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ABSTRACT In this study, we introduce an innovative image colorization method that not only improves
color accuracy and realism but also addresses common issues found in existing methods, such as desaturation
and color bleeding. Our proposed method features a novel component called the Color Encoder, which
extracts intrinsic color features. Moreover, the proposed Color Encoder aligns essential color features
systematically, drawn from a random normal distribution, with real colors. These aligned features are fused
at the bottleneck and serve as the foundation for subsequent colorization. Complementing the Color Encoder
is our Color Loss mechanism, which aims to align the extracted features from the Color Encoder with the
ground-truth color features, enhancing overall color representation accuracy. We also employ a Conditional
Wasserstein Generative Adversarial Network (CWGAN) architecture within the framework of a Generative
Adversarial Network (GAN) to improve adversarial training and colorization accuracy. To enhance feature
representation, we incorporate an attention mechanism at the bottleneck of each encoder layer, further
refining our model’s ability to capture essential image details. Experimental results show that our approach
significantly outperforms other state-of-the-art methods in terms of both realism and precision, striking a
well-balanced performance.

INDEX TERMS Image colorization, generative adversarial network, image enhancement.

I. INTRODUCTION
Image colorization is the process of adding color to grayscale
images, which can be traced back to their origins in traditional
artistic practices. Historically, artists employed a manual pro-
cess to add color to monochromatic photographs, dedicating
meticulous attention to preserving the integrity of the original
image and maintaining realism. The procedure required sig-
nificant labor intensity and relied heavily on artistic skill [1].
The processes for colorizing images also evolved alongside
the development of technology. Semi-automated colorization
techniques became prevalent in the era of digital images and
sophisticated software, relying on user inputs to guide the
colorization process. These strategies include scribble-based
colorization, in which the user provides color scribbles as
input, and the software propagates these colors throughout the
image [2]. Although these techniques were able to decrease
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the amount of manual labor involved, they still required a
certain degree of artistic expertise and a knowledge of color
theory to achieve the desired results.

Over the past decade, image colorization has significantly
evolved owing to the emergence of machine learning, par-
ticularly deep learning. This advancement has led to a shift
from amanual and artist-dependent approach to an automated
approach to image colorization. Various methodologies, such
as color transfer [3] and exemplar-based colorization [4],
were introduced in the initial stages of automated coloriza-
tion. These approaches rely on reference colored images to
guide the colorization process. The emergence of deep learn-
ing has facilitated the utilization of Convolutional Neural
Networks (CNNs) [5] and Generative Adversarial Networks
(GANs) [6], which learn to colorize images from extensive
datasets without explicit instructions [7], [8].

Despite the achievements in image colorization using
these techniques, challenges still exist without a comprehen-
sive solution. The process of transitioning from grayscale
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to color involves converting a single-channel image into a
three-channel image using the RGB color model. The map-
ping process is likely to be non-deterministic, indicating that a
grayscale image can be colorized in numerous ways. Human
perception is vital for this process. The perception of color
labeled as ‘realistic’ can vary among individuals [9]. Another
significant obstacle to image colorization is color bleeding,
which can be a severe problem because the assigned col-
ors extend beyond the object borders, resulting in unnatural
effects. Color bleeding mainly occurs when colors from one
object bleed into nearby areas, with a loss of object differenti-
ation. In addition, the phenomenon of ‘‘hallucinated’’ details
in image colorization also remains a crucial problem. This
phenomenon involves neural networks generating colors or
intricate details that were not present in the original image.
While such additions can enhance visual appeal, they may
deviate from historical accuracy [10].
These issues have made it necessary to perform intensive

research and develop novel methods for image colorization.
Hence, we introduce a novel image colorization model that
tackles the above mentioned issues and improves the overall
quality and accuracy using the proposed Color Encoder and
GAN architecture. The Color Encoder plays a crucial role
in addressing the issue of undersaturation by successfully
incorporating color features, resulting in a more realistic and
vivid colorization result. However, the integration of the Con-
volutional Block AttentionModule (CBAM) aims to mitigate
color bleeding problems by improving the network’s ability to
focus on crucial image components, leading to more accurate
and localized color deployment. Furthermore, the incorpo-
ration of Conditional Wasserstein Generative Adversarial
Networks (CWGAN) increases the overall visual appeal
by guiding the colorization process to align with natural
color distributions and enhancing image finer details. These
elements collectively empower our method to offer a com-
prehensive solution to the challenges encountered in image
colorization, providing both accuracy and visual appeal. The
key contributions of this paper are given below.

