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ABSTRACT Enhancing the performance of wireless networks and communication systems requires careful
resource allocation. Resource allocation optimization, however, is regarded as a mixed-integer non-linear
programming (MINLP) problem, which is NP-hard and non-convex. Due to the serious limitations of
conventional procedures, solving such optimization problems requires specialized approaches. For instance,
no optimal performance can be guaranteed using the heuristic algorithms; besides, the global optimization
systems suffer from exponential computation complexity and considerable training duration. This paper
introduces an improved version of the Prairie dog optimization (PDO) algorithm by the Harris Hawks
optimization (HHO) algorithm. The developed technique, namely HPDO, relies on using the HHO operators
to improve the exploitation capability of PDO during the searching procedure. The significance of the
presented HPDO is examined and analyzed using 23 mathematical benchmark functions and CEC-2019
with several dimension sizes to show the ability to solve different numerical problems. In addition to the
resource allocation problem, the HPDO is evaluated using three engineering problems: The spring design
issue, The pressure vessel design issue, and the Welded beam design issue. The experimental and simulation
results demonstrated that the exploration and exploitation search method of HPDO and its convergence rate
had remarkably increased. The experimental results of the resource allocation of the wireless network with
different numbers of users 10, 50, and 100 achieve superior results compared to other algorithms with 0.136,
2.75, and 3.64, respectively.The results showed the supremacy of the HPDO over the traditional HHO, PDO,
and several with state-of-the-art algorithms.

INDEX TERMS Wireless networks, 5G, 6G, resource allocation, power allocation, spring design, pressure
vessel design, welded beam design.

I. INTRODUCTION
Discovering the ideal values for a particular optimization
process’ decision parameters while adhering to a set of

The associate editor coordinating the review of this manuscript and

approving it for publication was Jiankang Zhang .

constraints is the process of optimization [1]. Previously,
solving optimization problems required a lot of human
interaction and time-consuming trial and error. To reduce
or maximize one or more objective functions, a designer
must generate values systematically or arbitrarily for the
decision parameters [2]. The majority of the metaheuristic

145146

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0009-0004-3428-3405
https://orcid.org/0000-0002-3864-7323
https://orcid.org/0000-0003-1965-1869
https://orcid.org/0000-0002-2937-4327
https://orcid.org/0000-0001-8431-5218
https://orcid.org/0000-0003-2221-2170
https://orcid.org/0000-0002-8517-6587
https://orcid.org/0000-0001-5316-1711


M. Hijjawi et al.: Novel Hybrid Prairie Dog Algorithm and Harris Hawks Algorithm

optimization algorithms are inspired by nature and can be
classified into several approaches based on the origin of
motivation [3]. The swarm-based algorithms based on the
hunting and cooperation behaviour of fireflies, grasshoppers,
wolves, hawks and other nature based algorithms [4].
Recently, various meta-heuristic optimization algorithms

have been introduced in the literature to solve various
optimization problems. Among these is the Prairie Dog
Optimization algorithm (PDO) which mimics the behaviour
of prairie dogs [5]. In spite of its successful applications in
various fields, the PDO has two drawbacks. The algorithm
cannot stalk the current optimal positions, leading to a fast
loss of early convergence population variety—further, the
algorithm sorrows from a slow convergence rate [6].

Mobile networks are increasingly a significant expansion,
as is apparent by continuous growth in the number of
subscriber usage and base volumes. Several factors push
expansion in the international market, including a more
significant uptake of cloud-based video streaming solutions,
increasing use of videos as corporate training material,
the popularity of video game streaming, and the growing
magnitude of live-streamed content [7]. The increasing of
mobile users around the globe is leveraging the mobile
internet for voice over IP (VoIP) calling, mobile messag-
ing, web browsing, social networks, online learning, and
video streaming [8]. Moreover, the market shows profitable
opportunities for a higher breakthrough of data traffic in
mobile networks. At the same time, the mobile internet
is influenced by the advanced implementation of 4g and
5g mobile networks and the growing user base for mobile
benefits using different mobile networks.

Wireless networking has witnessed explosive evolution
over the past decade. The 4th generation network (4g)
improve the bandwidth availability for mobile phone and
providing broadband speeds to smartphones. Recently the
new mobile network, 5g technology is further improving the
cell capability and transmission speeds. Further, 5g network
deployed several radio technologies, which is decreasing
the latency. Mobile networks continues to extend rapidly,
nevertheless, and the following 6th mobile network (6g)
is already being visualized. 6g will provide a wide range
of applications including telehealth, autonomous vehicles,
ubiquitous robotics, holographic telepresence, and smart
cities [9].
The Spectrum efficiency (SE) is considered an essential

metric for designing the wireless network, which has been
studied broadly in the past years [10], [11]. However,
as promptly rising power costs of the general application of
data rate services and the need for ubiquitous access [12],
[13], energy efficiency (EE) has gained more attention
recently. For instance, the number of connected devices in
2018 was 18.4 billion; this number will reach 29.3 billion
devices by 2023, which indicates that the power consumption
will be increased [14]. Moreover, to meet the demand for
mobile data and new services like virtual and augmented

reality and high-resolution videos are expected to boost
energy consumption by mobile networks [15], [16]. Green
radio is considered a practical solution focusing on EE and
SE and becoming an inevitable direction for the next wireless
network design [17].

Optimizing the Energy Efficiency and Spectral Effi-
ciency Tradeoff is typically considered a MINLP problem,
which is generally non-convex and NP-hard. There are
various effective methods to solve such issues as global
optimization, heuristic methods, game-theoretic approaches,
machine learning (ML)-based methods, and metaheuristic
algorithms [18].
The SE optimal problem is the main focus of research in

wireless networks. In term of maximizing the sum rate as an
NP-Hard, In [19] show that determining the optimal FDMA
spectrum allocation is NP-hard. Kha, H.H et al. propose
the difference between two convex functions to develop a
practical approach with minimum complexity [20].

