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ABSTRACT With the quick development of mobile light detection and ranging (LiDAR) systems, point
clouds are frequently applied for various large-scale outdoor scenes. It is fundamental to quickly and
accurately classify objects of mobile laser scanning (MLS) point clouds in such urban scene applications.
However, an important problem is the need for massive training samples in object classification. High
computational cost is also a common challenge. To overcome them, a knowledge-based multi-scale adaptive
classification approach (KMAC) is proposed in the paper. The method consisting of four layers derives from
a normal neural network framework, the operation in part layers differ. As the scale difference of various
objects in natural environment, 3Dmulti-scale spatial local relation of objects is explored with inspiration by
the idea of convolution. Two types of distinguishable features of actual objects are explored to describe 3D
point clouds by a 2D vector representation. Then, human knowledge is used to directly build an end-to-end
match between these feature descriptions in 2D and 3D point clouds of actual objects. Point clouds which
are adjacent with the same feature representation would be intentionally integrated into multiple adaptive
regions. The adaptive integration solves scale difference of various objects. The direct match by knowledge
exactly plays the role of training samples. Qualitative and quantitative experimental results on three data-sets
finally show the proposed approach is promising to efficiently classify unlabeled objects in urban scenes.

INDEX TERMS Geometrical Eigen-features, adaptive, multi-scale, knowledge, classification, MLS point
cloud, urban scene, transfer learning.

I. INTRODUCTION
With the quick development of LiDAR systems, point clouds
as a new data source, play an increasingly important role
in various urban scene applications [1], [2], [3], [4], [5],
[6], such as large-scale urban 3D point cloud classification
[1], vehicle detection [2], and road facilities recognition [3].
In many research fields, classification and optimal perfor-
mance are necessary prerequisites [7], [8], [9], [10], [11].
Especially, for 3D point cloud applications, quick and accu-
rate automated classification procedures for mobile point
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clouds in complex urban environments are fundamental
and highly necessary. Classification of MLS point clouds,
in which each point is determined to belong to a specific class,
e.g., ground, road, vehicles, and street trees, and so on, is a
common and core task for various applications of 3D urban
scene analysis [12], [13], [14], [15], [16], [17], [18], [19].

Recently, many scholars have carried out in-depth research
and made some progress in the field of classification for MLS
point clouds in urban scenes [20], [21], [22], [23], [24], [25],
[26], [27], [28], [29], [30], [31], [32], [33], [34]. For example,
Aijazi et al. realized the complex task of classification of
3D urban point clouds by combining two approaches, that
is, image converting and the super voxel employing [20].
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Babahajiani et al. identified each type of objects step by
step, such strategy could significantly reduce the need for
manually labeled training samples [22]. Combining with a
support vector machine (SVM) classifier, Li et al. built an
object-oriented decision tree to reduce wrong classification
and significantly increase the classification accuracy [30].
Li et al. focused on point-wise classification by applying a
binary classifier involving a set of local features derived from
the neighborhoods of the point [32]. Convolutional neural
network-based (CNN) methods also have rapidly began to
occupy more than half of related publications in recent years
[35], [36], [37], [38], [39], [40], [41], [42], [43], [44], [45],
[46], [47]. For example, Huang et al. introduced a framework
of 3D CNN and applied for labeling complex 3D point could
data in outdoor environment during the voxelization, training
and testing of the 3D network [36]. Thomas et al. designed
a new kernel point convolution, which consisted of several
advantages, including to use any number of kernel points.
The approach made it possible to process more complex
classification tasks in outdoor scenes [40]. Tan et al. proposed
MSTGNet with a revised structure to make comparative
performance with state-of-the-art deep learning semantic seg-
mentation methods in a large-scale point-wise labeled urban
outdoor point cloud data-set [44]. Network-based models
also performed on other classification applications [48], [49],
[50], [51], [52], [53], [54].

Lots of high quality classification results are achieved
from the above publications, but all these methods depend
on supervised learning. It is easy to get high classification
performance at the cost of massive labeled samples, lots
of parameter setting and heavy computation cost. However,
most point clouds collected by mobile LiDAR equipment
are raw without label information. Recently open and free
data-sets of point clouds are manually labeled, which is
labor-intensive and time-consuming. In addition, the com-
mon challenges of point classification fromMLS point clouds
also include a low distinctiveness of local geometric features
and a high computational complexity of the neighbor search.
Multiple neighborhood scales or a selected optimal neighbor-
hood scale [55], [56], [57], [58], [59] are recovered to enhance
the discrimination of local geometric features, resulting in
higher computational cost.

In response to the above problems, the following solutions
provide good inspiration.

(1) Knowledge-based approaches can be employed, which
explore discriminating features of objects based on under-
standing of the surrounding environment. Therefore, massive
training samples are not needed.

