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ABSTRACT The Pressure Index of commercial banks is an effective measure of the systemic risk in the
sector. This helps decisionmakers andmarket participants assess the potential levels of stress that commercial
banks may face when confronted with impending risks. This study proposes a method for forecasting
future trends in a Pressure Index for systemic risk prediction. The banking stress index is specifically
constructed through an extreme value approach, followed by a non-stationary time series decomposition
using variational mode decomposition (VMD). The number of decompositions was determined using the
fuzzy entropy (FE) rule. These models were then used to construct autoregressive integrated moving average
(ARIMA), artificial neural network (ANN), backpropagation neural network (BP), recurrent neural network
(RNN), and long short-term memory (LSTM) models for independent prediction. The empirical results
demonstrate the significant advantages of the VMD technique for forecasting non-linear and non-stationary
complex time series. These findings highlight the substantial benefits of using VMD in forecasting intricate
temporal patterns, especially in cases where traditional methods may face challenges in effectively capturing
underlying dynamics. The VMD-ARIMA model showed superior prediction accuracy compared with the
other models. Our study aims to model and forecast the data of the banking stress index, which is of
utmost importance for the central bank in formulating macroeconomic policies and for commercial banks in
managing credit risk.

INDEX TERMS China’s commercial banking industry, systemic risk, forecasting, variational mode
decomposition.

I. INTRODUCTION
With the progression of economic globalization and the
flourishing development of financial markets, commercial
banks have become increasingly interconnected with the
entire financial system. This is primarily due to the expansion
of their services and the growing trend of financial con-
glomerates. As a fundamental pillar of the financial system,
commercial banks play a vital role in promoting a nation’s
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economic growth. However, during financial crises, notable
commercial banks, such as Lehman Brothers and Standard
Chartered Bank, suffered severe blows, even triggering turbu-
lence within the financial system. This finding highlights the
importance of the commercial banking industry. On March
10, 2023, Silicon Valley Bank, the 16th largest bank in the
United States, declared bankruptcy, with assets exceeding
200 billion dollars. This incident marked the largest bank
failure in the United States since the financial crisis, leading
regulatory authorities to prioritize financial risk prevention
and control. The internationalization of commercial banks’
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development and the trend of financial innovation have
increased the interdependence between commercial banks
and other sectors of the economy. This has increased the
likelihood of the systemic risk in the commercial banking
industry. Accurately predicting and identifying systemic risks
in the commercial banking sector in a timely manner are
crucial. This proactive approach will aid in preventing and
mitigating these risks, ultimately ensuring financial stability.

Current research on systemic risk warnings primarily
focuses on the financial system, particularly on the con-
struction and prediction of financial conditions or stress
indices. However, limited attention has been paid to systemic
risk warning in the commercial banking industry. Existing
systemic risk-warning models can be broadly classified
into two types: discrete and continuous. Early discrete
warning models, such as the FR probability model [6],
STV cross-sectional regression model [20], and KLR model
[10], mainly focused on currency or international payment
crises. These models utilized predetermined definitions of
crises, employed virtual variables as dependent variables to
determine crisis occurrence, and selected warning indicators
as independent variables to construct regression equations
and to examine the relationship between each warning
indicator and a crisis. However, practical testing has revealed
that these warning models do not effectively explain financial
time series. First, a subjective setting of the crisis definitions
and thresholds is necessary. Secondly, it is important to note
that discretizing continuous financial stress variables may
lead to a loss of information.

Recently, researchers have focused on developing con-
tinuous prediction frameworks to address the limitations of
discrete warning models. One notable methodology is the
Financial Stress Index (FSI) proposed [9]. They argue that
external shocks and uncertainties, such as expected losses
can impact economic entities and lead to financial stress.
Consequently, stress indices were constructed for banks,
stock markets, and foreign exchange markets. Reference
[14] utilized the Financial Stress Index to track the trends
and severity of overall risk pressure within the financial
system over time. This index has the advantage of revealing
and forecasting the potential systemic risk. Therefore, the
Financial Stress Index is a valuable tool for assessing the
level of the systemic risk in the banking industry. Thus,
similar financial stress indices can be used to evaluate
the systemic risk in the commercial banking industry.
This allows for anticipation of an industry’s systemic risk
condition by predicting changes in the banking stress index.
Conducting such research enhances our understanding of the
risk landscape within the commercial banking industry and
provides regulatory authorities and banking institutions with
a scientific foundation for decision-making. In their study,
Hao et al. [8] successfully constructed a stress index for
the commercial banking industry using risk-free rate spreads
(TED), non-performing loan rates (NPL), and interbank
lending rates (RR). Building on this, our study adopts a

stress index specifically for the Chinese commercial banking
industry to assess its systemic risk condition and provide an
early warning of the potential systemic risk by predicting
changes in the banking stress index.