• Introduction of a novel Color Encoder, capable of
learning and generating essential color features to
tackle undersaturation issues and produce colorizations
that closely resemble real-world colors.

• Integration of novel Color Loss tomeasure the disparity
between color features generated by the Color Encoder
and actual color features obtained from ground truth
(GT). The Color Loss plays a crucial role in training
the Color Encode.

• Incorporation of the CBAM within the architecture of
the CWGAN. CBAM enhances the visual appeal of
colorization results by focusing attention on impor-
tant image features, contributing to more accurate and
visually pleasing colorizations.

II. RELATED WORKS
The process of colorizing images extends back to the early
twentieth century, when black-and-white photographs were

hand-colored with water colors, oils, crayons, or other
dyes [11]. Although the manual technique described above
was characterized by its subjectivity and reliance on the
artist’s expertise and understanding, it nonetheless marked
the early desire to infuse life into monochrome imagery.

With the introduction of digital image processing, semi-
automated image colorization techniques have become
available. Levin et al. [12] proposed a semiautomatic
image colorization technique in which an interactive and
optimization-based strategy with minimal user input was
introduced. The user is required to provide a few color
scribbles and the framework subsequently distributes these
colors across the entire image by considering the similar-
ities between the pixels. Luan et al. [13] introduced an
optimization-basedmethod for colorization by extending [12]
and enhanced the propagation of colors by reducing user
scribbles. Qu et al. [14] further improved the technique in [13]
by integrating spatial and range regularization to manage
color propagation effectively.

The emergence of machine learning has had a profound
influence on image colorization. Ironi et al. introduced
automated techniques for colorization in which colors are
transferred from a reference image to a grayscale target image
using feature similarities [3]. Welsh et al. also used color
transfer but matched the source and target images using
texture descriptors [4]. Particularly, deep-learning algorithms
allow image colorization to be more automated, accurate,
and consistent. Cheng et al. proposed an early deep-learning
model that utilized a deep CNN as a regression task for col-
orization to predict the chrominance value of each pixel [15].
Zhang et al. made a notable contribution with an end-to-end
model that employed a classification objective function rather
than regression loss, leading to the production of more vivid
and realistic colorizations [6]. Taking advantage of the nature
of human color perception, this work used the CIELAB color
space to anticipate the ‘a’ and ‘b’ channels from the input ‘L’
channel. The instance-aware image colorization method pro-
posed by Su et al. focuses on achieving precise colorization
using object instances [16].

GANs have also been investigated for image-colorization
tasks. The Pix2Pix framework [17] employs a conditional
GAN (cGAN) to acquire knowledge of the mapping between
the input and output images. This framework has also been
used effectively for colorization [17]. Moreover, there has
been a surge in the popularity of open-source projects
such as ‘‘DeOldify’’ that focus on adding color to his-
torical images [18]. A further noteworthy contribution in
the field is the research conducted by Vitoria et al., titled
‘‘ChromaGAN.’’ This study uses adversarial learning tech-
niques to achieve colorization, with a specific emphasis
on the distribution of semantic classes [19]. Furthermore,
CBAM [20] is integrated into the ChromaGAN architec-
ture to improve colorization [21]. Wang et al. [22] pro-
posed DualGAN, a dual-path generative adversarial network
for image colorization, which consists of two generator
streams, one for low-frequency and one for high-frequency
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colorization. The two streams are trained jointly with a
discriminator to generate photorealistic colorizations. Sub-
sequently, Kim et al. presented ‘‘BigColor,’’ a technique
that utilizes a generative color prior to enhancing natural
image colorization [23]. Moreover, the authors propose a
GAN-based image colorization method for self-supervised
visual feature learning [38]. This GAN-based image coloriza-
tion method is based on the cGAN architecture, with a new
loss function, a multi-scale discriminator, and a channel and
spatial attention mechanism. Furthermore, Liu and Tu [39]
propose a PatchGAN-based image colorization model incor-
porating a CBAM. Liu et al. show that CBAM can help the
model focus on important regions of the image, leading to
improved performance on benchmark datasets.