(2) To enhance the robustness of methods, it is critical to
exploit discriminating characteristics of urban objects which
are not easily affected by the external environment. Geomet-
ric features, which are reflected by several closely spaced
points, have always been considered for discriminating fea-
ture extraction. Furthermore, knowledge-based approaches
can help to realize the extraction of geometric features.

(3) The knowledge-based approach can save lots of com-
putation time with no heavy training process.

Actually, from the early 90s, many researchers were always
working to reduce the need for training samples [60], [61],
[62]. Recently, the line of research is active again [63], [64],
[65]. Zheng et al. implemented vehicle recognition based on
region growth of relative tension and similarity measurement
of side projection profile of vehicle body in urban scenar-
ios [65]. Some research about small amount of samples in
classification also are working [66], [67]. For example, Zhao
et al. [66] proposed a method for point cloud classification
based on transfer learning using small training data-sets.
These work easily result in the over-fitting problem when the
numbers of training samples are relatively small.

Based on above overview, a knowledge-based multi-scale
adaptive classification method (KMAC) on urban objects for
unlabeled point cloud data-sets is proposed in the paper. The
KMAC method is derived from a normal neural network
framework, and borrows classic idea in each layer of the
latter. The former replaces the need for training samples by
incorporating human knowledge. The idea of multi-scale is
first used to partition point cloud data in 3D space. Then
relevant features per region are extracted including height
difference and geometrical eigen-feature. Screening by first
law of geography, these neighborhoods within point clouds
which are with similar characteristics are selected out to
shape 3D adaptive spatial regions. Finally, human knowledge
on real objects is used to build a direct classification match
between the extracted features and the classes of real objects.

The paper is to solve the classification problem without
label information. The aim of this paper is to look for a
feasible method for both feature extraction and point cloud
classification based on knowledge to efficiently classify unla-
beled urban objects. Inspiring by classic principle in each
layer of a normal neural network framework, multi-scale par-
tition, relevant feature extraction, 3D adaptive spatial region
forming, and knowledge-driven classification are involved
into each layer of the KMAC method, finally to efficiently
classify unlabeled urban objects. The proposed method pro-
vides ideas and guidance for the classification of unlabeled
objects in urban scenes.

The novelty of the work is that:
(1) In view of the difficulty of the scale difference of urban

objects, the idea of adaptive integration for 3D spatial regions
is proposed, which takes full account of the multi-scale char-
acteristics of urban objects.

(2) Knowledge rules on urban objects play the role of
a classifier, which satisfies the classification requirement
without label information. It reduces the complexity of the
problem and saving computing resources.

Fig. 1 illustrates the proposed workflow. The core of the
proposed workflow is KMAC, which is on the base of four
modules of a normal CNN consisting of input layer, convo-
lutional layer, fully connect layer, and output layer. At the
input layer, data preprocessing is necessary, of which details
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are given in Section II-C-I. Then, the remaining points are fed
to the convolutional layer of the proposed KMAC method.
Distinctive properties of objects in natural environment are
hardly defined at a unique scale. In order to overcome the dif-
ficulty, the multi-scale spatial relation of objects is analyzed
in four steps inspiring by the idea of convolution in a normal
CNN. The details are presented in Section II-C-II. At the
convolutional layer, based on human knowledge, two types of
discriminating features of objects are extracted. 3D adaptive
spatial regions for objects are captured in fully connected
layer in Section II-C-III. The final output in the pine-line of
KMAC method is classified point clouds in Section II-C-
IV. Finally, to verify the robustness and extensibility of the
proposed method, the KMAC method is tested on unlabeled
point cloud data-set by the concept of transfer learning.

FIGURE 1. The proposed workflow.

Three main contributions of the work in the paper include:
(1) Based on human knowledge, the proposed KMAC

method is without the need of massive training samples. This
greatly reduces the pressure to produce training labels by
humans. And it can save lots of computation time with no
heavy training process.

(2) The KMAC approach can integrate adaptive spatial
regions to solve scale difference of various objects. Accord-
ing to the first law of geography, the construction of 3D
adaptive spatial region is implemented. The adaptive output
solves scale difference of various objects. Direct classifica-
tion match also avoids the time-consuming training process.

(3) For a comfortable life environment, basic pattern of
artificial objects in public places is similar in different cities
and countries. The similarity makes the proposed KMAC
method suitable for various urban scenes by transfer learning.

The remainder of this paper is organized as follows.
Section II introduces the proposed method. Section III
presents the experiment results, Section IV gives the discus-
sion, and Section V presents the conclusion.

II. METHODOLOGY
The aim of this paper is to look for a feasible method for
both feature extraction and point cloud classification based
on knowledge to efficiently classify unlabeled urban objects,
rather than pursuing perfect classification accuracy from
labeled MLS point clouds.

In Section II-A, class defining depending on experiment
data-sets is given. In Section II-B, a simple introduction of a
normal CNN is presented. Then the individual layers of the
proposedKMACmethod in Fig. 1 are explained to complete a
whole procedure of urban object classification in Section II-
C. In the final section II-D, three common measure criteria
are described to evaluate the proposed method.