Numerous achievements have been made regarding the
prediction of time series data. These forecasting methods
can be broadly categorized into three groups: traditional
econometric models, machine learning models, and deep
learning models. Traditional econometric models such as
autoregressive moving average (ARMA) [2], autoregressive
integrated moving average (ARIMA) [2], and generalized
autoregressive conditional heteroscedasticity (GARCH) [1],
have limitations in effectively handling time series modeling
problems with non-linear and non-stationary characteristics.
However, with the advancement of technologies, such as arti-
ficial intelligence and big data, computer-based approaches
are increasingly being employed in the financial domain.
In this context, machine learningmethods, including artificial
neural networks (ANN) and support vector machines (SVM),
have demonstrated superior performance in time series
prediction. These models can effectively handle non-linear,
discontinuous, and high-frequency multi-dimensional data,
and have gained wide acceptance in financial forecasting.
Compared to traditional econometric models, machine learn-
ing models are not constrained by stringent data requirements
and can provide more accurate prediction results. However,
traditional machine learning methods often face challenges
in effectively capturing the correlation between time series
data, owing to overfitting. To address this issue, deep learning
methods such as recurrent neural networks (RNN) have
been introduced. RNN, with their self-feedback and cyclic
structures, are capable of handling the autocorrelation charac-
teristics of time series data and have shown promising results
in time series prediction. However, traditional RNN using
backpropagation algorithms may encounter problems such
as gradient disappearance or explosion, making it difficult
to handle long-term dependency issues. As an improvement
over RNN, long short-term memory (LSTM) has been
proposed. LSTM can automatically retain longer historical
information, specifically addressing long-term dependency
problems and overcoming gradient disappearance and explo-
sion issues faced by ordinary RNN. Traditional econometric
models are well suited for simple time series prediction
problems, whereas machine learning and deep learning
models such as ANN, RNN, and LSTM offer advantages
in handling complex time series prediction problems. Time
series data often display intricate trends, and decomposing
and reconstructing these data can be helpful.

Modal decomposition is an approach used to process
non-linear and non-stationary sequences. This allows the
transformation of irregular frequency data into residual wave
components with singular frequencies. Common algorithms
for time series decomposition include the wavelet transform,
empirical mode decomposition (EMD), and variational mode
decomposition (VMD). Rua and Nunes [19] analyzed the
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major developed economies over the past four decades using
wavelet square correlation. They then applied the wavelet
transform to analyze the resonance of market movement in
terms of time and frequency variations. However, wavelet
transform utilizes a filter bank for signal decomposition,
which does not capture the instantaneous features of the
signal. Li et al. [12] applied an adaptive approach to
decompose the original time series into multiple intrinsic
mode functions (IMFs) using EMD. They then employed a
hybrid deep learning model based on Convolutional Neural
Networks (CNN) and Gated Recurrent Units (GRU) to
reconstruct and predict time series. However, EMD has
limitations as it relies heavily on local extrema points within
the sequence, leading to mode-mixing issues among the
decomposed sub-signals [4]. To address these issues, VMD
introduces a mathematical optimization framework that
provides more robust and accurate decomposition results in
certain scenarios. VMD is an adaptive and fully non-recursive
method for mode variation and signal processing, which
allows the determination of the number of mode decompo-
sitions based on the actual situation. It effectively overcomes
the endpoint effects and mode component overlap problems
observed in EMD. The VMD model is known for its ability
to effectively address noise issues in the input signals. The
optimized approach is simple and fast, providing satisfactory
quantitative results for pitch detection and separation even
when harmonic frequencies are absent. It also demonstrated
strong qualitative results for both synthesized and real
test signals, showing excellent resilience to signal noise.
The VMD model has been widely used in various fields,
such as signal processing [22], time-frequency analysis in
seismology [24], and fault diagnosis [15]. In the realm of
economic and financial data forecasting, [11] introduced
groundbreaking work by combining VMD, considering it
an effective and promising technique for analyzing and
predicting economic and financial time series. Moreover,
with the growing trend in interdisciplinary learning, the
application of the VMD model in economic and financial
research has expanded. This includes prediction of futures
prices [13], oil prices [5], [7], [18], and stock prices [16],
[17]. However, it is essential to investigate the effectiveness
of VMD in modeling and predicting the banking stress index.
Modeling and predicting banking stress index data are crucial
for the central bank to formulate macroeconomic policies and
for commercial banks to manage credit risks.

