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ABSTRACT Single image super-resolution (SISR) with deep convolutional neural networks has recently
attracted increasing attention due to its potentials to generate rich details. To obtain better fidelity and
visual quality, most of existing methods are of heavy design with the depth of network. However, the lack
of high-frequency information in the deep network and the limit of non-local context relations of pixels
remain the core issue. In addition, there are many arbitrary-scale image super-resolution tasks, so it is a
focus that provides an effective and efficient model for super resolution with arbitrary-scale. To this end,
we propose a Feature Preserving and Enhancing Network (FPEN) based on implicit representation, which is
aims to preserving high-frequency information in deep network and enhancing non-local contextual features
of pixels to output more realistic images at arbitrary scales. In particular, our proposed High Frequency
Preserving Block (HFPB) can divide the features into high-frequency components and low-frequency
components, and allocate more operations to high-frequency components to ensure that high-frequency
components can be preserved in the network. Since high-frequency information contains the details and
texture of the image, it can restore the finer details of the image. Moreover, Pixel Continuity Attention
(PiCA) module our proposed utilizes visual cues observed from pixels to adaptively recalibrate the pixel
range that needs attention in the image to better achieve feature enhancement and generate smoother images.
Extensive experiments conducted on benchmark SISRmodels and datasets show that Feature Preserving and
Enhancing Network can be employed for various SISR tasks with arbitrary-scale to obtain the better visual
quality than other state-of-the-art SR algorithms.

INDEX TERMS Image super resolution with arbitrary-scale, high frequency preserving single methods,
non-local attention methods, implicit neural representation.

I. INTRODUCTION
Single image super resolution reconstruction (SISR) is an
important research topic [1], whose goal is to reconstruct
high-resolution images from low-resolution images as shown
in Figure 1. SISR has beenwidely used inmany fields, includ-
ing medical imaging [2], image compression [3], small object
detection [4], etc. However, SISR is an ill-posed problem.
Due to the information loss in low resolution images, there
may be multiple high resolution images corresponding to the
same low resolution image. This ambiguity makes the SISR
problem uncertain. Currently, many SR methods have been
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proposed to solve this problem, and these methods are mainly
of three types: interpolation-based methods, reconstruction-
based methods, and learning-based methods [5], [6]. Among
them, methods based on deep learning have greatly improved
the performance of SISR [7], [8], [9], [10].

Super resolution convolutional neural wetwork(SRCNN)
is one of the earliest methods to introduce CNN for super
resolution reconstruction [11]. It learns themapping from low
resolution images to high resolution images through a deep
convolutional neural network, and the reconstruction effect
far exceeds traditional algorithms. The powerful feature
representation and end-to-end training mode of CNN make
it an effective method for SISR. Subsequently, in order
to further explore the impact of deep features on super
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FIGURE 1. The visual comparison of SR results by our menthods. The top
is the HR, the middle is the LR(x30), and the bottom is the SR(our
method).

resolution reconstruction, researchers introduced residual
learning [12], [13] to solve the gradient disappearance and
degradation problems in deep network training and utilized
dense connections [7], [14] increase the depth and width of
the network. Although existing CNN-based methods have
achieved good reconstruction results, high-resolution images
still suffer from varying degrees of detail blurring and
super-resolution reconstructionwith arbitrary-scale cannot be
achieved.

According to Fourier Transform, natural images are
composed of different frequency signals [15]. The low
frequency signal consists of global structure and can be
forwarded directly to the final high resolution image
without extensive computation. High frequency information
consists of fine details. As the network deepens, high
frequency information is gradually lost during network
transmission. Therefore, how to ensure the transmission
of high frequency information in the network has become
one of the key factors in restoring and reconstructing
details. Previous work introduced attention mechanisms [16],
[17] into super resolution reconstruction to simulate spatial
positions, channels, or the interdependence between the
two to solve this problem. Recent frequency-based methods
[18] use more complex convolution operations to preserve
high frequency information in the network. Although these
methods achieve good reconstruction results to a certain
extent, the attention-based method does not distinguish
between low frequency and high frequency features, while
the frequency-based method simply uses the residual branch
as high frequency information. Therefore, how to accurately

estimate high frequency information and sustainably transmit
high frequency information is still a challenge today.