A. CLASS DEFINING
The class type of urban objects directly impacts on the
design of a classification method. It is necessary to initially
define classes. The data-sets selected in the paper include
two mobile laser scanning benchmarks in different districts
in Paris, France [68], [69], and another one from a com-
pany called Cyclomedia, which mainly covers city scenes in
Schiedam, Netherlands. Considering the variety of types of
objects in these three urban scenes, and the proportion of each
type of object, four classes (i.e., Facade, Trees, Ground and
Others) are defined in the paper.

B. THE ARCHITECTURE OF A NORMAL CNN
A simple CNN as shown in Fig. 2 generally consists of
four layers, that is, one input layer, one output layer, one
convolutional layer and one fully connected layer.

FIGURE 2. A simple CNN architecture.

It is easy to understand the function of input and output
layers. The convolutional layer is the core module of a normal
CNN. Its objective is to extract valuable features from input
data. Four hyper-parameters control output of a convolutional
layer, that is, the depth, stride, the filter size, and zero-padding
as shown in Table 1. A fully connected layer is to learn
combinations of the valuable features. Inspired by a typical
CNN, the knowledge-based multi-scale adaptive classifica-
tion method is presented in next section.
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TABLE 1. Four main hyper-parameters in a convolutional layer and the
individual description.

FIGURE 3. KMAC.

C. KNOWLEDGE-BASED MULTI-SCALE ADAPTIVE
CLASSIFICATION (KMAC)
A knowledge-based multi-scale adaptive classification
method (KMAC) on urban objects for unlabeled point cloud
data-sets is proposed in the paper. KMAC consists of four
layers as shown in Fig. 3. Details are given in following
subsections.

1) INPUT LAYER OF THE KMAC
Data preprocessing is performed in the input layer. The
ground points are removed by the software CloudCompare
[70], [71], [72]. Many features for point clouds, for example,
point density, depend on the distance from the sensor and the
velocity of the car on which the laser scanners are mounted.
The further away from the sensor, the coarse the point density.
To make the proposed method insensitive to such features,
these features should be scale invariant. Normalization is used
in the paper. The process is shown in Fig. 4. Whole point
clouds are separated into lots of small same-sized cubes in
Fig. 4(a). In Fig. 4(b), the number of point clouds differs in
each cube because of point density. In Fig. 4(c), only one
point is reserved and all other points are removed in each
regular cube. The selected point is close to the red centre point
of the small cube. There are two benefits for normalization:

1) ensure the comparability of same feature on different
objects.

2) eliminate the adverse effects caused by singular sample
data.

FIGURE 4. Normalization.

2) CONVOLUTIONAL LAYER OF THE KMAC
Generally, the objective of the convolution operation in a
normal CNN is to extract valuable features from the input
data. The idea of convolution is introduced for feature extrac-
tion of unlabeled multi-scale samples and then build an
object-oriented map based on knowledge in the KMAC in
the section. It is a four-step strategy as shown in Fig. 5. The
details in each step are described as follows.

Step I: the division of blocks
Block division aims at separating whole point clouds into a

lot of blocks, making sure points in each block belong to the
same object as far as possible. Point clouds are divided into
3D blocks through the following process in the paper.

(1) Given the point cloud data-set, the maximum value and
minimum value of x, y coordinates on the XOY plane are
figured out, forming a plane bounding rectangle of the whole
point clouds.

(2) The rectangle is divided into lots of square tiles with
the same length.

(3) Adding the z coordinate per point in each tile, the 2D
tile is extended to a 3D block. The height value of each 3D
block is the z value of the highest point inside the 3D block.
Without special explanation, such a 3D block is called a block
unit in the paper.

The outputs of the division of blocks are lots of 3D block
units. For example, as shown in Step I of Fig. 5, there are
M∗N 3D gray block units, heights of which differ.M andN is
the number of rows and columns of these 3D gray block units,
respectively on the XOY plane. The height difference among
3D block units exactly reflects the height characteristics of
ground objects.

Based on the results of block division, multi-scale neigh-
borhood areas consisting of 3D block unites will be integrated
by convolution in next step.

Step II: the convolution of blocks
Block convolution aims at searching for multi-scale neigh-

borhood areas for objects, further preparing for feature
extraction in each area in the paper.

Distinctive properties of objects in natural environment
are hardly defined at a unique scale. The scale even could
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FIGURE 5. The four-step strategy in the convolutional layer of the KMAC.

be different among objects in the same class. To over-
come the difficulty, block convolution is proposed to explore
multi-scale spatial information of objects.