Currently,the measurement of systemic risks in the com-
mercial banking industry is primarily based on bilateral
balance sheets data. This approach focuses mainly on large
listed banks that disclose their balance sheets [21], [25].
However, this method is biased because of the presence
of numerous small and non-listed commercial banks in
China. To address this challenge, we identify three indi-
cators reflecting the entire commercial banking system:
TED, NPL, and RR. These indicators form the basis for
constructing a Commercial Banking Stress Index, which

provides an assessment of systemic risk in the commercial
banking industry. To improve the accuracy of predicting
the Commercial Banking Stress Index, we employed the
concept of ‘decomposition-reconstruction’ to address the
forecasting andmodeling issues of non-stationary time series.
Initially, an intricate system is decomposed, and subse-
quently, artificial intelligence techniques are employed to
effectively handle the non-linear nature and high complexity
of the system. The decomposed parts were subsequently
recombined for overall analysis and modeling using the
reconstruction approach. Our framework consists of the
following steps: 1) Preprocess the original time series data
using the VMD decomposition algorithm to obtain several
distinct sub-sequences. 2) Individual prediction modeling
was conducted for each sub-sequence, considering their
different characteristics. 3) The predicted values of each
sub-sequence are summed to obtain a more accurate overall
prediction output. Specifically, the commercial bank stress
index was used to evaluate the systemic risk of the
commercial banking industry. It helps monitor systemic risks
by predicting future stress indices. In this study, the VMD
algorithm was applied to the stress index to generate sub-
sequences. These sub-sequences were then reconstructed
based on the fuzzy entropy of the decomposition term.
To predict each reconstructed sub-sequence, various models,
such as the conventional ARIMA, ANN, backpropagation
neural network (BP), RNN, and LSTM models, have been
independently constructed. The decomposed parts were
consolidated for comprehensive analysis and modeling.
A multiple linear regression model was established using
the regression coefficients of each sub-sequence for recon-
struction, and the final prediction results were obtained.
By comparing the evaluation criteria of this combined
model with those of single traditional statistical, machine
learning, and deep learning models, it was found that the
combined model based on the decomposition-reconstruction
methodology can more accurately predict the commercial
bank stress index and enhance the effectiveness of early
warnings for systemic risk in the commercial banking
industry.

Our main contributions can be summarized as follows:
(1) We formulated a Commercial Banking Stress Index,

which closely aligns with the actual state of systemic risk in
the Chinese commercial banking industry.

(2) We extensively utilized the VMD technique to handle
the complex time series. By decomposing the original
sequence into a lower-complexity IMF time series, we lever-
aged the power of the VMD. However, determining the
appropriate number of variation modes using the VMD
algorithm is not straightforward [11]. To overcome this
challenge, we employed the rule of FE to determine the
number of variation modes. The VMD signal decomposition
method effectively reduces the complexity of the time series
and significantly enhances the predictive accuracy of the
overall time series. Comparative experiments demonstrated
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that our proposed VMD-ARIMA model achieves the best
predictive performance.

(3) Our research expands the field of predicting the
Commercial Banking Stress Index and extends the theoretical
framework of time series forecasting methods based on the
‘decomposition-reconstruction’ approach, making a valuable
contribution to this domain.

The article is structured as follows: Section II introduces
the relevant models, Section III applies the concept of
decomposition-reconstruction to empirically analyze the
commercial bank stress index, and Section IV provides a
summary.

II. COMPONENT MODELS
This section outlines the methodology used to construct our
proposed Commercial Banking Stress Index and presents
the systemic design principles of the decomposition-
reconstruction model. However, detailed explanations of
individual models such as autoregressive integrated moving
average (ARIMA), artificial neural network (ANN), mul-
tilayer feedforward neural network (BP), recurrent neural
network (RNN), and long short-term memory network
(LSTM), are not provided in this paper.

