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ABSTRACT Inferring gaze targeting or gaze following is an effective approach for comprehending human
behavior and intentions. This paper employs a non-intrusive appearance-based tracking technique, utilizing a
binocular stereo vision camera to capture the face image and head pose to address errors caused by problems
such as the disappearance of the eye image and head deflection occlusion in image capture. Each gaze
direction is determined based on a single image frame. To improve the classification and detection of the gaze
target region by effectively handling head motion and view direction, this paper proposes a hybrid structure
for the Swin Transformer gaze target region classification method. The facial image features are extracted
using both the ResNet50 model and the Swin Transformer model, followed by fusing head pose features
to categorise the gaze target area. The study also compares the classification effects of various structural
models. The analysis of the results demonstrates that the hybrid Swin Transformer model outperforms in
classifying and detecting the gaze target region, achieving an accuracy rate of 90%. Finally, the research
examines the gaze of flight trainees during flight missions by using a heatmap, which lays the groundwork
for future analyses of pilot attention and operational intentions during flights.

INDEX TERMS Gaze estimation, swin transformer, computer vision, region classification.

I. INTRODUCTION
Due to the rapid development in the fields of computer
vision and artificial intelligence, the success and widespread
adoption of deep learning have greatly enhanced the per-
formance of eye-tracking [1], [2]. Researchers’ interest in
understanding and simulating the human visual system is
growing. Accurate classification and detection of gaze target
regions [3] are vital to achieve highly intelligent automation
systems in numerous application domains. This challenge
involves identifying specific regions of interest within images
and videos where an observer’s focuses their attention. These
regions usually contain critical information about the scene
or objects captured in them. However, head movements
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are complex, environmental factors are unstable, and minor
changes in viewing angles or head positions can cause sig-
nificant alterations in the appearance or gaze direction of
the eyes. In situations where severe head and eye rotations
occur during image capture, techniques based on Convolu-
tional Neural Networks (CNN) may be adversely affected
[4], resulting in the loss of eye images during image capture.
Existing methods for gaze target classification still have cer-
tain limitations when addressing these challenges.

Eye-tracking technology and gaze target area estimation
are closely related, and commonly utilised in eye-tracking
research and human-computer interaction. Eye-tracking tech-
nology [5] provides ameans of collecting eyemovement data,
while gaze target area estimation [6] is amethod for analyzing
this data to obtain information about user visual attention.
Combining gaze tracking technology with gaze target area
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estimation technology can help us gain insights into a pilot’s
visual behavior in specific tasks or situations.

This study aims to introduce a non-invasive appearance-
based tracking technique [7] for acquiring eye-tracking data
and a novel gaze target area classification method based
on a hybrid Swin Transformer to improve the accuracy of
gaze target area classification and detection. The hybrid Swin
Transformer is a deep learningmodel that inherits the residual
structure of ResNet50 [8] and the local perception capability
of Swin Transformer [9], organically combining the two. This
model exhibits exceptional performance when processing
image information, particularly in addressing changes in head
posture and gaze direction, making it uniquely advantageous.
In this paper, we conduct research using an appearance-based
gaze tracking approach, utilizing a binocular stereoscopic
vision system to acquire facial images and head postures. Fea-
ture extraction and fusion are performed on facial images and
head postures obtained from different cameras, and the hybrid
Swin Transformer model is employed for the classification
of gaze target areas on the cockpit instruments of pilots. This
research aims to improve pilot-human interaction efficiency
and the accuracy of pilot gaze tracking while laying the foun-
dation for further exploration of pilot attention mechanisms.

In this paper, we will delve into a discussion of the princi-
ples of non-intrusive appearance-based tracking technology
and the hybrid Swin Transformer. We will also explore how
to apply these principles to gaze target area classification,
including the methods for integrating gaze target area esti-
mation to determine the user’s points of visual interest. This
will aid in gaining a better understanding of user attention
allocation in various tasks and scenarios. Furthermore, our
research will focus on an appearance-based gaze-tracking
approach, utilizing a binocular stereoscopic vision system to
capture facial images and head postures. Additionally, wewill
introduce how to fuse facial image features and head posture
information to enhance the performance of classification and
detection. Lastly, we will present experimental results and
performance analysis, demonstrating the exceptional perfor-
mance of the hybrid Swin Transformer model in gaze target
area classification tasks.

Our main contributions are as follows:
• We propose a hybrid model algorithm of ResNet50 and

Swin Transformer, which is used to classify the gaze target
area and construct a data set of the flight cadets ’ gaze target
area during the simulated flight.

• We compared and analyzed the classification results of
the Swin Transformer, Vision Transformer, ResNet50+ Swin
Transformer, and ResNet50 + Vision Transformer and the
classification results with or without head posture.

• We propose to use the heat map to analyze the fixation of
the flight cadets in the current flight scene, which paves the
way for the subsequent pilot’s attention evaluation.

The structure of this article is as follows:
• In the first section, we discuss the background and related

work on non-intrusive appearance-based gaze tracking tech-
nology and gaze target area estimation;

• In the third section, we introduce the composition of
the data set, the principles of the VIT model, ResNet model,
and Swin Transformer model, as well as the gaze target
area classification method based on the ResNet50 and Swin
Transformer hybrid model;

• In the fourth section, we compare and analyze the clas-
sification effect of the model and the visual display of the
experimental results;

• In the fifth section, we summarize the research conclu-
sions and present future research ideas.