Take a f × f (f ≥ 1) filter as the example, block units
of number f 2 are convoluted at a time. These block units
are stored as one neighborhood area, which covers these f 2

blocks and points inside them. With the filter sliding, lots of
such areas with block units of number f 2 can be gotten.
The outputs of the convolution of blocks are lots of neigh-

borhood areas. For example, as shown in Step II of Fig. 5, the
3D block unit in red is the considering block, 3D block units
in green are its neighborhood blocks, the number of which in
green is f 2 − 1. The f × f filter slides around the red block
from left-right and top-down. Generally there are f 2 such
neighbourhood areas containing the 3D red block unit when
the stride S is 1. In Step I, the length and width of each block
unit are clear. Number f changes, a series of spatial extend F
are easy to be gotten. Spatial extend F exactly embodies the
concept of multi-scale.

Based on the results of block convolution, two types of
features will be extracted from point clouds of neighborhood
areas in step III.

Step III: the exploration of features
Considering class type of urban objects without label

information in experimental data-sets, traditional knowledge-
based features are considerable. Two types of features are
explored in the paper, e.g., height difference and geometrical
eigen-features of objects. The depth K is the number of types
of extracted features, and the depth is 2 in the paper.

a: HEIGHT DIFFERENCE
Height difference, 1h, is the distance of the z coordinate
between the lowest and highest points inside a block unit. A
3D block unit, presents a low height difference if points inside
it belong to ground points. Otherwise it shows a large height

difference if vertical objects are inside it, including facades
or trees.

b: GEOMETRICAL EIGEN-FEATURE
Normally, the linearity feature can be used to detect line
structures, the planarity feature has the ability to discrimi-
nate planar structures, and the scattering feature allows the
exhibition of 3D structures [73], [74]. With the results of the
division of blocks in Step II, three geometrical eigen-features
(e.g., linearity lλ, planarity pλ, and scattering sλ) are defined
to identify the shape of points in each 3D neighborhood area.
Details are given below [75].

Given a 3D point set Pset = {pi = (xi, yi, zi)|i =

1, 2, . . . , n} within a region, an efficient method to compute
and analyze the 3D point set Pset is to diagonalize the covari-
ance matrix of Pset . In a matrix form, the covariance matrix
of Pset is written as

C(Pset ) =

∑
pi∈Pset wi(pi − p̄)T (pi − p̄)∑

i wi
(1)

where p̄ represents the mean of the points, that is,

p̄ =
1
n

∑n

i=1
pi (2)

and n represents the number of points in Pset . wi is weight of
point pi, generally wi = 1. The eigenvectors and eigenvalues
of the covariance matrix are computed by using a matrix
diagonalization technique, that is, V−1CV = D,whereD is a
diagonal matrix containing the eigenvalues, i.e., λ1, λ2, λ3 of
C . V is an orthogonal matrix that contains the corresponding
eigenvectors. The obtained eigenvalues are greater than or
equal to zero, that is λ1 ≥ λ2 ≥ λ3≥ 0. It is worth noting
that the occurrence of eigenvalues identical to zero must be
avoided by adding an infinitesimal small value. Situation
λ1 ≥ λ2, λ3 represents a stick-like ellipsoid, meaning a linear
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structure. Situation λ1 ≈ λ2 ≥ λ3 indicates a flat ellipsoid,
representing a planar structure. Situation λ1 ≈ λ2 ≈ λ3
corresponds to a volumetric structure.

Based on the geometrical property, three geometrical
eigen-features are defined [75]. Here the definitions of the
eigen-features of linearity lλ, planarity pλ, and sphericity sλ
are given as follows:

lλ = (λ1 − λ2)
/
λ1 (3)

pλ = (λ2 − λ3)
/
λ1 (4)

sλ = λ3
/
λ1 (5)

where lλ + pλ + sλ = 1.
Based on above, height difference and geometrical

eigen-features of 3D point clouds are extracted from every
neighborhood area with f 2 block units. For each block unit in
such one neighborhood area, the value of height difference is
different but those of geometrical eigen-features are shared.

With the stride S being 1, it is sure a block unit appears in
multiple neighborhood areas, feature characteristics reflected
by these areas probably differ. In the case, the rule of vote is
applied to select the most suitable characteristics for every
block unit. For example, the 3D block unit in red is the
considering block in Step II of Fig. 5. There are f 2 such
neighbourhood areas containing the 3D red block unit when
the stride S is 1. Geometrical eigen-features of number f 2

in these neighbourhood areas are obtained, and only one is
selected out to describe the 3D red block by voting. If a block
unit appears in nine areas, where shape structure of points
respectively present linearity of number two, planarity of
number three, and sphericity of number four. Then sphericity
structure is assigned to the block unit and point clouds inside
it.

The outputs of the exploration of features are feature maps
based on extracted features. For example, as shown in Step III
of Fig. 5, each rectangle is a feature map, which reflects one
characteristic of objects. The size of feature maps is M × N ,
and the types of feature map contain height difference-based
and geometrical eigen-feature-based. The element in each
grid of a feature map presents feature value of point clouds
in every 3D block unit. The number of the feature map of
objects equals to the number of the type of features extracted.