A. COMMERCIAL BANKING STRESS INDEX
The modeling and prediction of systemic risks in the
commercial banking industry are of utmost importance for
central banks. This helps them to formulate and imple-
ment macroeconomic regulations, financial supervision, and
financial stability. An accurate assessment of the systemic
risk status of the commercial banking industry is crucial to
provide risk warnings. A literature review of systemic risk
warnings in the commercial banking industry highlights the
effectiveness of the commercial bank stress index. It has
proven to be an effective tool for revealing the systemic
pressure situation in China’s commercial banking industry
and offers significant advantages for evaluating systemic
risks.

In this study, we construct a commercial bank stress
index for China’s commercial banking industry, drawing
inspiration from extreme value theory [8], [9], [14]. The
instability of the commercial banking system is often
accompanied by significant fluctuations in the risk-free
interest rate spread (TED), non-performing loan ratio (NPL),
and interbank lending rate (RR). Therefore, we used the
rate of change of these three indicators as the basis for
constructing a commercial bank stress index. We reflected on
the systemic risk status of the commercial banking industry.
The synthesized commercial bank stress index is expressed
as follows:

BSI =
1

1
σTED

+
1

σNPL
+

1
σRR

×

(
1

σTED

TEDt − min(TEDt )
max(TEDt ) − min(TEDt )

+
1

σNPL

NPLt − min(NPLt )
max(NPLt ) − min(NPLt )

+
1

σRR

RRt − min(RRt )
max(RRt ) − min(RRt )

)
(1)

where, σTED,σNPL ,and σRR represent the standard devia-
tions of commercial banks’ risk-free interest rate spreads,
non-performing loan ratios, and interbank lending rates,
respectively. BSI is the banking stress index. TEDt represents
the interest rate spread of risk-free rates for commercial
banks over a period of t , which is obtained by subtracting
the risk-free rate from the interbank lending rate with a
three-month maturity. An increase in the interest rate spread
signifies insufficient liquidity and a rapidly expanding bank
risk. NPLt represents the non-performing loan ratio for
commercial banks over period of t . A higher ratio indicates
a higher level of bad debt risk in the commercial banking
system.RRt represents theweighted average interest rate for a
7-day pledged repurchase agreement in the interbank market.
A higher repo rate suggests tighter market funding and a
higher crisis level.

B. VMD MODEL
Dragomiretskiy and Zosso [4] proposed a variational mode
decomposition technique, which is essentially an iterative
variational framework that automatically searches for the
optimal solution of the variational problem byminimizing the
total bandwidth of all modes. The banking stress index can
be considered as a signal that reflects market information of
commercial banks. Mode decomposition treats the signal as
a superposition of sub-signals from different ‘modes’, while
VMD views the signal as a superposition of sub-signals at
various frequencies. The purpose of VMD is to decompose
a signal into a series of sparse component signals at different
frequencies. Themain idea of VMD is to decompose the input
signal into k finite bandwidths, with each mode identified as
mode uk , striving tominimize the total estimation of the band-
widths for all modes. The signal decomposition process is
directly related to the resolution of the variational problems.
The constrained variational problem is expressed as:

min
{uk },{wk }

{
K∑
k=1

∥∥∥∥∂t (δ(t) +
j

π t

)
uk (t)e−jwk

t
∥∥∥∥2
2

}

s.t.
K∑
k=1

uk = f

(2)

Among these variables, {uk} = {u1, u2, . . . , uk} represents
a modal component, {wk} = {w1,w2, . . . ,wk} denotes the
corresponding central frequency for each modal component,
K signifies the number of decomposedmodes, ∂t corresponds
to the partial derivative of t , δ(t) is identified as an impulse
function, uk is the k-th sub-sequence of f , and f denotes the
original input signal.

To obtain the optimal solution for the constrained vari-
ational mode, we introduce the penalizing function α and
Lagrangian operator λ, thereby transforming the constrained
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variational problem into an under-constrained variational
problem:

L ({uk} , {wk} , λ) = α
∑
k

∥∥∥∥∂t (δ(t) +
j

π t

)
uk (t)e−jwk

t
∥∥∥∥2
2

+

∥∥∥∥∥f (t) −

∑
k

uk (t)

∥∥∥∥∥
2

2

+

〈
λ(t), f (t) −

∑
k

uk (t)

〉
(3)

The optimum solution was obtained using the alternating
direction multiplier algorithm, which identifies the saddle
point of the Lagrangian function. The specific steps are as
follows.