Recently, the popularity of transformers [24] in
vision-based applications has increased. Transformers are a
class of neural networks that are designed to effectively pro-
cess and manage long-range relationships. The Colorization
Transformer, by Kumar et al. emerged as an early exam-
ple of transformers employed in image colorization [25].
The grayscale image was coarsely colored using a coloriza-
tion transformer composed of a conditional autoregressive
transformer. Subsequently, two fully parallel networks are
employed to upsample the coarse color, resulting in a finely
colored high-resolution image.

In addition to colorization transformers, subsequent studies
have employed transformers for image colorization. CT2 [26]
is another image colorization technique that employs a
transformer-based approach. In this method, colors are
encoded as tokens, and the interaction between grayscale
image patches and color tokens is guided by the color
attention and query modules. Furthermore, DDColor [27]
proposes a dual decoder GAN architecture for image col-
orization. The first decoder generates a coarse colorization,
while the second decoder refines the colorization and adds
semantic details.

Despite considerable advancements in image colorization,
the existing techniques have several limitations. Manual and
semiautomated techniques are associated with significant
time consumption, require a certain level of artistic expertise,
and may yield inconsistent outcomes [28]. Although pow-
erful, deep-learning models are computationally expensive,
require large amounts of data, and often produce desaturated
outputs owing to the conservative nature of loss functions [8].
Furthermore, they struggle with multiple complicated images
because of the difficulty in learning high-level semantics [29].
The issue of color ambiguity remains unresolved in most
existing models. Models also tend to ‘hallucinate’ details,
which can be problematic for historical and archival image
colorization, where color authenticity is crucial [30].
To address these problems, we propose a novel image

colorization method based on a CWGAN, which uses atten-
tion and Color Encoder in the generator. In our proposed
method, we propose a novel colorization element, the Color
Encoder, which significantly amplifies the colorization pro-
cess by incorporating a comprehensive array of color features.

Unlike conventional techniques, the proposed Color Encoder
enhances the colorization process with a deeper under-
standing of the network with contextual color information,
resulting in significantly improved outcomes. Moreover, our
novel Color Loss mechanism plays a crucial role in training
the Color Encoder to generate color features that closely
resemble the original color features. The focus on the Color
Encoder and the specific Color Loss significantly improves
the effectiveness and quality of image colorization, setting
our model apart from conventional approaches.

III. PROPOSED METHODOLOGY
The proposed image colorization model leverages the power
of deep learning, specifically using GAN to achieve accurate
and visually appealing colorization results. The proposed
architecture consists of a generator network that learns to
map the luminance (L) channel of the input grayscale image
to the chrominance (a and b) channels in the CIELAB color
space [31], and a discriminator network that learns to identify
real images from the GT and the fake image generated by the
generator. The CIELAB color space was chosen in this study
because it closely approximates human vision, making it
ideal for perceptually meaningful color transformations [31].
With the L∗ component for luminance and the a∗ and b∗

components for color along the green-red and blue-yellow
axes, respectively, CIELAB successfully isolates color infor-
mation from intensity information. Moreover, the CIELAB
color space provides perceptually uniform representations of
colors, ensuring that the Euclidean distance between col-
ors aligns more precisely with human perception of color
distinctions.

Let xL be the input grayscale image with a luminance
channel (L) and xab be the GT image with chrominance
channels (ab). xL is the input to the generator, and the output
chrominance image yab is generated using (1).

yab = G(xL) (1)

where G represents the generator function trained to produce
an image containing the chrominance channels yab. These
chrominance channels produce a colorized image, referred
to as yLab when combined with the original input luminance
channel, xL . In other words. yLab is the final colorized image
produced by the generator G, which combines the luminance
information xL with the chrominance channel yab. The out-
put colorized image is characterized by its coherency and
visual appeal. Subsequently, it is converted from the CIELAB
color space to the RGB color space for the final output.
Figure 1 shows the overall architecture of the proposed net-
work. As shown in Figure 1, the luminance image is extracted
from the input image and fed to the generator. The gener-
ator contains an encoder, a decoder, and a Color Encoder.
The generator produced a yab image containing chrominance
channels. The generated image is fed to the discriminator
along with the input image as a condition. The discriminator
generates scores based on real and false images.
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FIGURE 1. Overall architecture of the proposed colorization network.