Based on the results of the exploration of features,
an object-oriented map will be built in next step.

Step IV: the object-oriented map
In the step, an object-oriented map based on knowledge for

classification in urban scenes is built. As described in step III,
the type of feature map contains height difference-based and
geometrical eigen-feature-based. The element in each grid
of a feature map presents feature value of point clouds in
every 3D block unit. By integrating two feature maps into
one, every 3D block unit refers to a 2D vector representa-
tion. Each 2D vector is the feature combination of height
difference and geometrical eigen-feature. All 3D block units
are transferred into a object-oriented map by 2D vectors.
As shown in Step IV of Fig. 5, those block units referring to

FIGURE 6. Adaptive spatial regions for various objects in 3D space. (a) an
object-oriented map in 2D space; (b) adaptive spatial regions in
3 space,different regions in different colors.

the same vector representation are coloured in the same color,
and different vector representations correspond to different
colors. The color distribution on the map is object-oriented.
Adjacent areas are mostly in the same color.

3) FULLY CONNECTED LAYER OF THE KMAC
In the proposed KMAC method, this layer aims at forming
adaptive spatial regions for various objects by the object-
oriented map. In the process, each adaptive spatial region is
formed by the nearest blocks, which conforms to the first
law of geography [76]. The first law of geography states that
‘‘everything is related to everything else, but near things are
more related than distant things.’’

As described in section II-C-II, after the convolutional
layer of KMAC method, point clouds in each 3D block is
mathematically presented by a 2D vector. An object-oriented
map in 2D space is transferred to integrate spatial regions in
3D space. These 3D block units, which are adjacent with the
same vector representation would be integrated into one new
region. Then, adaptive spatial regions for various objects in
3D are shaped.

As shown in Fig. 6, adaptive spatial regions in different
colors are visualized. Fig. 6(a) shows an object-oriented map
in 2D space, and Fig. 6(b) shows adaptive spatial regions in
3D space, different regions are displayed in different colors.

4) OUTPUT LAYER OF THE KMAC
The output in this layer is that each point is assigned to a class,
which exactly is the class of an adaptive spatial region where
the point is located.

Based on 2D vector representation of feature combination
for point clouds in 3D blocks, made-up labels in terms of
extracted features for classifying the objects are introduced
[72]. The base of made-up labeling is the knowledge, that
is, human understanding on the extracted features. Sim-
ply speaking, every 3D block is given a made-up label
based on height difference of point clouds inside it. Three
eigen-features of point clouds inside the 3D block is used to
generate another made-up label. As a result, the 3D block is
presented by a 2D vector representation of the combination
of these two made-up labels. Human knowledge on real
objects is used to build a direct end-to-end match between
the combinations of made-up labels and the classes of real
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objects. The core behind the point cloud classification is
the knowledge. For example, both facades and trees belong
to height objects in urban scenes (given made-up label a1).
There are differences in physical structure for them. Class
Facade presents a planar structure (given made-up label b1),
class Trees presents a volumetric structure (given made-up
label b2). Based on knowledge on these two defined classes,
an end-to-end match between class Facade and 2D made-
up label [a1, b1] is built. Also, an end-to-end match between
class Trees and 2D made-up label [a1, b2] is built. The same
to class Ground and class Others.

So far, the knowledge-based multi-scale adaptive classi-
fication process for unlabeled MLS point clouds in urban
scenes is fully implemented. Although the architecture of a
normal CNN is borrowed, it does not include sample train-
ing in the complete process. Classes are assigned to points
based on human knowledge of feature combinations [72].
This classification method, similar to a classifier, plays the
role of training samples. The proposed method could provide
feasible ideas and guidance for the classification of unlabeled
objects in urban scenes.

D. MEASURE CRITERION
In the section, three indexes are employed to evaluate the
performance of the KMAC method, respectively, precision,
recall and overall accuracy (OA). Those expressions are listed
as follows.

Precision (P)- a measure of exactness or quality.

Pi = TP
/
(TP+ FP) = Fi,1,1

/
(Fi,1,1 + Fi,2,1) (6)

Recall (R)- a measure of completeness or quantity.

Ri = TP
/
(TP+ FN ) = Fi,1,1

/
(Fi,1,1 + Fi,1,2) (7)

Overall accuracy (OA):

OAi = (TP + TN)
/
(TP + FP + FN + TN)

= (Fi,1,1 + Fi,2,2)
/
(Fi,1,1 + Fi,1,2 + Fi,2,1 + Fi,2,2)

(8)

where four related variables Fi,1,1,Fi,1,2,Fi,2,1 and Fi,2,2 are
listed in Table 2.

TABLE 2. Four common measures.

TABLE 3. Four classes and corresponding number of points in the
IQmulus and TerraMobilita contest data-set before and after
normalization.