Step 1. Initialize each modal component
{
u1k
}
, center

frequency
{
w1
k

}
, λ1, n = 0, transforming them into the

frequency domain.
Step 2. Update the modal component within the

non-negative frequency range:

f̂ (w) −
∑

i<k û
n+1
i (w) −

∑
i>k û

n
i (w) +

λ̂n(w)
2

1 + 2α
(
w− wnk

)2 → ûn+1
k (w)

(4)

Step 3. Update the center frequency wk within the
non-negative frequency range:∫

∞

w w
∣∣∣ûn+1
k (w)

∣∣∣2 dw∫
∞

w

∣∣∣ûn+1
k (w)

∣∣∣2 dw → wn+1
k (5)

Step 4. Update the Lagrangian operator λ within the
non-negative frequency range:

λ̂n + τ

(
f̂ (w) −

∑
k

ûn+1
k (w)

)
→ λ̂n+1 (6)

Step 5. The iteration stops when the following formula is
satisfied, given a specific decision precision ε > 0:∑

k

∥∥∥ûn+1
k − ûnk

∥∥∥2
2∥∥ûnk∥∥22 < ε (7)

where f̂ (w), ûn+1
k (w), and λ̂n+1 are the respective Fourier

transforms of f (t), un+1
k , and λn+1.

The optimal solution for the constrained variational model
was obtained using the alternating direction method of
multipliers (ADMM). This method allows decomposition of
the original signal into K narrowband modal components.

C. FUZZY ENTROPY
Fuzzy entropy (FE) utilizes an exponential function to fuzzify
the formula for measuring similarity. As the time series of
a signal becomes more complex, its entropy value increases

[23]. For a time series {X (i), i = 1, 2, . . . ,N } of lengthN , the
specific steps of FE are as follows:

Step 1. To analyze the time series data, we first
divided each sequence into subsequences of length m. Each
subsequence is represented as follows:

Xmi (t)={xi(t), xi+1(t),. . . ,xi+m−1(t), i=1, 2, . . . ,N−m+1}

(8)

Step 2. We calculated the distance between each subsequence
and all k subsequences. The distance was determined by
calculating the maximum absolute difference between the
corresponding elements of the two vectors.

dmij = max
∣∣[xi+k (t) − xj+k (t)

]∣∣ , k = 0, 1, . . . ,m− 1 | (9)

Step 3. We define a fuzzy function µ
(
dmij , n, r

)
to measure

the similarity between the entities. Parameters n and r
represent the gradient and width of the boundaries of the
fuzzy function, respectively.

Dmij = µ
(
dmij , n, r

)
= e

−

(
dmij /r

)n
(10)

FIGURE 1. Decomposition and reconstruction modeling.

Step 4. We then average the similarity over all subsequences
except itself.

φm(n, r) =
1

N − m

N−m∑
j=1

 1
N − m− 1

N−m∑
j=1,j̸=i

Dmij

 (11)

Step 5. We increment the dimensionality fromm tom+1 and
repeat Steps 1-4.

φm+1(n, r) =
1

N − m

N−m∑
i=1

(
1

N − m− 1

∑
N−m

Dm+1
ij

)
(12)

132072 VOLUME 11, 2023



Z. Li et al.: Dynamic Forecasting for Systemic Risk in China’s Commercial Banking Industry

Step 6. We can calculate the fuzzy entropy FuzzyEn(m, n, r ,
N ).

FuzzyEn(m, n, r,N ) = lnφm(n, r) − lnφm+1(n, r) (13)

D. DECOMPOSITION AND RECONSTRUCTION PREDICTIVE
MODEL
The business bank stress index falls under the category of a
typical non-linear and non-stationary time series. However,
relying solely on conventional econometric models, machine
learning, or deep learning for modeling has a limited
predictive efficacy. To overcome this limitation, we utilized
the VMD technique, which has significant advantages in
handling non-stationary time series. We construct a compos-
ite model by employing decomposition and reconstruction
methods to forecast the systemic risk in the commercial
banking industry. The detailed modeling process is shown in
Figure 1.

Step 1. The BSI was disassembled into various IMF
components using VMD.

Step 2. Each IMF component, IMF1, IMF2, . . . , IMFm,
is then reconstructed into new subsequences MODE1,
MODE2, . . . , MODEn, where n < m, based on their varying
FE ranges.

Step 3. Separate predictions were conducted on these new
subsequences using models such as ARIMA, ANN, BP,
RNN, and LSTM.