Furthermore, a CWGAN architecture was utilized during
training to enhance the colorization performance of the pro-
posed architecture. The CWGAN expands the conventional
GAN framework by integrating the Wasserstein distance as
the training criterion in the cGAN [17], which can facili-
tate stable and interpretable gradients during training. The
conditional approach enables the generator to learn col-
orization patterns specific to the input grayscale images,
thereby ensuring that the colorization process is contextually
relevant.

A. GENERATOR ARCHITECTURE
Figure 2 shows the architecture of the generator for the
proposed image-colorization model. The generator is specif-
ically designed to capture complex color relationships and
accurately maintain spatial coherence. It comprises an
encoder-decoder structure that effectively utilizes both con-
tent and color information. The encoder begins with the
input grayscale image xL and gradually reduces its spatial
dimensions over the layers while simultaneously extract-
ing increasingly detailed and intricate features from the
image. The encoder consists of six convolutional blocks,
each followed by batch normalization and ReLU activation.
The convolutional block sequentially reduces the size of an
image and increases the channels to 64, 128, 256 and 512,
respectively. The decoder, a mirror of the encoder, upsam-
ples low-resolution feature maps obtained from the encoder.
Like the encoder, the decoder consists of six convolutional
blocks, utilizing batch normalization and ReLU activation.
The convolutional block sizes in reverse order are 512, 256,
128, and 64 channels, respectively. Moreover, as shown in
Figure 2, CBAM [20] is used at each encoding stage, where
the attention mechanism enhances feature representations by
selectively focusing on salient regions while disregarding
unnecessary information. The encoder outputs are subse-
quently transmitted to the decoder through skip connections
as in U-Net [32], which retains fine-grained details and struc-
tural information to facilitate the colorization procedure.

Colorization was improved using a novel Color Encoder
that creates color characteristics by sampling from a nor-
mal distribution, effectively modeling the color distribution.
The Color Encoder consists of several convolutional layers
that extract intrinsic color features from the input grayscale
image. The convolutional block sizes in the Color Encoder
correspond to 64, 128, 256, and 512 channels, sequentially,
and it helps to enhance to capture and represent color-related
information effectively. The color features of the Color
Encoder are integrated with the output of the encoder at
the network bottleneck. The integration of Color Encoder
and encoder features ensures that the process of colorization
integrates both the local context and global color information,
allowing the model to generate colors that are coherent and
realistic. The Color Encoder, a key component of our model,
not only generates rich color features but also undergoes a
crucial training process to ensure their accuracy. This train-
ing is facilitated by a specialized metric known as Color
Loss. Color Loss serves as a guiding mechanism, quantifying
the disparity between the features produced by the Color
Encoder and those derived from GT chrominance images.
Subsequently, the decoder network utilizes the fused features
from the encoder and Color Encoder, and gradually upsam-
ples the features to the original resolution. Skip connections
from the encoder layers enable the decoder to access detailed
spatial information and preserve fine textures in the colorized
output. Finally, the output of the decoder is a chrominance
image.

1) COLOR ENCODER
In our image colorization model, we propose a novel Color
Encoder module that enhances colorization performance by
producing detailed color characteristics. The Color Encoder
module with a normally distributed input and convolution
blocks is shown in Figure 2. The functionality of the Color
Encoder is based on the integration of learned color features
into the colorization process, which is a crucial step in attain-
ing precise and realistic colorization.
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FIGURE 2. Proposed generator architecture.

Colorization is initiated using a random normal distribu-
tion that serves as a representation of the possible colors.
The random normal distribution goes through a sequence of
convolutional layers designed to extract and enhance the color
features. The process of transitioning over these layers helps
remove randomness because the initial state of randomness
gradually becomes an organized color feature. An essential
step is required to guarantee that these created features gen-
uinely correlate with the real-world color features. The color
features generated by the Color Encoder are compared with
those obtained from a pretrained VGG network with GT
color images, where a set of reference features that capture
the essence of authentic color compositions is extracted. The
primary goal of the comparisonwas to ensure that the features

generated by the Color Encoder were in accordance with the
reference features derived from theGT images. The similarity
between two features is evaluated using a loss function that
quantifies the degree of similarity between the features of
the Color Encoder and the reference features. The Color
Encoder can then generate features that resemble the color
of the GT images by minimizing the loss. This approach
converts a random normal distribution into color features
that are not only semantically meaningful, but also inher-
ently aligned with real color patterns. Moreover, the Color
Encoder is trained jointly with the GAN. In the proposed
colorization model, the Color Encoder plays a crucial role in
generating colorized outputs that are visually appealing and
realistic.