III. RESULTS
A. EXPERIMENT ON THE IQMULUS AND TERRAMOBILITA
CONTEST DATA-SET
1) CLASSIFICATION RESULT
The IQmulus and TerraMobilita Contest data-set [68] con-
tains 3D MLS data from a dense urban environment in Paris.
In the paper, all classes in the data-set are limited into four
classes, i.e., Facade, Trees, Ground, and Others. Table 3
presents four classes and corresponding number of points
before and after normalization. By comparing numbers in the
table, 5% of samples are experimented.

Table 4 gives the overall results of the IQmulus and Ter-
raMobilita Contest data-set by the proposed KMAC method.
The entry at the (i+1)-th row and the (j+1)-th column denotes
the number of points of the original class of corresponding
row that are classified as the class of corresponding column,
i, j = 1, 2, 3, 4. The OA is 84.94%.

In Table 4, the method performs well for class Facade,
Ground and Trees, and performs badly for class Others.
2,376 points of class Others are wrongly classified into
class Ground. In the benchmark [68], part points of class
Ground are mislabeled as class Others which causes wrong
ground truth and misjudgment. Also in Table 4, part points
of class Others are wrongly assigned to class Facade. The
sub-categories in class Others are various and complex, such
as cars and pole-likes. These sub-categories are close to class
Facade, causing the disturbance for classification. The perfor-
mance should be improved by dividing class Others into finer
sub-categories as provided in the benchmark and extracting
more distinguishable features for classification.

TABLE 4. Classification results of the IQmulus and TerraMobilita contest
data-set by the KMAC.
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Fig. 7 shows the ground truth and predicted results for each
class. Especially, point clouds of class Trees are in green;
point clouds of class Ground are in blue; point clouds of
class Facade are in gray; point clouds of class Others are in
red. For these four classes, point clouds which are wrongly
classified are in purple. From the results, although having
no training process, the generated results show distinguished
classification effect for different objects. However, there are
still some errors for four classes.

In Fig. 7(b), some ground points close to facades
are wrongly classified as facade points. Inversely, some
non-ground points close to ground are wrongly classi-
fied as ground points in Fig. 7(d). In the benchmark, the
sub-categories in class Others are complex, such as cars and
pole-likes. In Fig. 7(f), those point clouds that are not clearly
characterized in the proposed KMAC method are wrongly
classified as class Others. In Fig. 7(h), point clouds in purple
belong to the attachments of facades. Two types of features
(height difference and geometrical eigen-features) between
the attachments of facades and trees are represented simi-
larly in Step III of the KMAC, which causes a classification
error. More fine features need to be explored to improve
classification accuracy between the attachments of facades
and trees. Fig. 8 shows the complete ground truth and final
classification results by the proposed method for four classes.

2) COMPUTATION TIME
The algorithm runs on a computer with Intel(R) Core(TM) I7-
7700HQ CPU@ 2.80 234 GHz with 4 cores, RAM 16.0 GB.
The programming language is in MATLAB. The core cost of
computation time in the proposed KMAC method is in con-
volutional layer and fully connected layer, that is, the shape
of adaptive spatial regions. Concerning the computational
complexity, the computation time required for processing
different numbers of point clouds is considered. Compared to
the proposedmethod on processing point cloud segmentation,
three highly relevant algorithms DBCSAN [77], k-means
[78], mean shift [79] are elaborated below.
DBSCAN model uses a simple minimum density level

estimation, based on a threshold for the number of neighbors
within the radius. It consists of three major contributions: (1)
the model can cluster dense data-sets of any shape; (2) the
model is not sensitive to outliers in the data-set; (3) there is
no bias in the clustering results. Clustering effect of the model
is very sensitive to parameters. If the sample set is large, the
convergence time is a great challenge.

K-means is the most popular clustering algorithm based
on Euclidean distance. The basic idea of k-means is that
the closer the distance between two objects, the greater the
similarity. K-means is simple in principle and has only one
parameter. However, the model is sensitive to outliers and
noise. The convergence speed is affected in 3D space. In addi-
tion, only globular clusters can be found by k-means model.

Mean shift is a non-parametric estimator of density gra-
dient, which is employed in the joint, spatial-range (value)

TABLE 5. Classification results of the Paris-Rue-Madame data-set by the
KMAC.

domain of gray level and color images for discontinuity
preserving filtering and image segmentation. The advantage
of mean shift model is fast and robust to target deformation
and occlusion. The algorithm lacks the necessary template
updates.

In Fig. 9, it shows the side-by-side computation time
comparison of region segmentation among highly relevant
algorithms DBCSAN, k-means, mean shift and the proposed
KMACmethod. To show the computational complexity more
clearly, the vertical axis shows the logarithmic value of com-
putation time.