II. GUIDELINES FOR MANUSCRIPT PREPARATION
A. BASED ON NON-INVASIVE APPEARANCE GAZE
TRACKING TECHNOLOGY
Gaze tracking technology is a technology aimed at under-
standing user intent and interests [10], focusing on the
relationship between image data and gaze direction. Gaze
tracking technology has a wide range of applications in vari-
ous fields, including human-computer interaction [11], [12],
medical diagnosis [13], defense and military [14], aviation
safety [15], traffic safety [16], [17], [18], virtual reality [19],
[20], biosecurity [21], and more. Gaze can be considered
one of the behaviors that reflect human attention. Especially
in the military domain, gaze tracking technology, as a cru-
cial indicator for assessing pilot attention, holds significant
importance. The study of pilots’ gaze behavior is of great
significance in this context.

Gaze-tracking technology has matured over several
decades of research [22] and is broadly categorized into inva-
sive and non-invasive systems. Intrusive systems are highly
accurate but inconvenient. Non-invasive systems capture
facial images through cameras and use computer vision and
machine learning algorithms to estimate the direction of gaze,
which is more comfortable and has broad prospects. Method
research on gaze tracking technology is mainly divided
into feature-based methods and appearance-based methods.
The feature-based method [23] generally uses Purkin spots
obtained by corneal reflection to detect pupils. This method
establishes a line-of-sight point model. Although the error is
small, it is too dependent on the light source and has a cum-
bersome calibration process. The appearance-based method
[7] mainly uses human eyes or facial images as input, estab-
lishes a mapping model between features and gaze direction,
and outputs the gaze direction. This method is simple in
design, low in cost, and highly robust. We will consider using
appearance-based methods for research in this article.

We will conduct a study from the perspective of
non-invasive gaze tracking technology and review recent
advances in non-invasive gaze tracking technology.
Naqvi et al. [24] proposed a deep learning-based gaze detec-
tion method using near-infrared camera sensors that do not
require initial user calibration. It extracts facial and dual-eye
images to obtain gaze features. This method is used for driver
gaze classification and exhibits good accuracy. However,
errors may arise when head and eye rotation cause one eye
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to disappear. Yiu et al. [25] employed a Fully Convolu-
tional Neural Network (FCNN) to segment the pupil region,
improving gaze estimation accuracy, though lacking in head
pose research. Cheng et al. [26] introduced the FARE-Net
model, which uses facial and eye images to predict 3D gaze
direction for both eyes, adapting strategies adaptively. How-
ever, its effectiveness is limited under low-light conditions
and head rotation. Wang et al. [23] employed random forest
regression to learn the mapping between deep features and
gaze coordinates, achieving good performance but lacking
real-time driver tracking capability. Sayeed et al. [27] pro-
posed a system that can detect eye and head movement
during reading, using pupil-iris detection for eye position
and nose tip detection for head orientation. However, this
system has issues with the precision of head and eye posi-
tion. To address issues related to head pose differences and
occlusion, Dai et al. [28] introduced a gaze-tracking method
based on binocular feature fusion and convolutional neural
networks. It uses left and right eye images and facial infor-
mation as input, with experimental results showing superior
performance with binocular feature fusion.

Cazzato et al. [29] discussed the significant advancements
in the field of gaze tracking brought about by computer
vision and machine learning. They proposed a new classifi-
cation system and highlighted that computer vision has made
gaze-tracking systems increasingly precise, but evaluating
them using a single metric is quite challenging. In this paper,
to mitigate errors caused by eye image disappearance and
head deviation leading to occlusion, we first employed the
approach presented by George et al. [30]. However, we did
not extract left and right eye images separately; instead,
we captured facial images using left and right cameras.
Subsequently, we incorporated the binocular feature fusion
method proposed by Dai et al. [28]. We further refined this
approach and assessed gaze tracking using multiple metrics.
Specifically, we introduced the fusion of left and right facial
features with head pose features as inputs to our model. This
model tracks the pilot’s gaze and outputs the corresponding
gaze target region number on the cockpit instruments.

B. ESTIMATION OF THE GAZE TARGET
Gaze target area estimation analyzes the gaze pattern of
human eyes to determine the target area they focus on. This
technology is mainly based on the working principle of the
human visual system. By tracking eye movements and gaze
points, it can infer the distribution of attention of the human
eye when observing a scene. This method uses cameras or
other sensors to track the position and movement of the eyes.
It determines the gaze target area by analyzing features such
as faces, pupils, or eyeballs.

In the context of estimating gaze targets, Chong et al. [31]
introduced a multi-task learning approach and neural archi-
tecture. This approach explicitly represents gaze direction
and processes gaze targets to estimate the general areas
of visual attention in images by the general population.