VOLUME 11, 2023 132815



H. Shafiq, B. Lee: Image Colorization Using Color-Features and Adversarial Learning

FIGURE 3. Convolution block attention module (CBAM) [20].

2) CBAM
In our colorization model, the CBAM was used to improve
the ability of the model to recognize complex color patterns.
The CBAM framework comprises two modules: Channel
Attention Module (CAM) and Spatial Attention Module
(SAM) [20].
The CAM operates on the channel dimension and involves

a multi-layer perceptron (MLP) that learns to recalibrate
channel-wise features. The MLP consists of linear transfor-
mations followed by non-linear activations (ReLU), focusing
on channel-level details and aiding in better feature selection.
The SAM, on the other hand, concentrates on spatial atten-
tion. It first compresses the input using a channel pooling
mechanism. Subsequently, a basic convolutional layer pro-
cesses the compressed data to generate a spatial attention
map, which is then utilized to weigh the original features.
Channel-wise attention helps identify significant patterns
across various channels, emphasizing crucial image features.
Simultaneously, spatial attention facilitates the model’s focus
on crucial spatial regions, thus ensuring the precise cap-
ture of significant details. These modules work together to
selectively emphasize important color features, while also
considering the spatial interactions between them. By inte-
grating both channel-wise attention and spatial attention
maps, CBAM ensures that the model directs its attention
towards crucial features while maintaining the overall struc-
ture and consistency of the image. As a result, the CBAM
plays a crucial role in enhancing the colorization process by
guiding the attention of the model toward important image
features.

B. DISCRIMINATOR
In our proposed colorization model, we adopted the
PatchGAN [17] discriminator, which plays a crucial role
in enhancing the realism of colorization. The discrimina-
tor of PatchGAN operates at a localized level with small
patches within the images rather than in the entire image,
improving spatial coherence and facilitating high-resolution
colorization. In a practical implementation, the PatchGAN
discriminator is trained to differentiate between two distinct
categories: real patches extracted from the color images of
the GT and colorized patches generated by the model. The

number of filters starts with 64 in the initial convolutional
layer. Subsequent convolutional blocks use the doubled num-
ber of filters. This progression increases the number of filters
from 64 to 128 and subsequently from 128 to 256 in the
following convolutional blocks. In addition, the stride is set to
2 in each convolutional block, effectively halving the spatial
dimensions of the feature maps at each stride. This design
allows for effective feature extraction while progressively
reducing the spatial resolution in the network. The adversarial
framework motivates the generator to generate colors that
closely resemble actual images, whereas the discriminator
enhances its ability to differentiate between real and fake
outputs. Our model can enhance the realism and authenticity
of colorized outputs using the PatchGAN discriminator.

C. OBJECTIVE FUNCTION
Our colorization model’s ability to learn and get better is
largely the result of the different types of ‘‘loss’’ we’ve used in
the objective function. This combination includes adversarial,
perceptual, and Color Loss, each of which contributes dif-
ferently to improving the colorization process. The objective
function of the proposed network is defined as

Ltotal = λgLG + λ1LL1 + λpLp + λcLc (2)

where Ltotal is the final loss, and LG,LL1,Lp and Lc are the
adversarial, L1, perceptual, and Color Losses, respectively.
λg, λp, λ1, and λc in (2) are fixed and empirically set to {λg,
λp, λ1, λc}={0.1, 1000, 100, 100}, respectively. The loss
term LG represents adversarial loss. The Wasserstein adver-
sarial loss is used to resolve the vanishing gradient problem
and enhance the colorization process, and is defined as

LD = Exab
[
D

(
xab, x l

)]
− Eyab

[
D

(
yab, xL

)]
+ λ × GP

(3)

LG = −Eyab
[
D

(
yab, xL

)]
(4)

where LD and LG represent the discriminator and generator
losses, respectively. xab and yab represent the real and gen-
erated chrominance images, respectively. GP is the gradient
penalty (GP), xL is the input grayscale image that is passed
to the discriminator as a condition, E represents the expected
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value or mean, and λ is a hyperparameter denoting the weight
or coefficient for theGP term. In our context, theWasserstein
loss is a crucial part of our model’s training, guiding the
generator to create more realistic colorizations byminimizing
the difference between the distribution of generated and real
chrominance images.