There is a remarkable diversity of approaches in the
metaheuristic algorithms, each with particular advantages
and disadvantages [21], [22]. These strategies, which draw
their inspiration from various physical and biological events,
can address challenging optimization problems intractable
by traditional techniques [23]. They are extensively explored
and used to address various issues due to their adaptable
and straightforward structure and capacity to avoid local
optima through a random search. Consequently, metaheuris-
tic methods have recently swept the scientific community
off their feet, becoming a well-known study field for
addressing challenging real-world challenges. They have
become a preferred tool for various engineering design
applications due to their exceptional capacity to deliver the
best solutions in a computationally coherent technique and
ease of implementation. Considering the problem as a ‘‘black
box,’’ the algorithm tries solving it without considering its
nature. This characteristic makes engineering optimization
issues amenable to the use of metaheuristic methods.

In this work, we suggest using metaheuristic algorithms
to afford a viable solution to solve the complex resource
allocation issue in the wireless network [24]. The metaheuris-
tics approaches are widely used in different applications
to several real-word and significant scale engineering
optimization problems, e.g., communication networks [25],
solar energy [26], electrical engineering [27], mechanical
engineering [28] and civil engineering [29].

An enhanced version of the PDO algorithms is suggested
in the literature and utilized to solve different issues,
demonstrating the feasibility of developing more effi-
cient algorithms. Nevertheless, reaching a balance between
exploitation and exploration remains a challenge. Therefore,
there is a demand to design an adequate balance approach
for optimization issues. Despite their value, metaheuristic
algorithms must balance exploration and exploitation to
function well. However, the PDO struggles with delayed
convergence and being caught in local optima when dealing
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with high-dimensional issues. After iterations, it frequently
only produces modest, comparable solutions, stopping the
search frommoving forward. No one metaheuristic algorithm
can solve every problem regarding the No Free Lunch (NFL)
theory [30], [31], [32]. They all have drawbacks, such as
early convergence, becoming stuck in local optimal, and the
necessity for global search capability [31], [33]. Therefore,
this research aims to create a better PDO algorithm to
successfully handle various engineering optimization issues.
In keeping with this aim, this work offers a practical solution:
an enhanced HHO algorithm with a PDO algorithm.The
improved version of the PDO algorithm proposed in this
study uses HHO algorithm to enhance the exploration and
exploitation of the PDO algorithm.

This paper’s contributions are outlined in the following
points.

• We propose a brand technique named HPDO combining
the Prairie dog algorithm (PDO) and Harris Hawks
algorithm (HHO) approach inspired by the design of the
PDO and HHO algorithm.

• HHO assists the recommended method in improving
the variety of the authentic population and its ability to
vacate from the falling in the local optimum.

• Improve PDO global and local search to expand
convergence accurateness.

• Twenty-three well-known benchmark functions and
the CEC-2019 functions are utilized to show the
performance of the HPDO algorithm.

• The spring design issue, the pressure vessel, and the
Welded beam are implemented to validate the HPDO
performance.

• This paper investigates the power allocation problem in
wireless networks as a real-world case study using the
HPDO algorithm.

• The results reveal the out-performance of HPDO
compared to the basic PDO, HHO, and other state-of-art
optimization algorithms.

This paper is classified as follows: Section II presents
the recent related work. Section III introduces the HHO
algorithm. Section IV describes the PDO algorithm. The
proposed HPDO algorithm is illustrated in section V.
Section VI shows the experimental results of the proposed
HPDO. Section VII provides some real-world applications
of HPDO, the system model, and the problem formulation
of the resource allocation of wireless networks issue is also
described in this section. Finally, section 8 summarizes the
proposed work.

II. HARRIS HAWKS ALGORITHM
In 2019Ali Asghar et al. introduce the HHO algorithm, which
is a meta-heuristic swarm intelligence approach inspired
by the Harris hawk birds [34]. Harris hawk birds try to
hunt the prey based on team cooperations. As an algorithm
based on the population approach, the initialization stage is a
random procedure—two main phases in the HHO algorithm,

FIGURE 1. Different phases of HHO [34].

exploration, and exploitation. Figure 1 illustrates the overall
HHO algorithm process.

A. EXPLORATION STAGE
In HHO, The rabbit position represents the optimal solution,
and the Harris hawks positions represent the other solutions.
To find their prey, the Harris hawks search randomly in a
particular area or remain in specific locations. The Harris
hawk’s behavior can be implemented in two exploration
phases; the first describes the hawk’s movement depending
on the position of other birds in the population and the prey
position in the field. The second one represents the habitation
of arbitrary trees by Harris hawks [35]. A random value of q
measures the selection of these two phases as the following
updating functions:

T (t + 1)

=


Trandom(t)− r1 |Trandom(p)− 2r2T (p)|

q ≥ 0.5
(Trabbit (p)− Tm(p))− r3(LoB+ r4(UpB− LoB))

q < 0.5

(1)

where T (p) is the current position vector of Harris hawks,
T (p + 1) represent the vector portions of hawks bird in the
following iteration p, and the position of rabbit represent by
Trabbit (p), r1, r2, r3, r4, and q are random numbers between
(0,1), LoB and UpB describe the lower and upper bounds of
variables, Trandom(p) show a random value chosen for the bird
from the available population, and Tm represent the average
of hawks population, and r represents the prey’s chance of
either failing to escape before a surprise pounce (r > 0.5) or
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succeeding in escape (r < 0.5). where the average population
position attained by Eq.(2):

Tm(p) =
1
N

N∑
i=1

Ti(p) (2)

where Ti(p) indicates each bird’s position in iteration p and
N denotes the total number of birds.

B. EVOLUTION FROM EXPLORATION TO EXPLOITATION
the evolution in the HHO algorithm from exploration to
exploitation is achieved using a parameter that indicates the
prey’s energy. The energy of prey can be obtained via:

E = 2E0(1−
p
IT

) (3)

where the E , E0, and IT represent the energy escaping,
the initial state of prey energy, and the maximum bound of
iterations, respectively. The value of E0 is selected randomly
inside (1,1) for each iteration.

C. EXPLOITATION STAGE
The HHO performs the surprise pounce method to begin an
attack on the selected rabbet. However, the prey will escape,
and the Harris hawks will try to chase it. To model this
behavior, four potential attacking approaches are proposed in
the HHO as a following.