In addition, there are certain correlations and similarities
between pixels in the image, such as similar textures,
structures or edges. Therefore, some scholars introduce
non-local features [19]. Non-local features refer to the
correlation between pixels at different locations in the image,
which can provide more contextual information, allowing the
algorithm to better understand the structure and texture in the
image, thereby better restoring details and edges. Although
non-local block reconstruction works well, the attention map
computed by non-local blocks is often unstable, which means
that it is easy to focus on less relevant pixel locations (such
as locations with very large pixel color changes) and ignore
pixel continuity during reconstruction.

To solve these problems, we propose a novel Feature
Preserving and Enhancing Network (FPEN). It is worth
noting FPEN is a hybrid architecture that uses a pattern
of feature extraction and implicit reconstruction to perform
super resolution reconstruction at arbitrary scale. In order
to better convey high frequency features and achieve
accurate texture detail reconstruction, we introduced the
High Frequency Preserving Block (HFPB) in the feature
extraction module to estimate the high frequency information
in the feature map. Secondly, we propose a pixel continuous
attention mechanism (PiCA) in the implicit reconstruction
module, which extends non-local operations in two ways.
First, a normalized self-similarity matrix (NSSM) is used
to capture the similarity and dissimilarity structures in
surrounding pixels to reveal the continuity of pixels. Second,
we treat NSSM as prior knowledge and combine it with the
attentionmap generated by non-local operations to adaptively
recalibrate the range of attention needed in surrounding
pixels.

Based on implicit reconstruction, we propose a Feature
Preserving and Enhancing Network (FPEN). Our network
achieves significant improvements over single image super
resolution, and produces more competitive SR results.
In summary, these are the main contributions of this paper:

• We propose a High Frequency Preserving Block
(HFPB), which can estimate high frequency informa-
tion more accurately. While retaining low frequency
information, we perform more complex operations
on high-frequency information so that high-frequency
information can be propagated in the deep network
to generate images with richer details and improve
reconstruction quality.

• We propose a Pixel Continuous Attention mechanism
(PiCA), which extends non-local operations and adap-
tively recalibrates the range that needs attention in pixels
to captures pixel continuity dependencies. It delivers
richer elements for the reconstruction of HR images,
and allows the network to focus for more information
features and outputing smoother images.

• Combined with implicit reconstruction, we propose the
Feature Preserving and Enhancing Network (FPEN),
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which can achieve super-resolution reconstruction at
arbitrary-scale. Extensive experiments on a variety of
public datasets demonstrate that the proposed archi-
tecture outperforms state-of-the-art models in terms of
quantitative and visual quality.

II. RELATED WORKS
This section provides a brief overview of recent work on
various super-resolution methods, non-local patterns, and
implicit neural representations relevant to our work.

A. CNN-BASED SUPER RESOLUTION RECONSTRUCTION
Super resolution reconstruction aims to recover high
resolution details and sharpness from low resolution
input images.Traditional super-resolution reconstruction
techniques include interpolation-based methods, edge-based
methods, and statistical modeling-based methods. These
methods can improve the resolution of images to a certain
extent, but are generally less effective at reconstructing details
and textures than CNN-based methods.

The first super-resolution reconstruction model based
on CNN is superResolution convolutional neural network
(SRCNN) proposed by Chao Dong et al., which learns the
mapping function relationship from low resolution images
to high resolution images by training a deep convolutional
neural network [11]. Subsequently, the FSRCNN model has
significantly improved performance and speed by fine-tuning
the SRCNN structure [20]. The CPDS model proposed by
Sedighe adopts a deep and shallow convolutional neural net-
work framework for single image super resolution, achieving
state-of-the-art performance with a small sample set and low
computational cost [21]. Yu et al. proposed a multi-stage
lightweight network enhancement method by using the
enhanced high-resolution output as additional supervision to
improve the performance of image super-resolution while
achieving faster inference time [22]. The SRNO model
proposed by Min et al. in 2023 achieved the super-resolution
reconstruction task in a semi-supervised manner through a
small number of LR-HR samples, which takes into account
both generalization and efficiency [23].