In (2), Lc refers ‘‘Color Loss,’’ which is a particular metric
that measures difference between feature produced by the
Color Encoder and one from a pretrained VGG network. The
difference is calculated by L1 distance. The Color Loss based
on L1 distance is distinct from the LL1 loss mentioned in
the overall loss function of the model, which evaluates the
model accuracy in replicating real colors. Here L1 distance
is only used to quantify the difference between actual color
features (from pretrained VGG network) and generated ones
(from Color Encoder). The Color Loss measures the align-
ment between the learned color features and representations
obtained from the GT color images. Color Loss is defined
by (5).

Lc = E
∣∣∣∣∣∣Gf (

N
(
µ, σ 2

))
− VGG

(
xab

)∣∣∣∣∣∣
1

(5)

where Lc is the Color Loss while N (µ, σ 2) is the random nor-
mal distribution with mean µ = 0 and variance σ 2

= 0.1 and
Gf ,VGG are the functions for Color Encoder through which
random normal distribution is passed and pretrained VGG
network, respectively. We use a two-step process, initially
extracting features from the GT chrominance image using a
pretrained VGG network, and then comparing these features
with those generated by the Color Encoder, which receives a
random normal distribution as input, ensuring that obtained
color features closely resemble the GT.
LL1 is the conventional L1 loss defined as (6).

LL1 =

∣∣∣∣∣∣xab − yab
∣∣∣∣∣∣
1

(6)

L1 loss measures the accuracy of the colorization model
in replicating real colors. We also used perceptual loss to
evaluate the perceptual similarity between the colorized and
GT images. It leverages high-level features from a pretrained
VGG network to ensure that the colorized output captures the
overall structure, textures, and patterns of the real image. The
VGG loss can be defined by the rectified linear unit activation
layer of the pretrained VGG network, as in (7).

Lp =

∣∣∣∣∣∣ϕk (
xab

)
− ϕk

(
yab

)∣∣∣∣∣∣2
2

(7)

k denotes the layer index with 0, 1, 2, and 3, signaling
the layers from which features are extracted in the VGG
network and ϕk represents the features of the k-th layer of
the pretrained VGG network.

IV. EXPERIMENTAL RESULTS
A. IMPLEMENTATION DETAILS
The experiment was conducted using the PASCAL-VOC
dataset [33], which consists of 17,125 publicly available
images. The supplied images underwent a resizing pro-
cess, in which they were transformed to a resolution of

256×256 pixels using bilinear interpolation. The experiment
showed that scaling outperformed random cropping, owing
to the potential adverse impact of cropping on color learning.
The input images underwent normalization, resulting in their
values being adjusted to fall within the range of −1 to 1.
During the training process, the input images were split into
L and ab channels, with the L channel serving as the input
and the ab channel as the GT. We set 80% training, 10%
validation, and 10% testing sets, respectively, which are taken
from different image categories. The other methods were
trained on the same training set for fair comparison. The
epoch for training is set to 800, and the entire training takes
approximately 2.5 days with GeForce RTX 3090 GPU.

The ADAM optimizer was used in our experiment with
learning rates of 1 × 10.4 and 2 × 10.4 for the generator and
discriminator, respectively. The values for the exponential
decay rates β1 and β2 in the ADAM optimizer [34] were set
to 0.5 and 0.999, respectively. The training process involved
iteratively optimizing the generator and discriminator until
the network converged.

B. RESULTS AND DISCUSSION
We used a variety of well-established assessment metrics
including the Peak Signal-to-Noise Ratio (PSNR) [35], Struc-
tural Similarity Index (SSIM) [36], and colorfulness [37]
to thoroughly analyze the performance of the proposed
image colorization model. The Peak Signal-to-Noise Ratio
(PSNR) is a commonly used metric in image coloriza-
tion that measures the accuracy of colorized images by
calculating the ratio between the maximum possible pixel
value and mean-squared error between the generated chromi-
nance image and the corresponding GT chrominance image.
A higher PSNR signifies a higher degree of similarity in pixel
values, indicating improved image quality. The Structural
Similarity Index (SSIM) is a perceptual metric used to assess
the degree of structural similarity between colored images
and their corresponding GT. This assessment considers lumi-
nance, contrast, and structure, thereby providing a more
human-centered evaluation of the visual fidelity. SSIM is a
metric that quantifies the similarity between two images in the
range of -1 to 1, where a value of 1 indicates a perfect match
between the images. We computed PSNR and SSIM values
with the resulting chrominance images (ab channel) and their
corresponding GTs (ab channel). This approach evaluates
the quality of colorization with a focus on the chrominance
aspect, which is a key component of the color informa-
tion, and provides a comprehensive assessment that fully
incorporates color information when comparing the perfor-
mance of different image colorization methods. The metrics
of PSNR and SSIM are valuable in this context as they are
well-established metrics for quantifying image quality, and
they allow for a quantitative comparison of our method with
existing techniques. PSNR and SSIM, designed for grayscale
images, are commonly usedmetrics for assessing colorization
models. Despite their original intent, they effectively capture
key aspects of image quality, providing valuable insights into
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FIGURE 4. Visual results and comparisons.