1) SOFT BESIEGE
Here rabbits have enough energy; the hawks attempt to
exhaust the prey and then execute the surprise pounce. In this
phase, the main rule is represented in Eqs. (4) and (5):

T (p+ 1) = 1T (p)− E |JXrabbit (t)− T (p)| (4)

1T (t) = Trabbit (p)− T (p) (5)

where 1T (p) is the difference between the location vector of
the prey and the current position in iteration p, r5 denotes a
random number inside (0,1). The J = 2(1− r5) describes the
arbitrary rabbit movement during the escaping.

2) HARD BESIEGE
In this stage, Harris hawks perform the best solution based on
Eq. (6):

T (p+ 1) = Trabbit (p)− E |1T (p)| (6)

3) SOFT BESIEGE WITH PROGRESSIVE RAPID DIVES
In this stage, the hawks can determine the next move based
on the rule shown in Eq. (7)

Y = Trabbit (p)− E |JTrabbit (p)− T (p)| (7)

The Harris Hawks compute the results of rapid dives in
this period and compare them with previous dives. The HHO
employs the Levy flight operator to simulate these dives,
which is achieved by:

Z = Y + S × LF(D) (8)

where D represents the number of dimensions, S denotes a
random vector, and LF is the levy flight function, which is
calculated by:

LF(x) = 0.01×
u× σ

|v|
1
β

, σ =

 0(1+ β)× sin(πβ
2 )

0( 1+β
2 )× β × 2(

β−1
2 ))


1
β

(9)

where u, v are arbitrary numbers of LF inside (0,1), and β is
a constant set to 1.5.

The final approach for updating the positions of Harris
hawks in soft besiege with progressively rapid dives can be
performed by Eq (10)

T (p+ 1) =

{
Y if F(Y ) < F(T (p))
Z if F(Z ) < F(T (p))

(10)

where Y and Z are obtained using Eqs. (7) and (8).

4) HARD BESIEGE WITH PROGRESSIVE RAPID DIVES
Here the hawks try to finish the process and decrease the
distance with the prey; for this process, the following rule is
performed:

T (p+ 1) =

{
Y if F(Y ) < F(T (p))
Z if F(Z ) < F(T (p))

(11)

where Y and Z are calculated by using new rules in Eqs.(12)
and (13). Figure (2) demonstrates a schematic of Hard
besieges with progressive rapid dives.

Y = Trabbit (p)− E |JXrabbit (p)− Tm(p)| (12)

Z = Y + S × LF(D) (13)

FIGURE 2. Movements of hawks in HHO in Hard besiege with developed
quick dips phase [34].

III. PRAIRIE DOGS OPTIMIZER (PDO)
Prairie dogs (PrDs) are intelligent rodents that belong to the
squirrel family. Prairie dogs dwell in underground burrows
in big groups that form a town or colony, sharing food and
protecting their burrows [36]. The intricate communication
technique used by these species is one of the reasons they are
considered clever; they use squeaky sounds to communicate
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with their colonies and warn them of predators [37]. In a
single bark, prairie dogs encode information about the
predator’s size, color, direction, and speed.

PrDs exhibit a range of actions that are consistent with
processes for exploitation and exploration. PrDs move from
one location to another throughout the problem search
space, effectively searching multiple areas as they eat
mostly grasses, small seeds, and some insects throughout
the seasons. They use alert messages to exploit particular
locations (solutions) in order to find better or nearly ideal
solutions (promising areas) [5].

A. INITIALIZATION
Each of the n PrDs that make up a unit is a member of one
of the m units. The location of the ith PrD in a spacific type
is determined by a vector since PrDs live and work as a unit
or group. The matrix presented in Equation 14 displays the
locations of all units (UT) in a colony.

UT =


UT1,1 UT1,2 . . . UT1,d−1 UT1,d
UT2,1 UT2,2 . . . UT2,d−1 UT2,d

. . . .

. . UTi,j . .

. . . .

UTm,1 UTm,2 . . . UTm,d−1 UTm,d

 (14)

where UTi;j stands for the colony’s jth-dimensional ith-
unit. The location of every PrD in a unit is represented by
Equation 15:

PrD =


PrD1,1 PrD1,2 . . . PrD1,d−1 PrD1,d
PrD2,1 PrD2,2 . . . PrD2,d−1 PrD2,d

. . . .

. . PrDi,j . .

. . . .

PrDn,1 PrDn,2 . . . PrDn,d−1 PrDn,d


(15)

where PrDi;j denotes the ith PrDs and jth dimension in a unit,
and n ≤ m. 16 and 17 are used to allocate each unit and PrD
position using a uniform distribution:

UTi;j = U (0, 1)× (UpperBj − LowerBj)+ LBj (16)

PrDi;j = U (0, 1)× (ubj − lbj)+ lbj (17)

where ubj =UpperBj/m and lbj = LowerBj/m, and U(0,1) is a
random value represent a uniform distribution between 0 and
1 and UpperBj and LowerBj are the upper and lower bounds
of the jth-dimension of the optimization issue, respectively.

B. FITNESS FUNCTION EVALUATION
Depending on where the PrD’s is located, a fitness function
will be used to assess how close a certain solution is to
the optimum solution to the problem. In order to make the
best decision, the prairie dog’s location is assessed using the
fitness function. Each PrD’s fitness function has a symbolic
value that corresponds to the quality of food offered at a
specific source, the capability to excavate further burrows,

and the success of anti-predation alarm responses. The values
obtained are stored in the array show in Equation 18. These
values are sorted and the best solution for the particular
minimization problem is stated to be the one with the
lowest fitness value. The following three values are taken
into consideration together with the best value for several
parameters such as burrow development, that help them flee
from predators.

f (PrD) =


f1([PrD1,1 PrD1,2 . . . PrD1,d−1 PrD1,d ])
f2([PrD2,1 PrD2,2 . . . PrD2,d−1 PrD2,d ])

. . . .

. . . . . . .