Step 4. A multivariate linear regression model was
constructed using the decomposed sequences, and the
coefficients for this regression were obtained. The sequence
is then reconstructed based on this regression to obtain the
final prediction results. The reconstructed predictions of each
MODE subsequence were aggregated to reconstruct the BSI.
Finally, the reconstructed BSI is subjected to backtesting.

E. EVALUATION CRITERIA
Six evaluationmetrics were utilized to assess the performance
of each predictive model. Among them, MSE, MAE,
RMSE, MAPE, and SMAPE serve as measures of accuracy,
whereas D_stat represents a vertical precision indicator. The
expressions for these metrics are as follows. Mean Square
Error (MSE):

MSE =
1
n

∑(
ŷi − yi

)2 (14)

Mean Absolute Error (MAE):

MAE =
1
n

∑∣∣ŷi − yi
∣∣ (15)

Root Mean Square Error (RMSE):

RMSE =

√
1
n

∑(
ŷi − yi

)2 (16)

Mean Absolute Percentage Error (MAPE):

MAPE =
1
n

n∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (17)

Symmetric Mean Absolute Percentage Error (SMAPE):

SMAPE =
1
n

n∑
i=1

∣∣ŷi − yi
∣∣(

ŷi + yi
)
/2

(18)

D Statistical measures(D_stat):

Dstat =
1
M

M∑
i=1

ai × 100%,

ai = I ((fi+1 − yi) (yi+1 − yi) ≥ 0) (19)

where, ŷi represents the predicted BSI index values and yi
denotes the actual BSI index values. n represents the sample
size, and i represents the specific ranking number of the
sample. The smaller the values of MSE, MAE, RMSE, and
SMAPE, the higher is the corresponding level of predictive
accuracy. I (•) serves as an indicator function, taking a value
of 1 when the condition is true and 0 otherwise. A larger
D_stat value indicated a higher degree of directional accuracy
in the model.

III. EMPIRICAL ANALYSIS
In this study, we present a concrete empirical design,
comparative analysis of model fitting effectiveness, and
comparative analysis of model prediction efficacy.

FIGURE 2. Commercial bank stress index.

A. DATA DESCRIPTION AND BSI INDEX CONSTRUCTION
To assess the systemic risk in China’s banking sector, we used
the Bank Stress Index. Our analysis is based on monthly
data from January 2006 to December 2022, including the
risk-free interest rate spread (TED), non-performing loan
rate (NPL), and interbank lending rate (RR) of commercial
banks. The data were obtained from the WIND database.
To ensure consistency, we converted quarterly NPL data into
monthly data using the cubic spline interpolation method.
The overall sample consisted of 204 months, with the first
180 months used as training samples and the remaining
24 months as testing samples for model building. Figure 2
shows the synthesized commercial banking stress index.

The figure shows that the index has reached elevated
levels over several periods. In 2007, this was the primary
reason for the economic downturn caused by the credit crisis,
which intensified the systemic risk in the commercial banking
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FIGURE 3. Decomposition results of BSI.

sector. In 2008, the index was influenced by the economic
crises. In 2011, it was affected by the European debt crisis,
which posed a significant risk to China’s commercial banking
industry. In 2013, the ‘liquidity crunch’ emerged in China.
In 2015, the stock market crash occurred in China, and in
2018, the implementation of the financial deleveraging policy
exposed the commercial banking sector to considerable
systemic risk. This index closely reflects the systemic risk
situation of China’s commercial banking industry and aligns
with the industry’s actual conditions.

B. VMD AND FE
Before applying the decomposition technique to the com-
mercial banking stress index series, it is necessary to
select an appropriate number of components denoted as n.
To determine this, we follow an empirical rule and choose
n as an approximation to the sample data size, where n is a
power of 2. In this study, we found that the optimal number of
components n, is 8. Using the VMDmethod, we decomposed
BSI into eight distinct modes. The decomposition results are
presented in Figure 3, where modes 1 to 8 are arranged from
top to bottom in ascending order of frequency from low to
high.

However, an excessive number of modes can increase
the computational burden and lead to prediction errors [7].
Therefore, a method to reduce the computational burden
and minimize the prediction errors is to reconstruct similar
modes. FE is a metric used to quantify the complexity of
a time series, and is an improved method of approximate
entropy and sample entropy [3]. In this study, we employed
FE to estimate the complexity of all sub-modes obtained from
VMD. The FE values for each mode are listed in Table 1.

TABLE 1. FE value of IMFs.