Recasens et al. [32] proposed a deep neural network-based
gaze tracking method to predict objects that might be
observed in a scene, achieving high estimation accuracy.
While this method is also applicable to detecting gaze targets
for multiple individuals, it is limited to cases where both
the person and their gaze target appear in the same image.
To address this limitation, Recasens et al. [33] introduced
cross-frame gaze target detection for videos, allowing indi-
viduals and their gaze targets to appear in different video
frames. We conduct research by collecting real-time face
images of student pilots when they gaze at the target area
during simulated flight and using a hybrid Swin Transformer
model to estimate the gaze target area. Regarding driver
attention, Hu et al. [34] used low-level features, static visual
saliency maps, and dynamic optical flow information as input
feature maps. They combined high-level semantic descrip-
tions with gaze probability maps transformed from gaze
directions to propose a data-driven, multi-resolution neural
network suitable for estimating driver attention. Hu et al.
[35] extended gaze target estimation from 2D images to 3D
space to infer the driver’s 3D gaze targets. They use head
pose encoding, scene images, and facial images as inputs
to generate predicted 3D gaze vectors and predicted gaze
heatmaps as outputs. Personalized driver gaze area estimation
systems have seen significant improvements, but a general
gaze area estimation framework that is invariant to different
subjects, viewpoints, and scales is still lacking. In the con-
text of human-target interaction, Hu et al. [36] introduced
interactive attention to investigate gaze target estimation.
They utilized a visual-spatial map to analyze the interac-
tion probabilities between individuals and targets within a
scene. Chakraborty et al. [6], following their introduction of
image segmentation and facial feature detection techniques,
employed deep learning architectures to analyze eye move-
ments and gaze estimation. They then applied these models
to robotic systems for the calculation of visual attention for
tasks such as reading, browsing, and writing.

In their study, Vora et al. [16] employed Convolutional
Neural Networks to classify gaze areas from different sub-
jects and various viewpoints, comparing the effectiveness of
using different facial image components as input strategies.
In contrast, in our research, we didn’t rely on scene images to
obtain head pose information but rather computed head pose
through mathematical calculations. We divide the cockpit
interface into eight regions as gaze target areas and segment
the captured scene images to obtain the current facial image.
We use the improved Swin Transformer model to learn the
mapping from head posture and face images to the gaze
direction of the flight cockpit interface. This method was
used to estimate where the pilot directed their gaze during the
flight, and the resulting heatmap was visually presented. The
heatmap represented the interaction probabilities between
the pilot and all areas within the cockpit scene, effectively
highlighting the objects currently interacting with the pilot.
We leveraged this heatmap to analyze the areas of particular
interest to the pilot during flight tasks and to study their gaze
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patterns toward the target areas. This analysis forms the basis
for subsequent investigations into the pilot’s attention and
operational intent during the flight process.

III. EXPERIMENTS AND METHODS
In the context of a simulated flight task, this paper uses
a non-invasive appearance-based gaze tracking technique
as the research methodology to enhance the efficiency of
human-machine interaction for pilots and the accuracy of
tracking their gaze. The objective is to investigate the pilot’s
gaze direction during the flight task and estimate their focus
on specific areas within the flight cabin. As depicted in
Figure 1, it illustrates the coordinate system of the pilot’s
head position and gaze direction. In this coordinate system,
the parameters (p, y, r) correspondingly represent different
orientations of the head, signifying the pitch angle, yaw angle,
and roll angle, respectively. Furthermore, (x, y, z) indicates
the position of the center of the face relative to the camera
axis origin, and the point at which the pilot’s gaze intersects
the screen is referred to as the fixation point.

FIGURE 1. Gaze tracking system.

A. EXPERIMENTAL EQUIPMENT AND
EXPERIMENTAL TASKS
1) EXPERIMENTAL EQUIPMENT
This article uses a six-axis simulated flight platform as the
environment, as shown in Figure 2. The simulated flight
platform is equipped with a three-screen spliced display,
which can provide subjects with more realistic visual effects.
In addition, this article adds a binocular camera and an illumi-
nation source to the simulated flight platform. The binocular
camera is used to capture the subject’s facial image during
the flight task, and the lighting source is used to increase the
visibility of the subject’s pupils.

In-flight experiments, the cockpit instrument areas of pri-
mary interest to pilots are primarily centered around the
central display. We have divided the instrument area of the
flight cockpit into eight distinct gaze regions, primarily cat-
egorized as interior and exterior areas, as shown in Figure 3.
The interior regions are numbered 1 to 5, corresponding to the
landing gear, airspeed indicator, altimeter, attitude indicator,
and heading indicator areas, respectively. The exterior regions

FIGURE 2. Six-axis model flight platform.

FIGURE 3. Flight cockpit annotation target area division.

TABLE 1. Flight mission requirements.

are numbered 0, 6, and 7, corresponding to the Head-Up
Display (HUD), left exterior, and right exterior areas.

2) EXPERIMENTAL TASKS
The simulated flight experiment course is the descending
flight training of the cruising aircraft on the five-sided route.
The experimental route of the five-sided cruising take-off
and landing is shown in Figure 4. The task defined four
waypoints. The subjects started from point A of the runway
and completed a five-sided flight around four waypoints and
five routes. The five-sided mission requirements are shown
in Table 1. The subjects were required to maintain the correct
altitude, heading, and other flight tasks during the basic take-
off, landing, and cruise phases.
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FIGURE 4. Five-sided cruise take-off and landing experimental route.