Inspired by the Residual Network [24], Kim et al. proposed
the Very Deep Super-Resolution (VDSR) model based on
the deep residual network, which achieved better results
in retaining detailed information and enhancing texture,
and also has a significant improvement in calculation
speed [12]. Subsequently, Enhanced Deep Super-Resolution
(EDSR) proposed by Lim et al. removed the redundant batch
normalization layer based on the VDSR model, and maked
the model more compact and achieving better results [7].
The Multi-scale Feature Fusion Residual (MSFFR) model
constructs residual blocks of multiple intertwined paths to
adaptively detect and fuse image features of different scales,
and achieves remarkable results [25].
In addition, the CNN-based super-resolution reconstruc-

tion models still have good results in three-dimensional

super-resolution reconstruction tasks. Jinglong et al. pro-
posed the mDCSRN model using a 3D convolutional neural
network, which achieved outstanding results in medical
MRI imaging data [26]. The NVSR model performs
super-resolution reconstruction of multi-view consistent
views of invisible three-dimensional scenes [27].
Overall, with the continuous development of deep learning

technology, super-resolution reconstruction methods will
achieve better results in retaining image details and textures,
and will play a more important role in high-quality image
generation, video processing, medical images and other
fields.

B. ATTENTION MECHANISM
The core goal of the attention mechanism is to select
information that is more critical to the current task from
numerous information. As for deep learning, attention
mechanisms are usually applied to the processing of sequence
data. Attention mechanisms are roughly divided into self-
attention [28], spatial attention [29] and temporal attention
[30] mechanisms according to different weighted targets.

Self-attention is the most widely used attention mecha-
nism, which allows each element to adjust its representation
according to the importance of other elements, thereby
capturing long-range dependencies between elements. The
Transformer model based on multi-head self-attention has
attracted the attention of a large number of scholars due to its
extremely high versatility and ability to capture long-range
correlations [31], [32] and has also achieved good results in
super resolution reconstruction. Subsequently, Wang et al.
[33]showed that self-attention is an instantiation of non-local
mean, and proposed a non-local block for the CNN to capture
long-range dependencies.

The non-local attention mechanism can establish global
non-local correlations in feature maps, and captures the
dependencies between distant pixels. Its idea is to obtain
global contextual information by calculating the similarity
between each position in feature map with all other positions.
The application fields of non-local attention mechanism in
image tasks include text recognition [34], image segmen-
tation [35], image super-resolution reconstruction [36], etc.
In super-resolution tasks, non-local attention mechanisms
can be used to capture long-range dependencies within
images. When processing images, there are often regions that
span large spatial distances but have obvious correlations,
such as similar textures in the image. Non-local attention
can help the model search for these regions with similar
features in the entire image, and better recover texture and
structural details. Because it is important to recover as much
high-frequency detail as possible during the conversion of
low-resolution images to high-resolution images. Mei et al.
combine non-local operations and sparse representation
to ensure the super-resolution reconstruction effect while
reducing the amount of calculation [36]. Reference [37]
based on non-local operations, directly extracted long-range
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FIGURE 2. Proposed Feature Preserving and Enhancing Network (FPEN) for SISR, which consists of feature extraction module and implicit
reconstruction modules. Hθ is an implicit function to predict the set of RGB colors of pixels.

spatio-temporal correlation, replacing traditional motion
estimation and motion compensation to improve video super-
resolution reconstruction.

C. IMPLICIT NEURAL REPRESENTATION
Implicit representation is a method of representing data by
learning implicit functions, which map high-dimensional
inputs to low-dimensional space. By learning implicit
functions, it can achieve efficient encoding and generation
of data. Implicit representations are often modeled through
neural networks. These models can be trained to map input
data to a low-dimensional representation in a latent space
and then reconstruct the data from this low-dimensional
representation. Implicit representation has been widely used
in many fields.

Implicit representations can play an important role in
three-dimensional shape construction during the 3D model-
ing process. By learning to map point cloud or voxel data to
implicit functions, 3D shape reconstruction and generation
can be achieved. For example, Mescheder et al. proposed
a method based on implicit representation in 2019 for
reconstructing the geometry of three-dimensional objects
from point cloud data [38]. In recent years, some methods
such as union implicit function (UNIF) [39] and deep implicit
function (DIF) [40] have improved the accuracy of implicit
functions to a certain extent.

In addition, implicit representation can also play an
excellent role in super resolution reconstruction. Arbitrary
super-resolution reconstruction of images can be achieved by
learning implicit functions that map low resolution images to
high resolution images. Local implicit image function (LIIF)
explores the image super-resolution reconstruction from
another angle and opens a new era of image super-resolution
[41]. Li et al. proposed an adaptive local image function
to improve structural distortion and ringing artifacts around

edges during image reconstruction [42]. McGinnis et al.
proposed a method using implicit neural representation
(INR) to achieve high-fidelity anatomical reconstruction [43].
MoTIF proposed by Chen et al. uses local implicit neural
functions to achieve continuous spatio-temporal video super-
resolution reconstruction [44].

