
Received 5 November 2023, accepted 18 November 2023, date of publication 20 November 2023,
date of current version 29 November 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3335224

Observer-Based Control for High-Order Fully
Actuated Systems
ZHAO TIANYI 1, DUAN GUANGREN 2, (Fellow, IEEE), AND XIN WANQING3
1Beijing Institute of Aerospace Systems Engineering, China Academy of Launch Vehicle Technology, Beijing 100076, China
2Center for Control Science and Technology, Southern University of Science and Technology, Shenzhen 518055, China
3China Academy of Launch Vehicle Technology, Beijing 100076, China

Corresponding author: Zhao Tianyi (15765593649@163.com)

This work was supported in part by the National Natural Science Foundation of China under Grant U22B6010 and Grant 61333003, in part
by the Major Program of National Natural Science Foundation of China under Grant 61690210 and Grant 61690212, and in part by the
Science Center Program of the National Natural Science Foundation of China under Grant 62188101.

ABSTRACT An observer-based control method for high-order fully actuated systems is proposed.
First, a concept of exponentially stable observers is introduced, which, different from traditional state
observers, requires not only asymptotic convergence of observation errors, but also exponential convergence.
Further, inspired by existing results, two design methods for exponentially stable observers are developed,
one of which is less conservative and the other is simpler and more straightforward to use. Secondly,
a parametric control method based on the exponentially stable observer is proposed, which ensures
the exponential stability of the closed-loop system. Moreover, the proposed method does not rely
on the solution of nonlinear partial differential equations, and although the system is nonlinear and
time-varying, the Separation Principle still holds under this control strategy, which is a significant
advantage of the proposed method. Finally, the method is applied to the attitude control of flexible
spacecraft with nonlinear inertia, and comparative simulation results verify the effect of the proposed
approach.

INDEX TERMS Observer-based control, nonlinear control, high-order fully actuated systems, exponential
stability, flexible spacecraft control.

I. INTRODUCTION
As we all know, strict linear systems do not exist in the
practical physical world. In actual engineering, the theoretical
basis for using linear system theory for control system design
is often to linearly approximate the system near the operating
point, which of course can only obtain results in a local sense.
To obtain global results, nonlinear control methods can only
be used. However, general nonlinear system control has been
a difficult problem for decades, and there is currently no
universal effective method. Most of the existing results are
either for systems with special forms or for systems subject
to some strict assumptions, and in many cases, the results of
nonlinear system control can only be in a local sense (see,
e.g., [1], [2], [3], [4], [5],).
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A. OBSERVER-BASED CONTROL UNDER THE STATE-SPACE
APPROACH
Designing a state observer for a nonlinear system under
the state space approach is as difficult as designing a
stabilization control law for a nonlinear system, and results
are usually not available for the general system case.
Existing results are relatively few and most of them require
the system to have some special structure or to satisfy
certain assumptions. For example, some references require
that the system has some “linear dominated” structure
([1], [2]), upper or lower triangular structure ([6], [7], [8]),
or require that the nonlinearity of the system satisfies a
strict global Lipschitz condition ([1], [2], [9]). In addition,
although there are some results considering systems of
general form (see, e.g., [10], [11], [12]), they usually
transform the observer design problem into the solution of
some complicated nonlinear partial differential equations.
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However, solving these equations is also quite difficult and
there is no universal solution in general. They are only
solvable for simple systems, while analytical solutions can
not obtained generally for complicated systems. Such results
are of great theoretical significance, but applying the methods
to practical engineering systems is often difficult.

Compared to results of the state observer design for
nonlinear systems, results of observer-based control are much
fewer, and they are often more demanding in terms of system
structure and assumptions. For example, some references
require the system to be single-input ([13], [14]) or to
have some kind of “triangular structure”, typically a strict
feedback structure ([13], [14], [15], [16], [17]), a semi-strict
feedback structure ([18]), a pure feedback structure ([19],
[20], [21]), a special nonstrict-feedback structure ([22], [23],
[24], [26], [27]), a feedforward structure ([28], [29], [30]),
and some other triangular structures ([31], [32]), etc. There
are also lots of representative references that require
systems to have some “linear dominant” structure (see
e.g. [33], [34], [35]). Some other results are obtained for
systems with certain special structures, see [36], [37] for
instance.