B. DATA COLLECTION AND PROCESSING
1) DATASETS
The data set was obtained by recruiting 10 flight cadets
(4 females, 6 males, 24-26 years old) with healthy eyes in
the laboratory. The recruited flight cadets, familiar with flight
safety standards and procedures, have undergone guidance
and training from professional pilots at the flight academy
and have earned recognition from these professionals. Cur-
rently, the flight cadets possess proficient skills in flight
take-off and landing tasks and can fulfill the requirements
of the five-sided flight experiment. All flight attendants have
agreed to participate in this research work. A complete five-
side simulated flight experiment lasts about 40 minutes. The
acquisition program synchronously collects the face images
of the subjects after they gaze at the target area during the
simulated flight. To avoid not detecting the complete face
image and ensure the quality of the face image, the acquisition
programwill automatically discard the incomplete face image
and the blurred face image by judging. The face image data
set of the eight types of flight cockpit gaze areas is shown
in Table 2. The total data set is 44353 images. To minimize
the risk of potential data leakage during the training pro-
cess, we implemented a strategy involving random splitting
and identifier separation. Firstly, we thoroughly shuffled the
acquired images and their corresponding labels to ensure
the randomness of the data. Subsequently, while dividing
the dataset, we assigned an identifier of 0 to undivided data
and changed the identifier to 1 for the already split data.
Using this strategy, we divided the entire dataset into two
parts: 80% of the data as the training set, which consists of
35482 images, and the remaining 20% as the test set, com-
prising 8871 images. This process was strictly controlled to
ensure no conflicting data between the training and test sets.
The purpose of this data-splitting method is to ensure that the
model can genuinely assess its performance during the testing
phase, thereby making more accurate predictions for real-
world applications. Through this approach, we can conduct
model evaluation and predictions more reliably, reducing
the risk of overly optimistic predictions caused by data
leakage.

TABLE 2. DataSets composition.

FIGURE 5. Checkerboard calibration diagram.

2) IMAGE PROCESSING
To avoid the distortion of the image, we calibrate the
binocular camera, as shown in Figure 6. The distorted
image captured by the binocular camera is corrected.
We use the Zhengyou Zhang calibration method [37], using
a two-dimensional planar calibration board composed of
checkerboards. Multiple calibration board images of the
binocular camera at different angles and different orientations
are collected, and the internal and external parameters of the
camera are calculated by the corner points of the checker-
board. The checkerboard images of different angles are
shown in Figure 5. We use the checkerboard as a calibration
board to handle complex three-dimensional environments.
To obtain multi-dimensional coordinate information, we use
different angles and different directions to capture chessboard
images.

In binocular camera calibration, we use reprojection
error as the evaluation criterion of calibration results. The
re-projection error is the error pixel between the projected
point (theoretical value) and the measurement point on the
image, as shown in Figure 7. We control the re-projection
error pixel within 0.15, select 23 valid calibration board
images, and screen out the calibration board with a large re-
projection error.

After calibrating the binocular camera, we obtain the
internal and external parameters of the binocular camera.
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FIGURE 6. Binocular camera calibration.

FIGURE 7. Reprojection error.

FIGURE 8. Comparison of face images before and after correction.

We correct the binocular camera images using the calculated
camera rotation and offset matrices, in-camera parameters,
and radial and tangential distortion parameters. The image
before correction is shown in Figure 8 (a), and the image after
correction is shown in Figure 8 (b).
Bulat and Tzimiropoulos [38] use a face alignment method

based on deep learning to detect facial key points and
effectively identify facial contours in different orientations
and postures. The excellent performance of this method
led us to choose to use the model method proposed by
Bulat et al. to detect and recognize the corrected 2D face
images and to segment and extract the facial image simul-
taneously. The facial image results after segmentation and
extraction are shown in Figure 9.

3) HEAD POSE ESTIMATION
Head pose estimation is the process of determining the
three-dimensional orientation or direction of a human head
using computer vision techniques. Head pose data typi-
cally includes information about the position, orientation,

FIGURE 9. Facial figure.

and posture of the head. The size and categories of this
data may vary depending on the specific methods used for
data collection and processing, typically covering positional,
directional, and postural data. We determine the head pose by
analyzing the position and orientation of the face, primarily
obtaining positional data for the head pose. This data com-
prises the pitch, yaw, and roll angles, representing the head’s
rotation relative to the horizontal plane in three-dimensional
space, namely the coordinates of the head in 3D space. The
categories of head pose data typically include actions such as
turning the head, tilting it up, tilting it to the side, or lowering
it, among others. Different head poses categories correspond
to different head positions. In this paper, the head pose data
we integrate primarily consists of three-dimensional posi-
tional data. When inputting head pose data into a neural
network, it is converted into a tensor format, and the dimen-
sions may vary based on the network architecture and task
requirements.