Taken together, the super-resolution algorithms have
achieved significant performance improvements by using
deep learning models to learn the mapping relationship
of images, and combining attention mechanisms and other
technical means. These algorithms also provide important
theoretical and practical foundations for image enhancement,
visual recognition and other fields.

III. PROPOSED METHODS
In this section, we first describe the overall network archi-
tecture. Next, we introduce the proposed High Frequency
Preserving Block (HFPB) in detail. Finally, we discuss the
proposed Pixel Continuous Attention module (PiCA).

A. NETWORK OVERVIEW
Taking a low-resolution image as an input, our goal is
to reconstruct a high-resolution image with arbitrary scale.
To achieve this goal, we propose Feature Preserving and
Enhancing Network (FPEN) in Figure 2. Let us define ILR
and ISR as the input and output of the network respectively.

First, we extract the input feature F0 through one
3 × 3 convolutional layer(H0) :

F0 = H0(ILR). (1)

Then the obtained image features F0 is used as the input
of several stacked HFPBs to estimate and preserve high
frequency features. It can be formulated as

Fk = Hk (Fk−1), k = 1, . . . ,m. (2)
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where Hk represents mapping function of the k-th HFPB. Fk
denotes the feature from the previous HFPB, andm is the total
number of HFPBs.

The feature blockFm can be regarded as amatrix composed
of several pixel feature vectors, so it can be reshaped into a
sequence of pixel features, which is defined as A = {αi}Pi=1.
αi represents the feature vector of the pixel and P is the total
numble of pixels. Then the extracted feature A is as an input
of the proposed PiCA module to calculate non-local feature
representation Z = {zi}Pi=1. The operation is formulated as

Z = HPiCA(A). (3)

In the implicit reconstruction module, the RGB value of
every pixel q(i,j) in the ISR can be obtained by fusing pixel
values of its closest key point k(i′,j′). Therefore, in order to
achieve super resolution reconstruction with arbitrary scale,
we define Hθ (θ is a parameter) as an implicit function to
predict the set of RGB colors of pixels, which can be shown
as:

ISR(xq) = Hθ (z∗, (xq − v∗, c)). (4)

Among them, Hθ is a mapping function, which can be
composed of MLP. z∗ is the nearest latent code from xq which
is obtained by projecting the high-resolution pixel point into
the low-resolution space. v∗ is the coordinate of latent code
z∗ in the ILR. c is the conditions of the query pixel q in ISR.

Here we set v∗t (t ∈ {00, 01, 10, 11}) to be the four nearest
points in top-left, top-right, bottom-left, bottom-right of xq,
and z∗t is the nearest latent code of v∗t . We extend Equation
(4) to:

ISR(xq) =

∑
t∈{00,01,10,11}

St
S

· Hθ (z∗t , (xq − v∗t , c)). (5)

where St is the area of the rectangle between xq and v∗t , and S
=

∑
t St is the total area of the four rectangles.

In order to achieve more accurate super resolution
reconstruction, we use L1 loss for training. The training set
contains N pairs of ILR and corresponding IHR. The network
is optimized to minimize the L1 loss funxtion:

L1 =
1
N

N∑
i=1

∥ISR − IHR∥ . (6)

B. HIGH FREQUENCY PRESERVING BLOCK
According to Fourier Transform, natural images contain
low-frequency signals that describe the image structure
and high-frequency signals that describe detailed textures.
We assume that the output feature map from the previous
convolutional layer also contains low frequency component
and high frequency component. High frequency informa-
tion is seriously lost during the down-sampling process,
and recovering high frequency information requires more
complex feature processing. In order to preserve as much
high-frequency detail information as possible in the network,
it is very important to assign the feature to the appropriate

FIGURE 3. The right is architecture of the Basic Residual Feature Block
(BRFB), and the left is architecture of the Learnable Residual Feature
Block (LRFB).

branch according to the frequency strength, so that the
high frequency signal can be further enhanced through
more complex operations, while the low frequency part is
passed through the lower complexity operation to compensate
for the increased calculations. To this end, we proposed
High Frequency Preserving Block(HFPB) to achieve more
accurate reconstruction by learning discriminants to separate
high frequency and low frequency information, as shown in
Figure 2.

