondingworkers are eliminated from the smart contract
and their deposits are penalized.

FIGURE 8. τ -based audits.

B. CONTRIBUTION QUANTIFICATION
In the data-trading platform, we need to reasonably quantify
the contribution of workers and distribute the rewards paid
by requesters to workers according to the contribution
ratio. The costs paid by the workers are divided into data
resources and computing power supplies. However, in FL,
raw data are not revealed for privacy protection, and only
the intermediate model parameters are shared instead of
the original data. The parameters submitted by the worker
are repeatedly aggregated with other parameters for conver-
gence; thus, quantifying the worker’s contribution is another
challenge.

In contrast, synchronous systems evaluate the worker’s
contribution by comparing the model accuracy between
workers in units of rounds or by calculating the marginal
contribution (i.e., Shapley value) of workers in the current
round. However, we argue that these contribution evaluations
are unsuitable for semi-asynchronous systems because they
actively disrupt the balance of participation among workers
and shorten the round time. Hence, workers who frequently
submit to with imbalance manner inherently have a large
share, deviating from the requester to appeal for high-quality
data to train the model for the primary purpose.

Therefore, we designed a quantitative method to balance
the quality and computing power contribution using the
following three metric functions for semi-asynchronous FL:

1) QUALITY METRICS FUNCTIONS

qu = Softmax

(
eacci∑U
u=1 e

accu

)
(9)

2) STALENESS METRICS FUNCTIONS

st = loga

(
a

(T − τ )+ 1

)
a→ stalenessThreshold (10)

3) PARTICIPATION METRICS FUNCTIONS

pa = logRound (Participation) (11)

Thus, when each worker completes the task, given three
metrics: X1 ← qu,X2 ← st,X3 ← pa, the combined
score for each worker was calculated using uniform metric
weighting.

VII. RESULTS AND DISCUSSION
We configured a semi-synchronous FL simulation environ-
ment1 and designed the following simulations to verify our
ideas.

1) In the worker’s resource (i.e., computation capability)
heterogeneity setting, we compare the aggregation
efficiency of synchronous, asynchronous, and semi-
asynchronous modes.

2) The effect of τ− based auditing method.
3) Fairness of contribution quantification method.
We formulated a simulation model for the semi-

asynchronous FL process that considers the number of
participants, their submission rate, size of the dataset, number
of semi-asynchronous aggregations (M ), staleness threshold,
and termination criteria, such as the specified number of
rounds. Our simulation model was designed to mimic the
real-world execution process of semi-asynchronous FL,
utilizing preset parameters to determine the queueing and
performing AI model training and aggregation calculations
accordingly.

We chose the cifar10 dataset to complete the image
classification task using the RestNet-18 model. Torchvision’s
built-in resnet18 model consists of a 7 × 7 downsampling
convolution, a max pooling layer, eight basic blocks, a global
pooling layer, and a fully connected layer. The cifar10
dataset uses 50,000 images for training and 10,000 images
for testing. The learning rate was configured as 0.01, the
batch size was set to 32, and the local epochs were set
to 3. The data distribution was classified into two settings:
IID and non-IID. In the IID setting, each client has the
same data distribution; meanwhile, the non-iid setting uses
’Hetero Dirichlet,’ where the label distribution assigned to
each client is offset. For instance, each worker was divided
into 3 to 4 categories of 10 with different proportions. Simul-
taneously, the number of samples assigned to workers was
disrupted.

A. SIMULATION 1: COMPARING SYNCHRONOUS,
ASYNCHRONOUS, AND SEMI-ASYNCHRONOUS MODE
Synchronous, asynchronous, and semi-asynchronous training
effects were simulated in iid and non-iid configurations.

The task configuration is presented in Table 3. We set
up 50 workers to participate in these tasks. Moreover, the
worker’s speed was preset to a normal distribution with a
mean of 30 s and a standard deviation of 10. The data were
distributed to 50 workers in equal numbers but divided into

1https://github.com/BASAFL/BASA-FL
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TABLE 3. Simulation 1 configuration.

two distribution methods: iid and non-iid. We adjusted the
round aggregation number M for comparison. When M is
50, it is regarded as synchronous, and when M is 1, it is
considered asynchronous.

FIGURE 9. accuracy vs. time ( iid & Non-iid).