To perform head pose estimation, the binocular camera
first needs to be calibrated to obtain accurate camera param-
eters. Next, we can leverage the Dlib library, as Dlib is a
popular open-source face recognition library and a toolkit
for modern machine learning, computer vision, and image
processing. This library provides a range of tools and mod-
els for face analysis, including face detectors and keypoint
detectors. The face detector is used to locate the position of
faces in the image, while the landmark detector is employed
to detect facial features such as the eyes, nose, and mouth.
By combining face detection and key point detection models,
we calculate the positions and spatial relationships of key
feature points on the face. This enables us to infer the rotation
and tilt angles of the head, facilitating head pose estimation.

Accurate head pose estimation enhances the precision of
gaze tracking and compensates for gaze offset. Camera cal-
ibration and the facial detection and key point detection
capabilities of the Dlib library can provide relatively precise
and stable results for head pose estimation. Therefore, we can
accurately achieve head pose estimation and compensate for
gaze offset. As shown in Figure 10, we identify specific facial
landmark points and determine the orientation of different
head poses. This allows us to calculate the pitch, yaw, and
roll angles of the subject’s head posture in the current frame.
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FIGURE 10. Head posture.

FIGURE 11. Hybrid model of gaze target region classification.

C. HYBRID MODEL
The gaze target region classification hybrid model proposed
in this paper is shown in Figure 11.We first calibrate and crop
the original image, use the face image with a size of 224 ×

224 as the input of the model, and use the ResNet50 model to
extract the features of the face image. Then we compare the
classification results of the dataset in the pure Vision Trans-
former and the pure Swin Transformer models. The findings
indicate that the Swin Transformer model performs better
in classifying the gaze target area. Therefore, we combine
the face image features extracted by Swin Transformer, the
features extracted by ResNet50, and the head pose features.
This combination is used for classifying and detecting the
gaze target area, and we analyze the performance of the
hybrid model.

1) RESNET
Traditional CNN stacks a series of convolutional and down-
sampling layers. However, as the network becomes deeper,
problems like vanishing or exploding gradients and degra-
dation arise. To address these issues, the ResNet model was
introduced. It uses BatchNormalization (BN) layers to handle
the vanishing or exploding gradient problem and proposes
the residual structure to alleviate degradation. In this study,
we adopt the ResNet50 architecture to extract facial image
features and head pose features, as shown in Figure 12.
The ResNet50 model structure takes the original human

face image as input. Firstly, the image size is changed to
112× 112 by convolution operationwith a convolution kernel
of 7 × 7 and step size of 2. After each layer of convolution,
the BN layer is connected to solve gradient disappearance
or gradient explosion. The four Block blocks are residual
structures with a different number of convolution kernels.

FIGURE 12. ResNet50 model structure diagram.

The first layer of each residual structure block is a 1 ×

1 convolution kernel, which is used to compress the channel
dimension. The second layer is a 3 × 3 convolution kernel.
The third layer is a 1 × 1 convolution kernel to restore the
channel dimension. The size of the first layer convolution
kernel on the main branch of the residual structure is the same
as that of the second layer, and the number of convolution
kernels in the third layer is four times that of the first layer.

The residual structure can be divided into a dashed-line
residual structure and a solid-line residual structure. In the
dashed-line residual structure, there is a 1 × 1 convolutional
layer in the shortcut branch, and the number of convolu-
tional filters in this layer is the same as that in the third
convolutional layer of the main branch. The dashed-line
residual structure serves the purpose of adjusting the size
of the input feature matrix. It achieves this by adding the
output feature matrix from the shortcut branch to the out-
put feature matrix from the main branch, ensuring that the
input and output feature matrix sizes are the same. In the
solid-line residual structure, the symbol ‘‘×N’’ indicates that
the solid-line residual structure block is repeated N times.

2) VISION TRANSFORMER
Since the emergence of deep learning, CNN has been the
mainstream model in the field of Computer Vision (CV) and
has achieved good results. In contrast, the Transformer [39]
model based on self-attention structure has shone in the field
of Natural Language Processing (NLP). The Transformer
model has a milestone significance in NLP but has been
limited in its application in the computer vision domain.
However, with further research, the Transformer architecture
has started to be applied to computer vision tasks. In 2020,
Dosovitskiy et al. [40] proposed a fully self-attention-based
image classification model called Vision Transformer (VIT),
which became a significant breakthrough in computer vision
technology. The results demonstrate that the Transformer is
indeed effective in the CV domain and yields impressive
performance.

We have also conducted a comparative analysis of the
performance of the hybrid VIT model, as shown in Figure 13.
In this model, the feature map output from the ResNet50
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FIGURE 13. VIT-B/16 model diagram.

model is used as input, denoted by set F = {fi}Ni=1, where
fiϵRC×H×W represents the i-th feature map, and C,H ,W
represents the number of channels, height, and width of the
feature map. Integrating the VIT-B/16 model, as depicted
in Figure 13, we employ the deconvolution function Con-
Transpose2d from the PatchEmbedding layer of the VIT-B/16
model to transform the image data. The kernel size is set
to 8, and the stride is set to 1, resulting in the resizing of the
image data to 14× 14 × 768. Simultaneously, the height (H)
and width (W) dimensions are flattened for further process-
ing. Firstly, each image is divided into m blocks xiϵRC×P×P

according to the specified size, where P represents the dimen-
sion of each block and m = HW/p2. Then, the image block
sequence is projected into a D-dimensional vector space
through a learnable embedding matrix EϵR(P