Given the input X ∈ RC×H×W , where C is the number of
channels, and H × W is denoted spatial demensions, HFPB
can be modeled as

Y = X0 + Fres(X0). (7)

where X0=FB(X), FB represents the Basic Residual Feature
Block(BRFB).Fres uses residual learning to matigate the
gradient vanishing problem and enhance the representation
ability of the model.

In the residual branch, we first extract the features of X0
based on the Learnable Residual Feature Block(LRFB). High
Frequency Adaptive Block(HFAB) is applied to estimate the
high frequency information Xhigh from the low frequency
space. Then We enhance high frequency information through
two branches, where both branches contain a LRFB. For
the purpose of exploring feature representations of different
sizes, we reduce the feature size in the lower branch
and deepen the network by sharing weights. After the
feature extraction, the features are upsampled, and the upper
and lower branch features are mixed through the concate
operation to obtain the feature Y′. Its operation can be
expressed as

Y ′
= [FL(Xhigh), ↑ F⟲n

L (↓ Xhigh)]. (8)

where ↑ and ↓ denote the upsampling and downsampling
operations. FL means the LRFB. And we use n LRFBs to
deepen the network.
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FIGURE 4. The visual activation feature maps of HFAB.

As for Y′, we adopt an 1 × 1 convolution to reduce the
number of channels and Channel Attention(CA) to emphasize
important channels. Finally, the feature from the last LRFB
is added to X0 to get Y.

The residual block is shown in the left of Figure 3, which
consists of a residual branch and an identity branch, and
the weights of the two branches are equal. In order to
adjust the importance of branches more flexibly, we propose
Learnable Residual Feature Block(LRFB), as shown in the
right of Figure 3. LHRB is composed of two Learnable
Residual Blocks(LRBs) and two convolutional layers. Each
LRB has learnable parameters λ to control the weights of
the residual branch and the identity branch. After extracting
local dense features through LRBs, in order to explore global
hierarchical features, we concatenate the outputs of two LRBs
through learnable parameters λ. Then, a 1 × 1 convolution
layer fuses hierarchical features, and a 3 × 3 convolution
is used to further extract features and reduce the number of
channels. Next, we implement global residual learning by
controlling the identity branch and residual branch through
learnable parameters λ. The learnable parameters λ of each
residual block are different.Through the learnable parameter
λ, we have implemented adaptive control of different branch
weights, so that the network can dynamically allocate
attention according to the characteristics of the input data.

The target of High Frequency Adaptive Block(HFAB) is to
estimate the high frequency information of the feature space.
As shown in Figure 4, for the input T0 ∈ RC×H×W , we first
uses an average pooling layer to obtain the intermediate
feature map T1. Each value in T1 can be viewed as the
average intensity of each specified small area of T0. Then, T1
is upsampled through bicubic interpolation to obtain a new
feature map T2. T2 can represent the average smoothness of
input T0. Therefore, the high frequency information T3 can
be expressed as:

T3 = T0 − T2. (9)

As shown in Figure 4, it can be observed that compared to
T0, T2 is smoother. At the same time, T3 retains more details
and edges.

C. PIXEL CONTINUOUS ATTENTION
To capture pixel continuity dependence, we propose a
Pixel Continuous Attention module(PiCA) that leverages
visual cues observed from surrounding pixels to adaptively
recalibrate the range that require attention. Our proposed

PiCA module is shown in Figure 2. Given the sequence of
pixel features A ∈ RP×64, the goal of PiCA is to obtain a
non-local content representation Z′, which aims to capture
pixel continuity dependencies throughout the representation
sequence by weighted sum of features at all pixel positions,

Z ′
= ρ([f (A,A), f (θ (A), φ(A))])g(A). (10)

φ(·),θ (·),g(·) are implemented by using 1 × 1 convolutional
layer.
f(·,·) is a function of pairwise that computes the affinity for

all positions, as shown in Equation (11).

f (θ (A), φ(A)) = θ (A) · φ(A)T . (11)

And the size of the resulting pairwise function f(θ (A),φ(A))
is denoted as RP×P, which encodes the mutual similarity
between pixel positions under transformed feature repre-
sentation sequence. Then we use the softmax function to
normalize it into an attention map.

We find that attention map provides opportunities to
understand the dependencies between surrounding pixels, but
sometimes also lead to attention on pixel with less correlation
but large feature differences, such as locations with large
differences in color. Therefore, we introduce the Normalized
Self-Similarity Matrix (NSSM) into the PiCA to learn to
focus attention on a more appropriate pixel sequence range.