The results of the IID and non-IID configurations, as pre-
sented in Table 4(a) and Figure 9(a), as well as Table 4(b)
and Figure 9(b), respectively, demonstrate that as the value
ofM (which represents the level of asynchronous) decreases,
the time required to reach the desired accuracy decreases,
but the number of iterations required increases. In practical
FL scenarios, communication costs are high, and frequent
exchanges of models can exacerbate system performance.
Additionally, in the non-IID configuration, a decrease in
the value of M leads to a more unstable convergence,
making it challenging to achieve 75% accuracy in the
Async−M1 scenario. However, while the synchronous mode
offers stable convergence, it tends to be time-consuming

TABLE 4. Time consumption and number of transports.

owing to delays in each round. Therefore, adjusting the
value of M in the semi-asynchronous mode allows for a
balance between the round time, iteration frequency, and
convergence.

B. SIMULATION 2: COMPARING THE T − BASED AND
τ − BASED AUDITING METHODS
We demonstrate that the τ -based audit method in the
semi-asynchronous mode is superior in terms of accuracy
and effectiveness compared to the traditional T -based audit
method. In addition, we demonstrated that using this method
to eliminate Byzantine nodes significantly improves the
quality of the final model.

TABLE 5. Simulation 2 configuration.

The task configuration is presented in Table 5. All
26 workers participated in the task, and the submission speed
of the workers was preset with a normal distribution, with
a mean of 32 s and a standard deviation of 3. Data were
distributed to 26 workers in equal numbers; however, the
samples were poisoned by worker A. We compared the
T-based outlier audit and the τ − based outlier audit and
found that, as expected, the old normal model was mixed in
the T round, and the model accuracy of worker A in the T2
and T3 rounds did not exceed Q1. -1.5QR truncation point.
Therefore, it is proven that the τ − based auditing method
we adopted can detect malicious worker A, and Figure 10(a)
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FIGURE 10. Influence of execlude malicious worker A.

shows that after excluding the model of worker A, the final
accuracy increases significantly.

C. SIMULATION 3: CONTRIBUTION QUANTIFICATION
METHOD
We set two extreme assumptions to compare the rationality
of the calculation method for extreme cases.
Assumption 1: The most frequently updated worker A has

a small dataset size.
Assumption 2: The most slowly updated worker E has a

large dataset size.

TABLE 6. Simulation 3 configure.

FIGURE 11. Assumption 1 result.

FIGURE 12. Assumption 2 result.

We compared our calculation method with the round-
contribution scoring method for these two cases. Our
comprehensive evaluation based on metrics balances quality
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and computing speed, which is more reasonable than a round-
based evaluation.

First, Figure 11(a) shows the calculation results for
hypothesis one. The comprehensive calculation shared on
the far-right shows the calculation results. When worker
A obtains a small dataset, its reward share should be
significantly reduced in our evaluation mechanism.

As shown in Figure 11(b), after worker A reduces the
dataset, the accuracy of the global model is reduced by
three points. This proves that the quality of the dataset
held by the worker significantly affects the final requester’s
interests. However, in the Round-based evaluation method,
worker A, who regularly participates, naturally obtains a high
proportion, which weakens the incentive for data quality,
as shown in the T-Shapley method and the T-acc ratio on the
left in the figure. Therefore, our comprehensive contribution
quantification method finds a balance between each metric,
with quality as the main contribution and speed as the
secondary contribution. Similarly, in Hypothesis 2, as shown
in Figure 12(b), because worker E’s large dataset improves
the accuracy of the final model, its share in our quantitative
results increases appropriately.

FIGURE 13. Use softmax to differentiate quality contribution.

When calculating the proportion of worker contributions
in each round, the reason we chose to bring the accurac value
into the softmax function is shown in Figure 13.We found that
although the dataset held by worker A is small, he continues
to submit the average aggregation with other worker models,
and the gap between the accuracy of the model and other

workers is decreasing, including the shapey value. Therefore,
we introduce the softmax function to expand this difference,
increase the proportion of data quality in the evaluation, and
form a good incentive.

FIGURE 14. Contribute quantitative results (50 workers).

Finally, we calculated the respective contributions of
50 workers. We configured the speed as a normal distribution
with a mean of 30 s and a standard deviation of 10,
in line with the scenario of the heterogeneous clients we
discussed. We divided the 50,000 datasets equally, and the
calculation results for each worker’s contributions are shown
in Figure 14.