the fidelity of colorized outputs. However, the colorfulness
metric [37] is used to measure the color diversity and sat-
uration of an image. A colorfulness metric [37] quantifies
the level of colorfulness using colorized images and mea-
sures the degree of saturation and vividness exhibited by
the colors present in the images. Higher values indicate that
the colorized images demonstrate a greater abundance and
intensity of color. The colorfulness of an image is computed
by evaluating the standard deviation of its color channels.
A higher standard deviation implies more color diversity and,
hence, higher colorfulness.

The △Colorfulness metric is also proposed to allevi-
ate the drawback of the colorfulness metric, which could
favor vibrancy over realism and accuracy, and quantifies
the difference in colorfulness values between the output and
GT images. △Colorfulness is obtained by calculating the
absolute difference in the colorfulness values between out-
put and GT images and quantitatively measures how much
the perceived colorfulness changes between these images.
A lower△Colorfulness value indicates a higher level of color
accuracy.

The performance of the proposed image coloriza-
tion model was compared with that of a comprehen-
sive set of seven state-of-the-art colorization models:
CIC [8], Deoldify [18], Image colorization with CBAM
(ICCBAM) [39], Pix2Pix [17], BigColor [22], InstColor [16],
ChromaGAN [19], ColTran [25], and CT2 [26]. Table 1
presents a quantitative comparison between the proposed

model and the other models. As shown in Table 1, our
proposed method demonstrated significantly improved per-
formance compared with other methods in terms of PSNR
values, with higher similarity to the original color images.
The capacity of the model to replicate the structural attributes
of real images with perceptual accuracy was further high-
lighted using SSIM.

Desaturation, which causes muted or less vibrant colors,
can be mitigated by integrating the proposed Color Encoder.
The Color Encoder effectively incorporates the learned color
features into the network at the bottleneck, enhancing the
intensity and vibrancy of the generated colors. Furthermore,
color bleeding, where colors can inadvertently spread beyond
object boundaries, can be resolved by integrating the CBAM.
The CBAM attention mechanism operates at the bottleneck
of each layer in the encoder part, allowing the model to
focus on local and global features. The selective attention
of CBAM helps confine colorization to appropriate regions,
significantly lowering the bleed effect with accurate and
realistic colors. With the help of these strategic integrations,
our model demonstrates improved color accuracy and realism
while effectively reducing desaturation and color bleeding,
as shown in Figure 4.

Our proposed method has a lower △Colorfulness value
than existing state-of-the-art models, indicating that the out-
puts of the proposed method are more coherent to GTs.
The obtained value indicates that our colorizations achieve a
better balance between color intensity (vibrance) and realism.

132818 VOLUME 11, 2023



H. Shafiq, B. Lee: Image Colorization Using Color-Features and Adversarial Learning

TABLE 1. Quantitative comparison.

FIGURE 5. Failure cases of the proposed method.

Although some models obtained very higher colorfulness
scores with rare and vivid colors such as ICCBAM, the output
images appeared to be overly saturated and unrealistic as
shown in Figure 4. In contrast, our method achieves a lower
△Colorfulness value, as shown in Table 1, indicating that our
proposed model can produce outputs that closely resemble
real-world GT image color perceptions. This result highlights
that our model tends to make colorized images appear both
realistic and visually appealing. This strikes a good balance
between the two, so the colors look real, and the images are
pleasing to the eye.