For NSSM, we take the pixel feature sequence as input
and construct f(A,A) = AAT ∈ RP×P through the self-
similarity matrix. It can more directly reveal the continuity
relationship between pixels. Finally, the self-similarity matrix
is normalized through the softmax operation to obtain NSSM.

We combine NNSM as prior knowledge with attention
map, and then use the ρ(·) which is a 1 × 1 convolution to
recalibrated the attention map. In order to obtain the PiCA
Map, the reault of ρ(·) is normalized by the softmax peration.
Finally, the non-local content relationship Z′ can be can be
cal culated from the linear combination between the matrices
resulted from ρ(·) and g(·).

At last, we use residual connections to generate the
pixel feature representation sequence Z ∈ RP×64.Wz is a
1 × 1 convolution. And Z can be can be viewed as an
enhanced A.

Z = Z ′Wz + A. (12)

IV. EXPERIMENTAL RESULTS
In this section, we will use 6 benchmark datasets to
evaluate the performance of our algorithm. First, we will
introduce the experimental settings, evaluation metrics, and
implementation details, and then systematically compare our
method with state-of-the-art SISR algorithms on benchmark
datasets.

A. IMPLEMENTATION AND TRAINING DETAILS
1) DATASETS AND METRICS
we used the 800 images of DIV2K dataset for training[51].
The DIV2K dataset provide a robust basis for learning
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FIGURE 5. The visual results for ×2,×3,and ×4 super resolution. Our method can reconstruct images with more correct texture.

fine-grained details and textures, which is crucial for an
effective super resolution model. For testing the performance
of our model, we used the validation dataset from DIV2K
and the well-known Set5 [6], Set14 [62], B100 [4], Urban100
[23], and Manga109 dataset which contain natural images,
urban scenes and Japanese manga.

The evaluation of the super resolution performance was
conducted using the widely accepted metrics: Peak Signal
to Noise Ratio (PSNR).PSNR compares the maximum
possible power of a signal against the power of corrupt-
ing noise. A higher PSNR indicates better reconstruction
quality.

By calculating PSNR as evaluation indicators, we compre-
hensively evaluate the performance and effect of our proposed
super-resolution algorithm.

2) IMPLEMENTATION DETAILS
During training, we set the batchsize to B, and first sample
B random scales r1∼B in uniform distribution U(1,4). Then
we crop B pathches with size {48ri × 48ri}Bi=1 from training
images. The ADAM optimizer is used to optimize the
parameters, and the learning rate was initialized to 0.0003 and
decayed by half per 200 epochs. We adopted L1 loss to train
the network.

The operation system is Centos, and the GPU is NVIDIA
V100. All experiments were completed using the deep
learning framework Pytoroch 1.13.0 and the accelerator
library CUDA Tookit 11.7.

B. COMPARISON WITH STATE-OF-THE-ART METHODS
1) RESULTS OF IN-DISTRIBUTION
For in-distribution scales(×2, ×3, ×4), we compare our
method with previous work on Set5, Set14, B100, Urban100,
and Manga109 dataset. From Table 1, it can be seen that
our method has higher evaluation indicators in PSNR for
scales 2, 3, and 4. For instancce, the PSNR of our algorithm
on all datasets ×2 is improved by 0.14dB in avarage, and
especially yields a performance increase of about 0.29dB
on Urban100 dataset. Experimental results show that our
proposed method has obvious superiority in super-resolution
reconstruction effect. Besides, it can also prove that our
method can adapt to the reconstruction of various scenarios.
In particular, our training set does not contain any manga
images, but MANGA109 shows an excellent reconstruction
effect beyond other algorithms.

In addition to the quantitative results, we visualize the
super-resolution images in Figure 5. It can be seen that
the details reconstructed by our method are more refined,
especially in edges and textures. For example, our method
achieves more correct reconstruction of scarves in images of
Set14 with×2. This further verifies the remarkable effective-
ness of our method in retaining high-frequency information
and reconstructing more correctly detailed textures.

2) RESULTS OF OUT-OF-DISTRIBUTION
Although the training data we use only contains in-
distribution scales(×1-×4), our algorithm can still achieve
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TABLE 1. Comparisons with the State-of-the-arts. Performance is shown for scale factors 2, 3 and 4. The best and second best results are highlighted in
red and blue respectively.