The requester actively configures the M value according
to the task’s response to determine the optimal strategy.
However, different M values cause some workers to partic-
ipate non-subjectively behind. Therefore, data quality was
the main evaluation factor in our comprehensive evaluation,
whereas participation (equipment computing power) was the
secondary factor. The returned results were as expected, and
a good balance between the metrics was found.

D. COMPARISON
In this study, we compared the proposed BASA-FL system
with other systems. As illustrated in Table 7, our system
incorporates an auditable mechanism that is not present
in traditional FL systems. Specifically, in our BAFL-FL,
we incorporatemechanisms to identify and excludemalicious
workers, evaluate each worker’s contributions, and adjust
rewards and punishments based on those contributions,
resulting in an overall improvement in FL quality.

Similarly, we compared our system with other auditable
blockchain-based Federated Learning (FL) systems. The
proposed system offers several key advantages. First,
it is designed to operate effectively in a heterogeneous
worker-resource environment and incorporates an opti-
mal semi-asynchronous aggregation algorithm. Second,
we implemented a worker reward and penalty mechanism
based on their performance quality to ensure fairness across
all participants. Third, we introduce a reliable contribu-
tion quantification method that encompasses two crucial
aspects. The first aspect concerns the transparency of the
evaluation process. For instance, in the 2cp crowdsourcing
configuration [25], Alice independently utilized her dataset
to execute the model accuracy calculation task, leading to a
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TABLE 7. Comparision results.

lack of consensus on the computed outcomes. In contrast,
our approach involves a randomized third party assigned
to perform the calculation task. This inclusion enhanced
the reliability of the calculation process. The second aspect
focuses on the credibility of the metric sources. In our
BASA-FL system, the calculation of the participant counts
and staleness values is managed through smart contracts.
Concurrently, a third-party consensus was employed to
calculate the accuracy of the model. This dual-pronged
approach ensured the reliability of the metric sources.

Nevertheless, although our BASA-FL has notable advan-
tages over conventional FL frameworks, additional efforts
are required to explore potential attacks and defenses,
thereby enhancing and solidifying the robustness of the
protocol. Our system identifies three types of malicious
actors in FL, i.e., cheating requesters, malicious workers,
and infected validators. However, other adversary attacks
must be considered in further research, including poison-
ing and membership inference attacks. Poisoning attacks
involve adversaries attempting to corrupt the global model
by transmitting malicious updates during the collaborative
training phase. Conversely, in membership inference attacks,
adversaries aim to reverse engineer users’ confidential data
by observing the trained model updates. These attacks pose
significant threats to the security and integrity of FL systems.
Moreover, safeguarding client-sensitive data from diverse
threats requires the exploration and application of various
privacy techniques. These include differential privacy, homo-
morphic encryption, secure multiparty computation, and the
utilization of a Trusted Execution Environment (TEE) [51].
Furthermore, a thorough investigation of the establishment of
a dependable incentive mechanism is warranted. This study
aimed to uphold fairness and inspire active client participa-
tion, contributing to the system’s sustained development.

VIII. CONCLUSION
In this study, we propose a Blockchain-Based Auditable
Semi-Asynchronous Federated Learning system (BASA-FL).
The proposed system uses a distributed FL protocol based

on smart contracts, providing an auditable environment.
To the best of our knowledge, our system represents
an innovative approach incorporating blockchain and a
semi-asynchronous mode to address worker heterogeneity
effectively. In addition, we present a scheme for quantifying
worker contributions specifically tailored to our system’s
semi-asynchronous nature. This mechanism identifies and
excludes malicious workers, evaluates each worker’s con-
tributions, and adjusts rewards and punishments based on
their contributions, resulting in an overall improvement
of FL quality. Moreover, we evaluate the performance
of the proposed system through extensive simulations.
The implementation of an efficient multi-metric evaluation
method further facilitated the quantification of worker
contributions under semi-asynchronous conditions. Multiple
simulations confirmed the enhanced performance and
reliability of the BASA-FL mechanism, underscoring its
potential to reshape collaborative AI training paradigms.
We also showed that the τ -based audit in semi-asynchronous
mode proves superior in terms of accuracy and effectiveness
compared to the traditional T -based method. Moreover,
it markedly enhances the final model quality by eliminating
Byzantine nodes. Finally, we outline promising future
directions, including exploring attack defense strategies,
privacy-enhancing techniques, and establishing a dependable
incentive mechanism.
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