. . . .

fn([PrDn,1 PrDn,2 . . . PrDn,d−1 PrDn,d ])


(18)

C. EXPLORATION
PrDs scour the entire colony or issue area in search of
fresh food or fixes. Based on four factors, the PDO can
decide between exploration and exploitation. Exploration and
exploitation take up the first two of the four portions of the
maximum number of iterations (Miter ), which is broken into
four sections:

• Criteria 1: iter < Miter /4
• Criteria 2:Miter/4 ≤ iter < Miter /2
• Criteria 3:Miter/2 ≤ iter < 3Miter /4
• Criteria 4: 3Miter/4 ≤ iter < Miter

During the exploration phase, the PrD’s movements as they
seek for food sources is best represented by the Le’vy flight
motion (LV), that is LV(n) distribution [38]. Equation 19
describes location updates for foraging and the Le’vy flight
motion in the exploration phase.

PrDi+1;j+1 = GOptimali,j − eCOptimali,j × p− CPrDi,j

× LV (n) ∀iter <
Miter

4
(19)

Equation 20 shows the location update for forming new
caves based on the quality of the detected food sources and
the assessment of the digging strength.

PrDi+1;j+1 = GOptimali,j × rPrD× DS × LV (n)∀
Miter

4

≤ iter <
Miter

2
(20)

where eCOptimali; jmeasures the impact of the best solution
currently found and is shown in Equation 21, GOptimali; j
is the best solution that has been found globally, rPrD is the
location of a arbitrary solution, and CPrDi; j is the arbitrary
cumulative effect of all PrDs in the colony and is defined
in Equation 22. The unit’s digging strength, denoted by DS,
is determined by the caliber of the food source and has a
random value determined by Equation 23.

eCOptimali,j = GOptimali,j ×1
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+
PrDi,j × mean(PrDn,m)

GOptimali,j × (UpperBj − LowerBj)+1

(21)

CPrDi,j =
GOptimali,j − rPDi,j
GOptimali,j+1

(22)

DS = 1.5× r × (1−
iter
Miter

)
(2
iter
Miter

)
(23)

D stands for a small number that takes into consideration
variations in prairie dogs, and r introduces the stochastic
property to assure exploration. Depending on the current
iteration, r can take the value - 1 or 1, alternating between
- 1 and 1 when the current iteration is odd or even.

D. EXPLOITATION
To carry out exploitation phase in the PDO algorithm, PD’s
disseminate signals similar to alarm sound to notify members
of the same unit of food sources or predators locations. This
operation is presented in Equations 24 and 25.

PrDi+1;j+1 = GOptimali,j − eCOptimali,j × ϵ − CPDi,j

× rand ∀
Miter

2
≤ iter < 3

Miter

4
(24)

PrDi+1;j+1 = GOptimali,j − PE × rand ∀ 3
Miter

4
≤ iter < Miter (25)

PE = 1.5× (1−
iter
Miter

)
(2
iter
Miter

)
(26)

where ϵ stands for the food source’s quality, equation 26
illustrate the predator effect (PE), and a rand is a random
number between 0 and 1.

IV. PROPOSED ALGORITHM
Figure 3 illustrates the general framework of the developed
method known as HPDO. Its main goal is to improve
the PDO algorithm’s capacity to balance the exploration
and exploitation process in searching for the best solution.
By integrating the HHO algorithm with the PDO’s operators,
HPDO achieves this balance. The HHO algorithm enhances
PDO exploration and speeds up the convergence process
toward the optimal solution. This integration between PDO
and HHO leads to a better performance of PDO. To start the
suggested HPDO algorithm, the initial value of N agents (X )
is randomly selected using a specific equation.

Xij = rand × (UpperB− LowerB)+ LowerB, i

= 1, 2, . . . ,N , j = 1, 2, . . . ,Dim. (27)

In Eq. (27), Dim represents the size of per parameter Xi.
LowerB is the lower boundary, and UpperB is the upper
boundary of the search territory. This is tracked by revamping
the agents X utilizing the hybrid between PDO and HHO.
This is accomplished by operating random parameter Rn ∈
[0, 1] that swaps between the PDO operators and the HHO.
For an instant, The PDO operator is used to update the current

solution when Rn < 0.3. Otherwise, the HHO algorithm is
used to update the solution. This process is formulated as
follows:

Xi(t + 1) =

{
Use PDOas in Eqs. (23)− (26), Rf < 0.3
ApplyHHOas in Eq.(10), otherwise

(28)

Algorithm 1 illustrates the pseudo code for HPDO
algorithm [5]. Initially, PDO creates a set of candidate
solutions that are randomly distributed and initializes its
parameters. The algorithm then repeats its operations to
examine all feasible sites of near-optimal solutions. Based on
the fitness evaluation, the algorithm chooses the best answer
at the moment and replaces the previously obtained solution
each time. To apply exploration, the iterations number should
be iter < Maxiter /2. Furthermore, exploitation is enabled
when the iterations number iter > Miter /2. PDO terminates
when the maximum number of iterations is reached.

V. EXPERIMENTS AND RESULTS
This section presents the experimental findings that support
the optimization capabilities of the suggested algorithm.
To test the HPDO’s performance in this regard, benchmark
functions with 23 objective functions (fixed-dimensional,
unimodal, and high-dimensional multimodal) are used. The
performance of well-known algorithms, including Grey Wolf
Optimizer (GWO) [39], Salp Swarm Algorithm (SSA) [40],
Whale Optimization Algorithm (WOA) [41], Dragonfly
Algorithm (DA) [42], Particle Swarm Optimization (PSO)
[43], Marine Predators Algorithm (MPA) [44], Slime Mold
Algorithm (SMA) [45], and Harris Hawks Optimization
(HHO) is compared to that of HPDO. The HPDO and each
competing metaheuristic algorithm are used in five runs, each
with 10, 50, and 200 iterations. The markers worst, average,
best, and standard deviation (STD) are used to report the
outcomes of the algorithms that were used. Additionally,
when the p-value is less than 0.05, the Wilcoxon rank-sum is
used to acquire statistical data to determine whether HPDO
significantly varies from other methods. The values for the
crucial parameters of the employed algorithms are shown in
Table 1.