2C)×D by linear
mapping. Simultaneously, the position information of each
block in the original feature map is re-encoded to obtain the
position embedding EposϵR(m+1)×D. It is then connected in
series with a Class token xtoken dedicated to classification,
where xtoken is a trainable parameter with a vector data format.
xtoken is stitched together with tokens generated in the image,
where tokens = {x iE}

m
i=1, together with Position Embedding,

is embedded in Epos to form the final embedded image block
sequence z0, that is:

z0 = [xtoken;x1E;x2E; . . . ;xmE] + Epos (1)

The embedded image block sequence is sent to the VIT-
B/16 encoder, as shown in Figure 13. and stacked L times
repeatedly. Firstly, through the LayerNorm, each sample
is normalized on the same feature dimension to improve
the training speed and performance of the model. Then,
further processing is performed using the Multiheaded Self-
Attention (MSA) mechanism, which is represented as shown
in Formula (2).

MSA (z) = MSA (Q,K ,V )

= Concat(Head1,Head2, . . . ,Headh)wo (2)

where Concat() denotes stacking in the form of column vec-
tors, and Head i denotes:

Head i = Attention(QWQ
i ,KWK

i ,VWV
i )i= 1, . . . ,h (3)

FIGURE 14. Swin Transformer model diagram.

where WK
i ϵRD×dk ,WV

i ϵRD×dv ,W oϵRhdv×D, and dk = dv =

D/h.
After obtaining the Qi, Ki, Vi parameter corresponding to

each Head i, the softmax processing is performed for each
Head , as shown in formula (4).

Attention(Q,K ,V ) = softmax(
QKT
√
dk

)V (4)

Because the value after the multiplication of point QKT

is very large, the gradient becomes very small after passing
through point softmax. To make the gradient more stable,
it needs to be divided by

√
dk for scaling.

Secondly, the Multilayer Perceptron (MLP) adjusts the
number of input nodes to four times using the first fully
connected layer. Then, it restores the number of nodes using
the second fully connected layer and combines the GELU
activation function to expedite model convergence and miti-
gate the gradient disappearance problem during training. The
MSA and MLP processes are shown in formula (5) and (6).

z′l = MSA(LN (zl−1)) + zl−1 l = 1, . . . ,L (5)

zl = MLP(LN (z′l)) + z′l l = 1, . . . ,L (6)

Finally, through the MLP Head block, we get our final
classification result of the gaze target area.

3) SWIN TRANSFORMER
The Swin Transformer [9] model is a deep learning architec-
ture based on the Transformer model, which is mainly used in
computer vision tasks. Swin Transformer has achieved state-
of-the-art performance in various benchmarks, surpassing
traditional CNN and previous Transformer-based models in
many cases. By comparing the VIT-B/16 model, we find that
the Swin Transformer model has a slightly better classifica-
tion effect in the gaze target area. The comparison between
VIT and Swin Transformer is shown in Figure 15. Similarly,
our target gaze region classification hybrid model takes the
feature map output by the ResNet50 model as input and com-
bines the Swin Transformer model to obtain the classification
results. The Swin Transformer model is shown in Figure 14.

The Swin Transformer model first inputs the feature map
into the Patch Partition module for partitioning and then
performs a linear transformation on the channel data of
each pixel through the Linear embedding layer. Next, four
Stages are used to construct feature maps of different sizes.
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FIGURE 15. Swin Transformer hierarchical feature map.

The × N in the Stage indicates that the structure block is
repeated N times. Except that Stage 1 first passes through a
Linear Embedding layer, the remaining three stages are first
down-sampled through a Patch Merging layer. Subsequently,
the Swin Transformer Block is stacked repeatedly, one using
the Windows Multi-head Self-Attention (W-MSA) structure
and the other using the Shifted Windows Multi-Head Self-
Attention (SW-MSA) structure. MSA and W-MSA as shown
in Formula (7) and (8).

� (MSA) = 4hwC2
+ 2(hw)2C (7)

� (W −MSA) = 4hwC2
+ 2M2hwC (8)

where h represents the height of the feature map,w represents
the width of the feature map, C represents the depth of the
feature map, and M represents the size of each window.
The W-MSA module is to reduce the amount of calculation.
Firstly, the feature map is divided into windows by M × M
size, and then the local multi-head attention calculation is
performed on each window separately. To solve the prob-
lem that there is no information transfer between windows
and windows, and only self-attention calculation can be per-
formed within each window, the Swin Transformer model
introduces the SW-MSA module, that is, the W-MSA with
windows offset. Offset through windows to solve the prob-
lem of information exchange between different windows.
The W-MSA structure and the SW-MSA structure are used
in pairs, first using a W-MSA structure and then using a
SW-MSA structure.

The Swin Transformer model also uses relative position
paranoia, as shown in Formula (9), and relative position
paranoia is added based on Formula (4). Relevant research
[9] has proved that the accuracy rate will be significantly
improved after using relative positional paranoia.

Attention(Q,K ,V ) = softmax(
QKT
√
dk

+ B)V (9)

where B is relative position paranoia.

TABLE 3. Comparison of classification accuracy of different models.