TABLE 2. Performance is shown for DIV2K dataset out of distribution with PSNR. Our method achieves the best reconstruction results.

reconstruction of out-of-distribution dimensions (×6,
×12,×18, ×24, ×30). Table 2 shows our reconstruction
results of out-of-distribution scales. It can be seen that
compared with other methods, our method achieves the
highest PSNR. This shows that our method can not only

achieve super-resolution reconstruction at in-distribution
scales, but also have a good reconstruction effect at arbitrary
scales. In order to achieve super-resolution reconstruction at
arbitrary scales, our method focuses on exploring the feature
representation of any pixel point on the high resolution image,
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FIGURE 6. The visual results for×6, ×12, and ×24 super resolution. Our
method can reconstruct images with of out-of-distribution scales.

FIGURE 7. The visual results for ×16.8, ×22.3 and×26.7 super resolution.
Our method can reconstruct images with non-integer scales.

TABLE 3. Average PSNR obtained with ablation study on DIV2K dataset.

and then takes the image coordinates and surrounding 2D
features as input, and uses implicit prediction to obtain RGB
values of the given coordinates.

For qualitative analysis, it can be seen in Figure 6 that our
method can still retain more details and textures in large-scale
reconstruction (×12,×24), and make the image visually
clearer and sharper. This shows that our method can not only
preserve more high-frequency information which consists of
detailed textures, but also adaptively integrate non-local pixel
information to achieve more accurate reconstruction.

3) RESULTS OF NON-INTEGER RECONSTRUCTION
Our super-resolution reconstruction algorithm can not only
achieve reconstruction at integer scale, but also successfully
achieve reconstruction at non-integer scale. This means that
our algorithm has higher flexibility and adaptability, and can
produce reconstruction results with various scaling factors
in different application scenarios. In Figure 7, we show
the reconstruction results under different non-integer scales
respectively. We observe that reconstructions of non-integer
scales present visually satisfactory results. Compared with
traditional interpolation methods, our algorithm is better able
to preserve image details and structure, generating more
realistic and clearer reconstructed images.

C. ABLATION STUDY
In the ablation study, we explore the influence of the
HFPB and PICA module. First, we use EDSR-baseline-
LIIF [41] as our baseline, and then add the PICA module
and HFPB module in sequence. All models are trained for
1000 iterations.

The experimental results are shown in Table 3, and we
observed a significant improvement in performance when the
PICA module is added. The EDSR-baseline-LIIF algorithm
artificially defines the range of pixels to focus on and gives
equal weight to each pixel. To further explore the impact of
non-local pixels in super-resolution reconstruction, we use
the PICA module to adaptively correct pixel ranges and
weights. As can be seen from the Table 3, our PICA module
can indeed further improve the reconstruction effect. The
EDSR module in EDSR-baseline-LIIF is used for feature
extraction, but it does not distinguish between low-frequency
and high-frequency features. We replaced the EDSR module
with the HFPB module as FPEN(ours). As can be seen
from Table 3, our method achieves the best reconstruc-
tion. This shows that high-frequency information is very
important in super-resolution reconstruction. Our method
distinguishes high-frequency and low-frequency components
from the feature dimension, assigns more complex operations
to high-frequency components to preserve high-frequency
components, which can better restore the texture of the image.

V. CONCLUSION
We propose a Feature Preserving and Enhancing Net-
work (FPEN) based on implicit representation to achieve
super-resolution reconstruction at arbitrary-scale. We utilize
High Frequency Preserving Block (HFPB) to distinguish
high-frequency components and low-frequency components
from the feature dimension, and assign complex operations to
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high-frequency regions to preserve high-frequency informa-
tion, so that the details and texture of the image can be better
reconstructed. Furthermore, our proposed Pixel Continuity
Attention (PiCA) module adaptively recalibrates the range of
attention required to better capture the continuity dependence
of pixels. In addition, we combine implicit representation to
learn implicit functions that map low resolution images to
high-resolution images, in order to achieve super-resolution
reconstruction with arbitrary scales. Through extensive
experiments, our method achieves remarkable image recon-
struction results at arbitrary scales. Compared with other
state-of-the-art super-resolution algorithms, our method can
provide richer details and texture information by preserving
and enhancing image features. In the future, we will further
explore decomposing low-frequency and high-frequency
information at the pixel level to achieve more accurate image
reconstruction.
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