A. QUALITATIVE ANALYSIS
The benchmark functions provided in Figure 4 first column,
as demonstrated, closely resemble real-world search area
problems by yielding a vast number of local optima and
a variety of forms for several locations inside the search
space. In order to find the global optima, each optimization
technique should create a balance for the investigation and
application of search strategies. Thus, this set of benchmark
functions can be used to assess the relationship between
exploration and exploitation. This section investigated the
suggested HPDO algorithm convergence behavior. Three
primary metrics—the best first-dimension values, average
fitness values, and convergence speed—demonstrate the
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FIGURE 3. Proposed HPDO algorithm.

TABLE 1. Parameter values of the HPDO algorithm and other used
algorithms.

HPDO convergence. The tests are run on several benchmark
functions (F1, F2, F4, F6, F7, F8, F11, F12, and F13) using
60 iterations using 5 solutions. The second column (first indi-
cation) presents the qualitative metric that accounts for the
changes in the first solution of the first dimension throughout
optimization (enhancement). This indication enables us to
identify whether the first solution exhibits moderate shifts
in the last repetitions after initially experiencing abrupt or
sharp moves. The behavior of the suggested HPDO can verify
that a population-based approach locally explores inside the
specified search region and converges to a point. It is evident
that the modifications progressively become smaller across
several iterations, a characteristic that validates the transition

from exploration to exploitation. Ultimately, the solution
evolves gradually, which forces an exploration search. The
average fitness value of every solution throughout the period
of repetitions is the qualitative metric represented by the third
column (second indication). The average fitness value over
the specified repetitions should be developed if an optimiza-
tion strategy outperforms rival alternatives. The suggested
HPDO approach yields lower fitness values on all evaluated
functions, as shown by the average fitness trajectory in
Figure 4. Another issue that merits an introduction here is
the accelerated reduction in the average fitness trajectories,
which explains why the development of the existing solutions
gets more dependable and faster throughout repetitions. The
convergence rate of the optimal solution across a series of
repetitions is the qualitative metric represented by the fourth
column (third indication). In Figure 4, the convergence curve
is a collection of the fitness values of the best solution for
each repetition. The suggested HPDO method’s convergence
is shown by the decline in fitness levels over the specified
repetitions. It is also evident that the supplied convergence
curve exhibits a reduced convergence rate, which can be
attributed to the previously mentioned reason. Additionally,
the suggested approach quickly produced themost significant
results in several functions, including F6, F7, F8, F11, and
F13.

B. SIMULATION RESULTS OF BENCHMARK FUNCTIONS
The performance of HPDO is demonstrated in this section.
The implementation is evaluated using average, best, worst,
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Algorithm 1 HPDO Algorithm Pseudo Code
1: initialize : n, p,m, ϵ

2: initialize : UT ,PrD
3: GOptimal ← φ

4: COptimal ← φ

5: while iter<Miter do
6: for (i = 1 to m) do
7: for (j = 1 to n) do
8: Calculate : f (PrD)
9: Find : COptimal

10: Update : GOptimal
11: Update : DS,PE
12: Update : CPrDi,j
13: if (iter<Miter

4 ) then
14: PrDi+1;j+1 = GOptimali,j − eCOptimali,j ×

p− CPrDi,j × Levy(n)
15: else
16: if (Miter

4 ≤ iter<
Miter
2 ) then

17: PrDi+1;j+1 = GOptimali,j×eCOptimali,j×
DS × Levy(n)

18: else
19: if (Miter

2 ≤ iter<3
Miter
4 ) then

20: PrDi+1;j+1 = GOptimali,j −
eCOptimali,j × ϵ − CPrDi,j × rand

21: else
22: PrDi+1;j+1 = GOptimali,j × PE × rand
23: end if
24: end if
25: end if
26: end for
27: end for
28: Execute the HHO algorithm
29: return return : GOptimal
30: iter = iter + 1
31: end while
32: return return : GOptimal
33: End

and standard deviation (STD) values. Additionally, we’ll be
conducting the Wilcoxon rank-sum test with a significant
differential of 0.05 to determine if there’s a substantial
difference between the proposed variant and its equivalents.
After running the tests, we found that the HPDO is capable
of handling most of the employed benchmark functions
compared to other state-of-the-art counterparts. To determine
the final ranking of the proposed HPDO, we used the
Friedman ranking test. This allowed us to show that the
HPDO is a powerful tool that can deliver results that are on
par with the best in the industry.

1) SCALABILITY ANALYSIS
The proposed HPDO algorithm’s convergence solutions are
preliminary field investigated to evaluate the impact of
incorporating the operators of HHA and PDO distribution

while finding the optimal solutions for high-dimensional
optimization issues. Consequently, the HPDO convergence
curves compared to other algorithms are depicted in Figure 5
for selected results from 23 implemented functions. The
results show that the HPDO converges to the optimal results
at the beginning of the iterations; on the other hand, the SSA,
GOA, and MPA have piled the local solutions.

Tables 2 and 3 describes the HPDO achieved results
compared to DA, HHO, GWO, WOA, PSO, SSA, MPA,
and SMA. The results of the average, best, worst, and
STD achieved by HPDO show an outperformance of the
HPDO algorithm among most of the algorithms versus
23 functions, such as the following functions: 1, 2, 5, 6,
12, 14, and 15. Furthermore, the Wilcoxon rank-sum results
show an excellent performance of HPDO, the P-value with
considerable amiability of 0.05. Therefore, for example,
the HPDO outperforms the SSA algorithm in 18 functions;
thus, the null hypothesis test is denied, and h=1 means
a noteworthy distinction between the HPDO and SSA.
Similarly, the null hypothesis test is denied because the
performance of the HPDO for the P-value is considerable and
outperforms other algorithms (WOA, PSO, HHO, GOW, and
SMA).

The Friedman-ranking test is implemented for additional
experimentation and to determine the rank of HPDO among
the benchmark functions. The acquired solutions are shown
in Table 4. The rank solutions reveal that the HPDO reaches
a comparative rank regarding other algorithms. The HPDO
average rank is 1, which is the most minor achieved solutions,
and settled on the first position among the 23 benchmark
functions. With an average of 3.74, the MPA algorithm was
in second place. We conclude that the HPDO statistically
exceeds the current state-of-the-art after looking at the data
in Tables 2,3 and 4.