FIGURE 4. Reconstruction modes.

The complexity range of Mode 1 and Mode 6 was between
0.002 and 0.005, whereas that of Mode 2 and Mode 4
was between 0.010 and 0.015. Modes 5, 7, and 8 had
complexity range of 0.006-0.010. Based on these complexity
ranges, we considered Mode 3 to be an independent mode.
We combinedMode 1withMode 6,Mode 2withMode 4, and
Modes 5, 7, and 8 to form newmodes. Finally, we reconstruct
these eight modes into four new modes. Figure 4 illustrate all
the reconstructed modes.

Subsequently, four new modes were used to construct a
multivariate linear regression model for the reconstruction.
These coefficients can be obtained through regression, and
was used as the foundation for sequence reconstruction,
which ultimately yielded the final predictive outcome. The
primary manifestations of the multivariate linear regression
model are as follows:

ŷi = α̂1xi1 + α̂2xi2 + α̂3xi3 + α̂4xi4 + ε (20)

where x represents the four new modes; y represents the
predicted value; α̂1, α̂2, α̂3, and α̂4 represent the esti-
mated regression coefficients,; and ε represents the random
disturbance term.

C. COMPARISON OF MODEL FITTING RESULTS
To validate the remarkable advantages of theVMD technique,
we compared the fitting performances of the various models
(ARIMA, ANN, BP, RNN, and LSTM) without incorpo-
rating the VMD algorithm, with the corresponding models
(VMD-ARIMA, VMD-ANN, VMD-BP, VMD-RNN, and
VMD-LSTM) incorporating the VMD algorithm. Figure 5
shows that when dealing with multimodal data, mode
decomposition often leads to a decline in the performance of
the RNN model. This decline can be attributed to issues such
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FIGURE 5. Fitting results of BSI.

FIGURE 6. Evaluating the fitting performance of different models.

TABLE 2. Comparison of fitting accuracy among different models.

as data loss, inadequate intermodal information exchange,
and insufficient modeling of modal correlations. The impact
of VMD on the fitting performance was insignificant for
the ANN, BP, and RNN models. However, the ARIMA
and LSTM models exhibited less sensitivity to intermodal
information exchange, making them less affected by mode
decomposition. The models combined with the VMD
algorithm showed closer proximity between the fitted values
and actual values of the test samples, thereby significantly
improving the fitting performance of the trends.

Table 2 presents a visual representation of the evaluation
metrics used to compare the fitting performances of different
models in the future. These metrics included MSE, RMSE,
MAE, MAPE, SMAPE, and D_stat for each model. To facil-
itate an easier comparison between the models, we have
provided Figure 6.

Based on the data presented in Table 2 and Figure 6, it is
clear that the models incorporating VMD technology, with
the exception of RNN, consistently show lower values of
MSE, RMSE, MAE, and SMAPE than the models that did
not incorporate VMD. In addition, these models improved the
accuracy of direction prediction.

FIGURE 7. Prediction results of BSI.

TABLE 3. Comparison of prediction accuracy among different models.

FIGURE 8. Evaluating the predictive performance of different models.

D. COMPARISON OF MODEL PREDICTION RESULTS
In our study, we utilized a real-time prediction strategy called
‘one-step-ahead rolling forecast’. This strategy involves a
continuous update of the training set by adding the actual
data that follows each prediction. To evaluate the performance
of various models, including ARIMA, ANN, BP, RNN,
and LSTM, as well as their combinations with the VMD
algorithm (VMD-ARIMA, VMD-ANN, VMD-BP, VMD-
RNN, and VMD-LSTM), graphical representations of the
prediction results were presented.

The results in Figure 7 show that the model combinations
using the VMD algorithm have predictive values that are
significantly closer to the actual values of the test samples.
Although VMD algorithm-based models may not have a
satisfactory fitting performance for local extrema, they can
still provide early indications of upward or downward pres-
sure trends, making them better warning signals. To further
compare the predictive performances of the different models,
Table 3 displays a visual representation of the evaluation
metrics, including MSE, RMSE, MAE, MAPE, SMAPE, and
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Dstat , for each model. To facilitate an easier comparison
between the models, we have provided Figure 8.