From Fig. 9, it becomes apparent that the mean shift
algorithm shows superior computational advantage when
increasing numbers of considered point clouds. It is followed
closely by the proposed KMAC method. One of the common
drawbacks to mean shift algorithm is that it is not suitable for
multi-scale objects, which exactly is one of the key consider-
ations in the paper. The computational burden of DBSCAN
algorithm is heavier than the proposed method and mean shift
algorithm. Three given values in green line in Fig. 9 reflect
that required computation time is the most difficult problem
when considering k-means algorithm.

B. EXPERIMENT ON THE PARIS-RUE-MADAME DATA-SET
The Paris-Rue-Madame data-set [69] contains 3D mobile
laser scanning data from Rue Madame, a street in the 6th
Parisian district, France. Table 5 gives the overall results of
the Paris-Rue-Madame data-set by the KMAC method. The
entry at the (i+ 1)-th row and the (j+ 1)-th column denotes
the number of points of the original class of corresponding
row that are classified as the class of corresponding column,
i, j = 1, 2, 3. The OA is 85.04%.

In Table 5, the method performs well for class Facade, and
well for class Ground on recall. Part points of class Facade
and class Ground are wrongly assigned to class Others. The
sub-categories in class Others are various and complex, such
as cars and pole-likes. These sub-categories are close to
class Facade and class Ground, causing the disturbance for
classification. At the same time, these point clouds that are
not clearly characterized in the proposed KMAC method are
wrongly classified as class Others. The performance should
be improved by dividing class Others into finer sub-categories
as provided in the benchmark and extracting more distin-
guishable features for classification.
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FIGURE 7. Ground truth and predicted result for each class. Ground truth respectively for facade, ground, others, and trees (a, c, e, g). Predicted
result respectively for facade, ground, others, and trees (b, d, f, h). (green: class Tree; blue: class Groun; gay: class Facad; red: class Others.
purple: error).
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FIGURE 7. (Continued.) Ground truth and predicted result for each class. Ground truth respectively for facade, ground, others, and trees (a, c, e,
g). Predicted result respectively for facade, ground, others, and trees (b, d, f, h). (green: class Tree; blue: class Groun; gay: class Facad; red: class
Others. purple: error).

FIGURE 8. Ground truth and the final classification result. (a) the ground truth; (b) final classification result. (green: class tree; blue: class groun;
gay: class facad; red: class others).

C. EXPERIMENT ON THE TUDelft CAMPUS DATA-SET
The proposed method is qualitatively tested on the Delft Uni-
versity of Technology (TUDelft) campus data-set which does
not contain label information in the section. The TUDelft
campus data-set is acquired on March 22, 2016, by the Fugro
Drive-Map MLS system.

In 2007, West et al. put forward the concept of transfer
learning [80]. The main idea behind transfer learning is to
extract important information from some related domains
to help to accomplish tasks in the domain of interest [81],

[82]. In many applications, it is expensive to collect suffi-
cient training data. It would be more practical if one could
reuse the knowledge that is already extracted from some
related domains/tasks for use in the domain of interest [83].
Here, the proposed KMAC method in the IQmulus and Ter-
raMobilita Contest data-set is transferred to apply for the
TUDelft campus data-set. Fig. 10 shows the original view and
final classification result for the TUDelft Campus data-set.
In Fig. 10, the proposed KMAC method performs well on
the TUDelft campus data-set. Most points which represent
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TABLE 6. A comparison with the results in the same data-set [68].

FIGURE 9. The side-by-side computation time comparison of region
segmentation among DBCSAN, k-means, mean shift, and the proposed
method.

the main structure of facades in gray and trees in green are
correctly classified. Most of ground points also are correctly
recognized. Part attachments of facades and part of edge
points of trees are wrongly assigned to class Others, which
would be corrected by refining the proposed method and
extracting more valuable features.

The urban environment reasonably exists because it is
suitable for human habitation and living. It means that basic
patterns of urban objects are similar even in different cities
and countries. The commonality makes it possible to apply
the proposed KMAC method to various urban scenes.

IV. DISCUSSION
A. COMPARATIVE STUDIES
Table 6 shows a comparison with the results [55], [84] in the
same data-set [68]. The results of three same classes Ground,
Trees and Facade in these three work are selected out to make
the comparison. The results in the table show that the KMAC
method performs well expect for class Ground. Combining
the ground truth and classification results, a conclusion is
drawn. In the proposed KMACmethod, features are extracted
only depending on human knowledge. The proposed method

is sensitive to credibility and completeness of ground truth.
Several examples are given as follows.

Incorrect label information among classes on ground truth
is a negative factor for object classification. For example,
Fig. 11 gives the visualization of part of ground truth.
In Fig. 11(a), class Others including ground points is in dark
blue, class Trees including ground points is in green. Incorrect
label information of class Trees andOthers in red boxes easily
causes classification error of class Ground.

(2) The completeness of object samples is also an impor-
tant factor. For example, Fig. 11(b) is top view of part of tree
samples on ground truth. The collection of tree samples in
the red box is not complete, which affects the performance
judgement of geometrical eigen-features.