2) CEC-2019
Ten CEC-2019 problems are used in this part to evaluate the
proposed HPDO. Table 5 lists the specifics of these problems.

The outcomes of the CEC2019 comparing techniques are
shown in Table 6, along with the fitness function values
for the worst, mean, and best results. It is obvious that
the suggested method, almost for all of the investigated
problems, produced superior results than other comparison
methods. The Wilcoxon signed-rank test indicated that
in F2, the suggested HPDO exceeded the SMA, HHO,
SSA, WOA, DA, GOA, GWO, ALO, SCA, MPA, PSO,
and PDO. Another case (F10) over-whelmed ALO, GWO,
PSO, GOA, and SMA. The Friedman ranking test ranks
the demonstrated HPDO as the best method, with MPA
coming in second, HHO coming in third, MPA coming in
fourth, GWO coming in fifth, DA coming in sixth, PSO
coming in seventh, WOA coming in eighth, and SSA coming
in ninth. Additionally, Figure 6 provides the convergence
behavior of the comparison approaches on the CEC-2019 test
functions. This graphic demonstrates that the performance
of the suggested strategy outperforms alternative methods.
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FIGURE 4. Qualitative results for the some tested problems.
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FIGURE 5. Qualitative analysis 50 iteration.

VOLUME 11, 2023 145155



M. Hijjawi et al.: Novel Hybrid Prairie Dog Algorithm and Harris Hawks Algorithm

TABLE 2. The outcomes of 10 benchmark functions (F1–F23) using comparison approaches, with a dimension of 10.
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TABLE 3. (Cont.) The outcomes of 10 benchmark functions (F1–F23) using comparison approaches, with a dimension of 10.

It is also obvious that the suggested method avoids the
primary flaws listed in the original HHO method, such as
the search process imbalance, by avoiding local optima and
premature convergence. We came to the conclusion that the

suggested HPDO clearly has the capacity to outperform the
other approaches in a number of benchmark problems from
CEC-2019. The major goal of this work was achieved by the
presented approach, which outperformed the original method
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TABLE 4. The results of the comparative methods on 10 benchmark
functions (F1-F23), where the dimension is 10.

and other cutting-edge methods in terms of its ability to solve
a variety of issues. The results refute the authors’ assertions;
the upgraded method used a variety of search techniques to
find better answers. Figure 7 explains the ultimate outcomes
of the comparison techniques. The proposedmethod achieved
improved results in terms of the execution time for all of
the examined issues, as shown in the figure. The suggested
HPDO places the first on the reduced execution time.

VI. REAL-WORLD APPLICATION
The HPDO algorithm in this section is implemented to solve
three engineering design problems to show the algorithm’s
validity: The spring design issue, the pressure vessel, and the
Welded beam. In addition, the power allocation problem in
wireless networks is studied in subsection VI-D. The size of
the population is set to 30 for the HPDO simulation and runs
20 times. The maximum number of iterations is 200. These
specifics are widely known for resolving this particular issue.

A. SPRING DESIGN ISSUE
As shown in Figure 8, this task aims to reduce the weight of
a spring. There are certain limitations to the minimization
procedure, such as shear stress, surge frequency, and
minimum deflection. The wire diameter (d), mean coil
diameter (D), and number of active coils (N) are the three
variables in this problem. This problem’s mathematical
formulation is as follows:

Consider : σ⃗ = [σ1, σ2, σ3] = [dDN ], (29)

Minimize : f (σ⃗ ) = (σ3 + 2)σ2σ 2
1 , (30)

Subject to : g1(σ⃗ ) = 1−
σ 3
2 σ3

71785σ 4
1

≤ 0, (31)

g2(σ⃗ ) =
4σ 2

2 − σ1σ2

12, 566(σ2σ 3
1 − σ 4

1 )
+

1

5108σ 2
1

≤ 0,

(32)

g3(σ⃗ ) = 1−
140.45σ1

σ 2
2 σ3

≤ 0,

(33)

g4(σ⃗ ) =
σ1 + σ2

1.5
− 1 ≤ 0,

Variable Range :

0.05 ≤ σ1 ≤ 2.00, 0.25 ≤ σ2 ≤ 1.30, (34)

and 2.00 ≤ σ3 ≤ 15.00.
The findings of all comparison algorithms and the

suggested HPDO to address the spring design problem are
shown in Table 8. The ideal parameter values are shown
in Table 8, along with the top outcomes for all comparison
algorithms. The best variables at σ = (d = 0.051599, D
= 0.356488, N = 11.2501198) with the optimal objective’s
value: F(σ ) = 0.0126654 show that the suggested HPDO is
a better approach compared to other state-of-the-art methods
by providing a more dependable solution.

B. THE PRESSURE VESSEL DESIGN ISSUE
The hemispherically capped cylindrical pressure vessel (see
Figure 9) must be constructed at a low cost. The compressed
air tank must be built following the American Society
of Mechanical Engineers (ASME) code on boilers and
pressure vessels and has an operating pressure of 3K psi
and a lowest volume of 750 ft3. The sum of the welding,
material, and forming charges determines the final price.
As optimization factors, it was decided to include the length
of the cylindrical segment of the vessel, the inner radius, the
thickness of the cylinder skin, the thickness of the spherical
head, and the inner radius. Only discrete values with integer
multiples of 0.0625 can be used for thickness. This problem’s
mathematical formulation is as follows:

Minimize : f (σ ) = 0.6224σ1σ3σ4 + 1.7781σ2σ 2
3

+ 3.1661σ 2
1 σ4 + 19.84σ 2

1 σ3 (35)

Subjectto : g1(σ ) = −σ1 + 0.0193σ3 ≤ 0 (36)

g2(σ ) = −σ2 + 0.00954σ3 ≤ 0 (37)

g3(σ ) = −πσ 2
3 σ4 −

4
3
πσ 3

3 + 1296000 ≤ 0

(38)

g4(σ ) = σ4 − 240 ≤ 0 (39)

where:
1 × 0.0625 ≤ σ1, σ2 ≤ 99 × 0.0625, 10 ≤ σ3 ≤

200 and10 ≤ σ4 ≤ 240.
Table 9 demonstrate the comparative algorithms and the

HPDO algorithm to solve the vessel design issue. The
superior parameter values are shown in Table 9, along with
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FIGURE 6. The outcomes of 10 benchmark functions (cec1 to cec10 ) using comparison approaches.

the top outcomes for all compared algorithms. Table 9
clarifies that the suggested HPDO is superior to other state-
of-the-art methods because it provides a more dependable

solution that places the ideal variables at σ = (σ1 =
0.8125, σ2 = 0.4381, σ3 = 42.098353, σ4 = 176.626642)
with the best objective’s value f (σ ) = 6060.7245.
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TABLE 5. CEC-2019 functions.