Figure 4 presents the visual results and comparisons of
the proposed colorization model with other state-of-the-art
methods. As shown in Figure 4, the outputs of our proposed
network achieved more naturalness and realism, which is
noticeable in the fourth row of Figure 4, where our method
shows natural colors in numbers on a t-shirt. In contrast,
the other models struggle with the task of colorization and
do not achieve the same level of precision. BigColor shows
oversaturation in the output color images, resulting in an

exaggerated and unrealistic visual appearance. In comparison
to the Pix2Pix architecture, which also employs a GAN-based
approach and utilizes a U-Net as the generator, our proposed
architecture shares similarities but notably demonstrates
improvements in mitigating undersaturation as shown in
Figure 4. CT2 also showed artifacts, such as bleeding
artifacts. Moreover, CT2 and ColTran were oversaturated.
In contrast, our proposed method achieves a delicate balance
between vividness and accuracy in the output images. The
output images from the proposed method have a higher level
of realism and effectively preserve a vivid quality that is
similar to the actual colors of the GT.

From Table 1 and Figure 4, it is evident that the pro-
posed method demonstrates an exceptional performance in
generating colorized images that exhibit a blend of realism
and naturalness. The proposed method achieved superior
performance compared with other techniques in precisely
representing the fundamental characteristics of colors and
effectively displaying both vivid and accurate colorizations.

C. ABLATION STUDIES
Ablation studies were performed to investigate the impact of
two key elements (Color Encoder and CBAM modules) in
our image colorization model. To evaluate the effect of the
Color Encoder and CBAM modules, the model was trained
and tested using two turning-on/off modules. Table 2 presents
the results of these ablation studies.

The ‘‘Base’’ model, which turns off CBAM and the Color
Encoder, shows relatively lower performance for multiple
metrics. The model only with Color Encoder (‘‘A’’ model) by
turning-off CBAM shows improvement in PSNR and SSIM
with worse Colorfulness.

The model with only CBAM by the turning-off Color
Encoder shows a similar improvement as case A. However,
our proposed method surpasses these variants, indicating its
capacity for superior image colorization quality.

This observation indicates that the inclusion of the CBAM
has a notable impact on enhancing the attention mechanism
of the model, leading to improved precision in the gener-
ated outcomes. In addition, the Color Encoder significantly
enhances the realism and colorfulness of images by capturing
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TABLE 2. Ablation studies.

TABLE 3. Effect of the color encoder on the other colorization methods.

and incorporating essential color features. This performance
improvement is attributed to the ability of the Color Encoder
to extract and integrate crucial color information, which
enriches the colorization process and results in more realistic
and vibrant colorized images.

To investigate the efficacy of the Color Encoder, we per-
formed experiments by adding the Color Encoder in the
Pix2Pix and ChromaGAN frameworks. Table 3 shows the
effect of the Color Encoder on other colorization methods.
As shown in Table 3, the Color Encoder leads to improve-
ments in terms of PSNR, SSIM, and Colorfulness when it
is integrated into both methods. The improvement is more
noticeable in Colorfulness and △Colorfulness for the meth-
ods, highlighting the effect of Color Encoder in creating
more vibrant and visually appealing colorized images. These
results indicate that the Color Encoder can improve the col-
orization performance even for the other method as well as
our proposed method.

Despite the promising results, our proposed colorization
model often shows failure cases in a specific condition.
Figure 5 shows the examples. The proposed model shows
color bleeding and incoherent color allocations with complex
or cluttered scenes for the object boundaries and shows hal-
lucinated details and unsaturated colorization for low-light
images with faded contents or less context information. These
failure cases underline the necessity for further enhance-
ments, particularly in discerning complex scenes and refining
the adaptation of colors in faded images.

V. CONCLUSION
This study introduces a novel image colorization model that
utilizes a deep learning approach to generate accurate and
realistic colorized images. The proposed model incorpo-
rates a proposed Color Encoder and CBAM module into a
CWGAN architecture, yielding compelling results in both
quantitative and qualitative evaluations. The effectiveness of
the proposed model is demonstrated through experimentation
and evaluation. The incorporation of Color Loss into the
comprehensive objective function allowed the generation of
colorizations that demonstrated both a strong resemblance
to GT images and a perceptual appeal aligned with human

visual perception. The significance of the proposed Color
Encoder and CBAM module in producing precise color
details and emphasizing important features was demonstrated
through ablation studies. In conclusion, the proposed image
colorization model outperformed state-of-the-art methods by
producing colorized images that were both visually appealing
and realistic.
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