By correcting and completing ground truth, the proposed
KMAC method should perform better. In summary, it does
not aim at achieving the best classification accuracy, but to
explore a way of both feature extraction and classification
for unlabeled samples in the paper. Quantitative results in
Table 4, Table 5 and qualitative results in Fig. 10 demonstrate
the method is feasible.

Table 7 shows another comparison with the results [84] in
the same data-set [69]. By comparison, the proposed method
performs excellent on class Facade and near the result value
acquired byweinmann et al. Although a lower precision value
for class Ground, the proposed method obtains the better
recall to classify ground points. Fig. 12 shows the computa-
tion time comparison of the proposedmethod and the existing
work by weinmann et al. [84]. In Fig. 12(a), it is done for 3D
block division, and in Fig. 12(b), it is done for feature extrac-
tion. It becomes apparent that the proposed method presents
superior computational advantage for increasing numbers
of considered 3D points on both 3D block division and
feature extraction. Rather than high classification accuracy,
the aim of this paper is to look for a feasible method for
both feature extraction and effective classification based on
knowledge to classify unlabeled urban objects. Comparative
studies demonstrate the proposed method is competitive and
promising.

B. PERFORMANCE OF MULTI-SCALE
The idea of convolution is used to explore multi-scale spatial
local relation of objects in the paper. As given in Section II,
there are four important hyper-parameters in a convolu-
tional layer, that is, the depth, stride, the filter size, and
zero-padding.

VOLUME 11, 2023 134541



M. Zheng et al.: Knowledge-Based Multi-Scale Adaptive Classification Approach

FIGURE 10. The original point clouds and the final classification result for the TUelft Campus data-set. (a) original scene (Red, green, etc.: different
reflectance values of point clouds; (b) the final classification result (green: class Trees; blue: class Groun; gay: class Facad; red: class Others.).

FIGURE 11. The visualization of part of ground truth. (In box retangle, green: class Trees; blue: class Ground).

TABLE 7. A comparison with the results in the same data-set [69].

In the paper, the depth is the number of types of extracted
features, that is, K = 2. Real input data is directly used
instead of padding border with zeros, that is, P = 0. As 5%
of samples are tested because of normalization, stride S
is set as 1 to catch local information. Spatial extend F
exactly embodies the concept of multi-scale. F is set in range
[3], [6], the step length is 0.5. Geometrical eigen-features

lλ and pλ are set in range [0.5, 0.8], the step length
is 0.1.

Fig. 13 shows the overall accuracy results of the KMAC
method tested on the IQmulus and TerraMobilita Contest
data-set versus the variation of spatial extent F , lλ and pλ,
especially lλ equals to pλ. At the location of black point,
the best classification accuracy 84.94% is gotten, and filter
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FIGURE 12. The computation time comparison of the existing work by weinmann et al. [4] and the proposed method. (a) 3D block division; (b) feature
extraction.

FIGURE 13. The overall accuracy (OA) results of the KMAC tested on the
IQmulus and TerraMobilita Contest data-set versus the variation of spatial
extent F, lλ and pλ.

size F equals to 3 m, both lλ and pλ equal to 0.5. The result
demonstrates that adaptive spatial local regions of objects
by convolution can be efficiently captured and the proposed
method is promising to efficiently classify unlabeled objects
in urban scenes.

V. CONCLUSION
In this paper, the knowledge-based multi-scale adaptive clas-
sification (KMAC) method for unlabeled urban object from
MLS point clouds is proposed. The method provides ideas
and guidance for unlabeled object classification in urban
scenes.

Without the requirement of a large number of training
samples, only basic knowledge of objects in urban scenes is
needed for the proposed method. The method consisting of

four layers derives from a normal neural network framework,
the operation in part layers differ. As the scale difference
of various objects in natural environment, multi-scale spatial
local relation of objects is explored with inspiration by the
idea of convolution. By extracting traditional knowledge-
based features, point clouds which are adjacent with the same
feature representation would be intentionally integrated into
multiple 3D adaptive regions. Then, human knowledge is
used to directly build an end-to-end correlation between these
feature representations in 2D vectors and 3D point clouds
of actual objects. The final overall accuracy on the IQmulus
and TerraMobilita Contest data-set is 84.94%. The proposed
method is also tested on the Paris-Rue-Madame data-set and
the TUDelft Campus data-set.

Qualitative and quantitative experimental results show the
proposed KMAC method is promising for unlabeled objects
classification in various urban scenes. Additionally, without
heavy training process, the proposed KMACmethod can save
a lot of the computation time.

In future work, to classify more complex classes such as
pole-likes, cars, and pedestrians and so on, requires higher
demand for human knowledge on different objects in urban
scenes. It is necessary to define more fine features on various
scales. A hierarchical decision tree is an option. In high levels,
large scale is used to classify large objects such as class Trees
and Facade. In low levels, one can scale down to measure
small objects such as cars, pedestrians.
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