FIGURE 7. Execution time.

FIGURE 8. Spring design issue.

FIGURE 9. Pressure vessel design issue.

C. WELDED BEAM DESIGN ISSUE
The welded beam in Figure 10 needs to be constructed with
the least amount of materials possible [46]. Low carbon steel

(C-1010) is used to make the beam, which is welded to stiff
support and loaded by the shear load P operating at the free
tip. Design variables included:
• The width of the beam (t).
• The thickness of the beam (b).
• The thickness of the weld (h).
• The length of the welded junction (l).
H and L must have integer values that are multiples of

0.0065 in. The problem’s goal function is stated as follows:

Consider σ⃗ = [σ1, σ2, σ3, σ4] = [h, l, t, b] (40)

Minimize f (σ⃗ )=1.10471σ 2
1 σ2+0.04811σ3σ4 (14.0+ σ2)

(41)

Subject to g1 (σ⃗ ) = τ (σ )− τmax ≤ 0 (42)

g2 (σ⃗ ) = λ− λmax ≤ 0 (43)

g3 (σ⃗ ) = δ − δmax ≤ 0 (44)

g4 (σ⃗ ) = σ1 − σ4 ≤ 0 ≤ 0 (45)

g5 (σ⃗ ) = P− PC (σ⃗ ) ≤ 0 (46)

g6 (σ⃗ ) = 0.125− σ1 ≤ 0 (47)

g7 (σ⃗ ) = 1.10471σ 2
1 + 0.04811σ3σ4 (14+ σ2)

− 5 ≤ 0

Variable range

0.125 ≤ σ1 ≤ 5, 0.1 ≤ σ2, σ3 ≤ 10, and

0.1 ≤ σ4 ≤ 5. (48)

where

τ (σ⃗ ) =

√
(τ ′)2 + 2τ ′τ ′′

σ2

2R
+ (τ ′′)2, τ ′ =

P
√
2σ1σ2

,

τ ′ =
MR
J

,M = P
(
L +

σ2

2

)
(49)

R =

√
σ 2
1

4
+

(
σ1 + σ3

2

)2

, J

= 2

{
√
2σ1σ2

[
σ 2
2

4
+

(
σ1 + σ3

2

)2
]}

, (50)

σ (σ⃗ ) =
6PL

Eσ 2
3 σ4

, δ (σ⃗ ) =
6PL3

Eσ 2
3 σ4

, (51)
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TABLE 6. The results of the comparative methods on cec2019.

PC (σ⃗ ) =
4.013E

√
σ 2
3 σ 6

4
36

L2

(
1−

z3
2L

√
E
4G

)
(52)

λmax = 3000psi, δmax = 0.25in, τmax = 30, 000psi.

(53)

E = 30× 106psi, G = 12× 106psi (54)

L = 14in, P = 6000lb, (55)

The suggested HPDO is put into practice on the welded
beam issue, and the outcomes are contrasted with those
of various metaheuristic methods, including MPA, DA,
SSA, PSO, GWO, SMA, WOA, and HHO. The HPDO
algorithm achieves superior results compared to other
algorithms and reliable results with the best variables at σ=

(h=0.25306111, l=1.8423029, t=8.27022978, b=0.253219)
and with the optimal cost at f (σ )=1.725701. This shows
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TABLE 7. The results of the comparative methods on cec2019.

TABLE 8. The HPDO results for solving the spring design issue.

TABLE 9. The HPDO results for solving the The pressure vessel design
issue.

that HPDO can successfully tackle the welded beam design
issue.

D. RESOURCE ALLOCATION OF WIRELESS NETWORKS
This section illustrates the problem formulation and the
system model of resource allocation in wireless networks by
finding the optimal resource allocation for the highest number
of users. This section also conducts the simulation results for
data and convergence rates for several algorithms, such as
WOA, HHO, SMA, and DA.

1) SYSTEM MODEL AND PROBLEM FORMULATION
In this work, we consider a narrowband interference-limited
wireless network (IWN) with N users (as in [18]). We con-
sider different communication links M. Let P = (P1,
P2, ·, PM ), where Pj denotes the transmit power of the
single-antenna transmitter of link j. And gij is the channel gain

FIGURE 10. Welded beam design issue.

from the single-antenna transmitter of link j to the receiver
of link i. The received signal-to-interference-plus-noise-ratio
(SINR) at the receiver of link i is

γ (P) =
Pi · gij∑M

j=1,j̸=i Pi · gij + ni
(56)

The power consumptionPtot in the wireless network can be
calculated by two components: circuit power consumption pci
and The transmit power consumption pi.

Thus, Ptot can be calculated as a following:

Ptot (p) =
N∑
i=1

(ξipi + pCi ) (57)

where ξi is a constant power-amplifier inadequacy parameter
of the link i.
The EE-SE tradeoff problem is defined as maximizing

global EE (GEE), subject to transmit power budgets and
minimum rate specifications. Therefore, by resolving the
following optimization problem, the EE-SE tradeoff can be
calculated. [47]:

max power η =

N∑
i=1

Ri(p)
Ptot (p)

(58)

C1 : Ri(P) ≥ r
req
i , ∀i

C2 : 0 ≤ pi ≤ pmaxi , ∀i (59)

where i = 1,. . . , N., And C1 represent the guarantee of
minimum rate requirements rreqi for each link i, C2 represents
the peak power pmaxi and the non-negative constraints, and the
η unit is bits/Joule/Hz.
The previous problem can be solved successively by

successive convex (SCA) and bisection methods. The issue
can be solved by using the following formula for a given value
of η:

max power
N∑
i=1

Ri(p)− ηPtot (p) s.t C1 and C2. (60)

employing the d.c. exemplification of the objective func-
tion and ordering the constraint C1, the problem in (5) can
be solved by solving regular convex optimization problem to
every iteration.
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TABLE 10. The HPDO results for solving the Welded beam design issue.