Table 3 and Figure 8 present the evaluation criteria for
the predictive results of the models. The table and figure
show that the model combinations incorporating the VMD
algorithm and reconstruction technique had significantly
lower metrics (MSE, RMSE, MAE, MAPE, and SMAPE)
than those without incorporation. Furthermore, the accuracy
of the directional prediction (D_stat) was significantly
improved. This indicates that the models incorporating the
VMD algorithm and reconstruction technique demonstrate
superior predictive performance compared with the non-
incorporated models, effectively highlighting the superi-
ority of the decomposition and reconstruction techniques.
In contrast, traditional statistical, machine learning, and
deep learning models struggle to predict sequence trends
accurately without incorporating the VMD algorithm or
reconstruction techniques. However, models incorporating
the VMD algorithm and reconstruction techniques have
significantly enhanced the predictive capability. In particular,
the VMD_ARIMA model outperformed the machine learning
and deep learning-based reconstruction models in terms of
the reconstruction effect. This suggests that theVMD_ARIMA
model accurately predicts the changing trend of price time
series and exhibits excellent stability.

The complexity of the time series can be reduced using
the VMD signal decomposition method. This method breaks
down the original sequence into IMF time series with lower
complexity, making it easier to apply machine learning
algorithms and improve the predictive accuracy of each
IMF sequence. The complexity of all VMD sub-modes was
estimated using FE, and the approximate sub-sequences
were reconstructed as new modes for individual prediction
and reconstruction. Consequently, the overall time series
prediction accuracy was significantly improved. Therefore,
the decomposition and reconstruction methods effectively
enhance the predictive performance of the entire sequence.

IV. CONCLUSION
This study constructs a stress index using data on the risk-free
interest rate spread (TED), non-performing loan rate (NPL),
and interbank lending rate (RR) in the Chinese commercial
banking industry. The purpose of this index is to measure
the systemic risk level of the industry and serve as an early
warning system for risk assessment by predicting future
trends. Drawing upon decomposition and reconstruction
techniques as well as research achievements in econometrics,
artificial intelligence, and machine learning, a combined
decomposition and reconstruction model is proposed for
predicting systemic risks in the commercial banking industry.
The following conclusions were drawn from the empirical
analysis.

(1) We employed the extreme value method to determine
the stress index for China’s commercial banking industry.
The movement of this index aligns closely with the risk
situation encountered by China’s commercial banking sector.

The prompt compilation and release of China’s real-time
commercial bank stress index can effectively serve as a
vital indicator of systemic financial risk, accurately assessing
the magnitude of systemic risk within China’s commercial
banking industry.

(2) Using the VMD signal decomposition method, this
study decomposes the non-stationary stress index of the com-
mercial banking industry into signals of different frequencies.
Subsequently, sub-sequences with distinct frequency and
amplitude characteristics were extracted. Fuzzy entropy (FE)
was employed to estimate the complexity of all VMD
decomposed sub-modes. Similar entropy values were then
utilized to reconstruct new modes with the aim of reducing
cumulative prediction errors. Independent predictions were
conducted for all the new modes, and a multivariate
regression model was established to obtain the final predicted
output. The findings reveal that the decomposition and
reconstruction methods significantly enhance forecasting
accuracy for systemic risks in the commercial banking
industry.

(3) Through comparison, the VMD-ARIMA model lever-
ages the VMD decomposition and reconstruction technique
to handle complex time series, while also incorporating the
performance advantages of the ARIMA model for stationary
time series. Compared to other models, the VMD-ARIMA
model exhibits clear superiority in predicting systemic risks
in the commercial banking industry.

Although our approach yields positive results, it is
important to acknowledge its limitations. First, the stress
index for the commercial banking industry comprises only
three variables: the risk-free interest rate spread (TED), non-
performing loan ratio (NPL), and interbank lending rate (RR).
This limited set of variables imposes certain constraints.
Future indicators should incorporate forward-looking infor-
mation to enhance the effectiveness of the bank stress index
as an early warning system. Secondly, our commercial
bank stress index is limited to a monthly indicator, which
hinders its ability to provide timely reference information
to regulatory authorities. Finally, our prediction of the stress
index did not consider the impact of other significant factors
or exogenous variables.

In future research, we propose to explore higher-frequency
data, such as weekly or daily data, to construct a hybrid
commercial banking stress index. This improves the time-
liness of our predictions. Additionally, to enhance the
accuracy of our forecasts, future studies can investigate the
integration of other variables, such as GDP and M1, which
are macroeconomic indicators, as well as non-structural
indicators, such as newsmedia and search index data.We plan
to delve into these meaningful inquiries in future research.
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