Finally, for the classification network, the model will be
followed by a Layer Norm layer, a global pooling layer, and
a fully connected layer to obtain the final output.

IV. RESULTS ANALYSIS AND DISCUSSION
A. ANALYSIS OF MODEL RESULTS
The classification effect of the target area is shown in Table 3.
We train and compare different models. The network training
epochs of each experiment are 100 epochs, the batch size
of each training is 32, and the learning rate is variable. The
evaluation index for the gaze target area classification model
involves comparing the output value of the network model
with the real label value. This analysis assesses the consis-
tency between the area determined by the current model and
the real label value.

To evaluate the performance of the attention-based region
classification model based on the hybrid Swin Transformer,
we compared and analyzed the detection results of the VIT
model [40], the ResNet model [8], the Swin Transformer
model [9], and the hybrid model. We used extracted face
images as input to the models, with a size of 224 × 224.
To minimize the risk of potential data leakage during the
training process, we have employed a strategy involving
random splitting and identifier separation. In this approach,
80% of the dataset is allocated for the training set, and 20%
of the data is designated for the test set to facilitate the
training process. Further details about the dataset have been
provided in the dataset section. As shown in Table 3, the
classification performance of the dataset in the VIT model
and the hybrid VIT model was not as good as the ResNet
model and Swin Transformer model. In the absence of head
pose features, the ResNet model achieved an accuracy of
85%, with ResNet50 slightly outperforming ResNet34. After
combining the features of head pose, both ResNet34 and
ResNet50 show noticeable improvements, but ResNet50 still
maintains a higher classification accuracy than ResNet34.
Therefore, we have chosen ResNet50 as a part of the hybrid
model. The Swin Transformer model achieved an accuracy of
87%when using only facial features, which improved to 89%
after incorporating head pose features. In the hybrid models,
the performance of the ResNet mixed with the VIT model
showed some improvement compared to VIT alone, but the
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FIGURE 16. Target area classification results.

overall performance was not very good. On the other hand,
in the hybrid Swin Transformer model, there was a signifi-
cant improvement in overall performance compared to both
the pure Swin Transformer and pure ResNet models. Fur-
thermore, after fusing head pose features, the classification
accuracy reached 90%. Overall, the hybrid Swin Transformer
model demonstrated the best performance among the eval-
uated models in this study. This was particularly evident
when considering the incorporation of head pose features,
significantly enhancing the classification accuracy.

We compared and analyzed the classification performance
of various target regions as shown in Figure 16. The hori-
zontal axis represents eight cockpit attention target regions:
Landing Gear (LG), Air Speed (AS), Pressure Altitude
(PA), Posture Guidance (PG), Heading, Head-Up Display
(HUD), Left Extravehicular (LE), and Right Extravehicular
(RE). The vertical axis represents the classification accuracy.
We observed that the classification accuracy of the LG, HUD,
LE, and RE regions was above 90%, indicating excellent
performance in these areas. On the other hand, the AS, PA,
PG, and Heading regions achieved classification accuracies
below 90%. Through our analysis, we deduced that this might
be due to the proximity of the AS, PA, PG, and Heading
regions, leading to potential errors in the model’s judgments
and resulting in a decrease in accuracy. However, overall, the
classification performance still reached satisfactory results.
In conclusion, the model achieved desirable results, with
high accuracy in several target regions, while some regions
with close similarity showed slightly lower accuracy due to
potential confusion during classification. Nevertheless, the
overall classification performance met the desired criteria.

B. FLIGHT VISUALIZATION ANALYSIS
We analyze the gaze distribution of flight cadets performing
flight missions during flight through heat maps. We import
the flight cadets ’ gaze distribution data during some mission
periods and classify them according to the number of gazes in
the target area. The red area indicates the area with the highest
number of gazes, the orange area indicates the area with
relatively few gazes, the green area indicates the area with
the least number of gazes, and the colorless area indicates
that the area has not gazed at the current stage. Through visual

analysis, it can be judgedwhether the pilot’s current operation
is correct, and the pilot’s operation intention and attention can
be judged later.

In the simulation of the flight experiment, we primarily
demonstrated the flight trainees’ focus on instruments during
takeoff tasks, altitude adjustment tasks, and turning tasks.

1) THE TAKEOFF TASK
In the takeoff tasks, assuming the flight student has taxied
the aircraft to the takeoff line aligned it with the runway, and
has checked that all instruments and warning lights are func-
tioning normally and meet the flight requirements. At this
point, the air traffic control tower has issued the command,
allowing the flight student to execute the takeoff task. During
this process, the flight student follows instructions to com-
plete the takeoff task, which includes starting the aircraft’s
taxi, gaining sufficient speed for takeoff, and the process of
retracting the landing gear.