The formula for determining a user’s i security rate is
ϕi(p) = {maxRi − qPtot , 0}. The maximum secrecy rate
(MMSR) can be modeled using the formulation found [48]:

max power ϕ(p) = mini = 1, . . . ,M
[
Ri − qP(tot)

]
s.t 0 ≤ pi ≤ pmaxi , ∀i = 1, . . . ,M .

(61)

At each iteration t , the total power consumption qPtot
and the data rate Ri(p), approximated by an upper bound
q(t)p(t)tot and a low bound rate R(t)i (p). starting from the feasible
solution p(0), we can solve the following convex optimization
function at the t-th iteration.

max power ϕ(t)(p) = mini = 1, . . . ,Mϕ
(t)
i (p)

s.t 0 ≤ pi ≤ pmaxi , ∀i = 1, . . . ,M .

(62)

As a result, the path-following method is used repeatedly
until the stopping requirement ϵ as represented by this rule[
Rti − q

tP(t)tot
]
≤ ϵ is met.

2) PERFORMANCE ANALYSIS
To assess the performance, we calculate theminimum secrecy
throughput, which finds the optimal and minimum rate
among all the users. The number of users has been varying
(i.e., 20, 50, and 100), which represents the dimension for the
studied algorithms.

Fig. 11 displays the convergence outcome of the proposed
HPDO algorithm and the path-following process algorithm
based on the number of iterations. The HPDO approach needs
25 iterations, while the path-following method only needs 15.
This means that the two techniques can converge relatively
quickly. However, the path-following method results in the
solution of a convex problem after each iteration.

Fig. 12 compares the HPDO, WOA, and path path-
following procedure algorithm performance. The result
demonstrates that the HPDO provides highly competitive
outcomes with minimum secrecy throughput.

According to another finding made from the convergence
curves, the HPDO algorithm might exhibit nearly the same
convergence pattern over the duration of iterations with every
implemented set of users. The algorithm has seen extremely
strategic turning points at nearly identical iteration points.

FIGURE 11. Convergence solution of the HPDO algorithm and the
path-following procedure algorithm.

FIGURE 12. Convergence solution of the HPDO algorithm and the
path-following procedure algorithm.

TABLE 11. Achieved results for 10 users.

TABLE 12. Achieved results for 50 users.

After 20 iterations, it favors better optimal solutions, starting
with the first iterations’ average best scores.

Tables 11 through 11 show that when the dimension
(number of users) is ten, the HPDO performance is slightly
better than other algorithms to other algorithms, which means
the HPDO can efficiently distribute the power with optimal
utilization.

Moreover, the HPDO shows an outperformance when
the number of users increases. For instance, when the
dimension is 50 (12), HPDOperforms significantly compared
to other benchmark algorithms. Similarly, when we change
the number of users to a higher value, as shown in Table 13,
100 users, we observe that the HPDO algorithm outperforms
other algorithms with high standers deviation.
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TABLE 13. Achieved results for 100 users.

Based on the results acquired by the HPDO algorithm,
in statical results, mathematical benchmark functions, and
the real-world example for the resource allocation in the
wireless network. We can conclude that using the modified
PDO algorithm by the HHO algorithm to achieve the
balance between the exploration and exploitation stages
can significantly enhance the performance of the basic
PDO algorithm. From the accumulated results, analysis, and
presented discussions in previous sections. We can conclude
that the PDO and HHO algorithms could support adequate
control of the stage size in converging stability and finding
the optimal resource allocation using the HPDO algorithm
with high number of users.
Even though the performance of the suggested HPDO is
highly promising, more time overhead optimization is needed
to address additional real-world application challenges that
differ from all engineering difficulties. Additionally, the
updating system heavily relies on the fitness value that is
returned after each iteration. Because of this, a new update
method for the HPDO might be considered to enhance its
functionality. Because of the time overhead involved, HPDO
performs poorly in parallel machine scheduling and feature
extraction.

VII. CONCLUSION
Enhancing the performance of wireless networks and com-
munication systems requires careful resource allocation.
Resource allocation optimization, however, is regarded as a
mixed-integer non-linear programming (MINLP) problem,
which is NP-hard and non-convex. Due to the serious
limitations of conventional procedures, solving such opti-
mization problems requires specialized approaches. Heuristic
algorithms, for example, cannot guarantee optimal per-
formance, and global optimization systems, which create
a standard dataset for machine learning-based techniques,
suffer from exponential processing complexity and lengthy
training times. As a method for global optimization, the
prairie dog optimization (PDO) algorithm is enhanced in this
study. By utilizing the Harris Hawks Optimization (HHO)
operators, the developed technique, HPDO, can increase
PDO’s exploitation and search capability. The effectiveness
of the proposed HPDO is investigated and analyzed using
23 benchmark functions with various dimension sizes. The
experimental findings showed that the HPDO’s convergence
rate and exploration and exploitation search strategy had
greatly improved. The power allocation issue in wireless
networks is also investigated in this paper using a real-world

case study. The outcomes supported the HPDO’s superiority
to the conventional HHO, PDO, and numerous other models
using cutting-edge algorithms.

This work proposes a new optimization technique with
promising outcomes in resolving different issues. For future
research, the suggested algorithm might be integrated with
various optimization techniques, like the Arithmetic Opti-
mization Algorithm (AOA) or Harmony search algorithm
(HS), to produce hybrid algorithms that maximize the ben-
efits of both methodologies. For some types of engineering
design issues, the performance of hybrid algorithms may
even be superior. The paper proposes a potential optimization
approach that can be improved and used to solve engineering
issues. This work can serve as a foundation for future research
to enhance the algorithm’s implementation and broaden its
application field.
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