We randomly selected a group of flight students and
observed their gaze patterns during a task, as shown in
Figure 17. The flight student’s primary areas of focuswere the
airspeed indicator, landing gear status, and altitude indicator.
The head-up display (HUD) and heading indicator received
relatively less attention, while other areas that were glanced
at may have resulted from the flight student’s scanning. In the
takeoff task, the instructions were to set the aircraft’s heading
to 095. The student was told to initiate takeoff at an airspeed
of approximately 160-180 kilometers per hour and to retract
the landing gear when the aircraft’s altitude reached around
10 meters, completing the takeoff task. The program records
the duration and number of times the student looks at each
instrument area during the takeoff task. The results show that
the student’s total gaze duration is 56995ms, and the total
gaze count is 4676 times. The gaze duration and gaze count
of the main gaze areas are shown in Table 4. Through result
analysis, we can check if the flight student uses the airspeed
indicator to assess if the current aircraft meets takeoff criteria
during the flight task. The student also relies on the heading
indicator to confirm that the aircraft maintains the prescribed
heading and uses the altitude indicator to ensure the condi-
tions for landing gear retraction are met. Furthermore, the
landing gear status can be combined with these assessments
to analyze the current condition of the landing gear, ensuring
the safety of the flight.

2) ADJUST THE HEIGHT TASK
In the climb altitude task, we randomly selected a group of
flight students and observed their gaze behavior during the
task, as shown in Figure 18. The primary area of focus for the
flight students was the altimeter, while they paid relatively
less attention to the Head-Up Display (HUD), airspeed indi-
cator, attitude indicator, and heading indicator. Other areas
or background areas they glanced at were likely the result of
the flight students’ scanning behavior. In the climb altitude
task, the flight student was instructed to increase the current
flight altitude from 600meters to 900meters.We recorded the
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FIGURE 17. Takeoff task fixation distribution.

TABLE 4. Statistical results of gaze duration and gaze frequency in
takeoff tasks.

student’s gaze duration and frequency in various instrument
areas from the moment they received the task until task
completion. The results revealed that the total gaze duration
for this student was 62268 milliseconds, with a total gaze
frequency of 5099 times, as depicted in Table 5. The longer
gaze duration and higher gaze frequency indicate that this
flight student preferred to focus on specific areas during the
flight task rather than continuously monitoring all spatial
sectors. Through result analysis, we can confirm that in the
climb altitude task, the flight student looks at the altimeter and
HUD area to determine if the aircraft has reached the required
standard altitude. They also use the heading and attitude
guidance table to assess whether the current aircraft deviates
from the course or is in a horizontal state. Additionally, they
check the airspeed indicator to ensure the aircraft is within
the normal flying speed and avoid stalling.

3) TURNING TASK
In the left turn flight task, as depicted in Figure 19, the flight
student primarily focused on the attitude indicator and the
heading indicator. The next area of focus was the left-side
cabin area. The altimeter and airspeed indicator received
fewer gazes, while other areas or background areas that
received attention might be attributed to the flight student’s
scanning behavior. During the turning task, the flight student
was instructed to change the current heading from 005 to 275.
We recorded the student’s gaze duration and frequency in

TABLE 5. Statistical results of gaze duration and gaze frequency in height
tasks.

FIGURE 18. Adjusting the height task fixation distribution.

FIGURE 19. Gaze distribution of left turn task.

various instrument areas from when they received the task
until completion. The results indicated that the total gaze
duration for this student was 119612 milliseconds, with a
total gaze frequency of 9816 times, as illustrated in Table 6.
We can judge that in the task of turning left, the flying cadets
judge whether the aircraft reaches the target course through
heading and attitude guidance. The reason for watching the
left extravehicular area is that the flying cadets will subcon-
sciously watch the left extravehicular scene when turning left.
Because altitude and airspeed are constantly changing during
turning missions, flight cadets need to pay attention to the
current altitude and airspeed of the aircraft to avoid stalling
or crashing into objects.
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TABLE 6. Statistical results of gaze duration and gaze frequency in left
turn tasks.

C. DISCUSSION
The mixed Swin Transformer model is slightly superior to
the pure Transformer model based on both the model results
and visual analysis. Furthermore, the overall classification
performance improveswhen incorporating head pose features
compared to solely extracting face features. However, the
classification effect of the model will decrease when the
target area is similar. For such problems, we will further
optimize the network model and improve the accuracy of the
classification effect. In different flight missions, we can see
that the attention of the flight cadets to the cockpit instru-
ment area is different. In the follow-up work, we can further
analyze the attention state or operation intention of the flight
cadets through the attention of the flight cadets.

V. CONCLUSION
The Swin Transformer model has been a crucial player in
computer vision, exhibiting outstanding performance in tar-
get detection and instance segmentation tasks. Therefore,
we use the hybrid structure of the Swin Transformer model
for classification purposes. The ResNet50 model extracts fea-
tures from face images, fuse head pose features, and combines
with the Swin Transformer model to classify the gaze target
area. To verify the effectiveness of our proposed hybridmodel
structure, we conducted a comparative analysis of the classifi-
cation outcomes of our datasets usingVIT, Swin Transformer,
ResNet50 + VIT, and ResNet50 + Swin Transformer mod-
els. Our results show that the classification efficacy of the
dataset under the hybrid model structure reached 90%, which
is of great significance. At the same time, we analyzed the
current flight cadets’ fixation in the flight scene through the
heat map, which paved the way for the follow-up pilots’
attention evaluation. In future work, we will optimize the
network model to enhance accuracy while considering real-
time requirements. Additionally, we will analyze the pilot’s
attention and operational intention during flight based on
these improvements.
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