Moreover, the existing results often hold only in a local
sense and it is generally difficult to guarantee the global
stability of closed-loop systems (see, e.g., [31], [33], [38]).
Furthermore, many of the results only guarantee boundedness
of the state of the augmented closed-loop system ([23], [34],
[36], [38]), failing to obtain asymptotic convergence, not to
say exponential convergence.

Evenwhen discussing boundedness, it is also quite difficult
to obtain results in a global sense, and many represen-
tative results have only yielded semi-global boundedness
([22], [37]), semi-global ultimately uniformly boundedness
([15], [18], [19], [24]) and global ultimately uniformly
boundedness ([25]) for the state of the extended closed-loop
system.

In summary, observer-based control under the state-space
approach has the following difficulties:

1) There is currently no universal effective method for
observer design and observer-based control of general
nonlinear systems, and most of the existing results are
either for systems with special forms or for systems
subject to some strict assumptions, and in many cases
the results can only be in a local sense.

2) In general, it is quite difficult to guarantee the
asymptotic stability of the closed-loop system, many
representative results can only guarantee the bound-
edness of augmented closed-loop systems in various
senses.

3) Many existing results are obtained by transforming
the observer design problem into the solution of
some complicated nonlinear partial differential equa-
tions, which are also difficult to solve, and thus
can usually not be applied to practical engineering
systems.

B. OBSERVER-BASED CONTROL UNDER THE HOFA
SYSTEM APPROACH
In recent years, a new methodology called the higher-order
fully actuated (HOFA) system approach has been proposed
in the two series of papers [39], [40], [41] and [42], [43],
[44], [45], [46], [47], [48], [49], [50], [51], aiming to establish
a unified architecture for the control of general nonlinear
systems. It is argued in [39], [42], and [43] that the HOFA
model, although subject to the full-actuation condition, is in
fact a general model of a dynamic control system parallel to
the state-space model, rather than representing a small class
of nonlinear systems. The reason lies in two aspects: on one
hand, the HOFAmodel of the dynamic system can be directly
derived bymodeling the controllable physical system through
state transformation and variable elimination ([42], [48]);
on the other hand, it has been proven that many nonlinear
systems in the state-space form can be transformed into
HOFA systems, such as strict feedback systems ([39], [51])
and generalized strict feedback systems ([43]), nonlinear
systems in a kind of controllable canonical forms ( [40]),
feedback-linearizable systems ([39], [51]), and a more gene-
ral class of nonlinear systems ([42]).

When the full state is measurable, the full-actuation
characteristic of the HOFA system allows us to directly
cancel the nonlinearity of the system, thereby transforming
the nonlinear problem into a linear one, and finally obtaining
a linear time invariant closed-loop system with arbitrarily
assignable eigen-polynomials. This advantage provides great
convenience for the control of the system, and this method
has been proven to be quite simple and effective in dealing
with the robust control ( [44]), adaptive control ( [45]),
optimal control ([49]), tracking control ([50]), disturbance
attenuation and decoupling ( [47]), etc., of general nonlinear
systems.

However, when only partial state is measurable, it becomes
difficult to completely cancel the nonlinearity of the system,
and in such a case using a state observer to observe the
unmeasurable state may be the most direct idea. Then we
naturally wonder whether the framework of theHOFA system
method, compared with the framework of the state-space
method, can also provide convenience for observer design
and observer-based control.

In order to answer this question, first mention a fact
that people usually do not pay attention to: the system
state we care about is the same in the open-loop system
and the closed-loop system. Therefore, we can design
state observers for both open-loop systems and closed-loop
systems. However, within the framework of the state-space
approach, if the system is nonlinear, the closed-loop system is
often also nonlinear. In this case, designing state observers for
open-loop and closed-loop systems is equally difficult. This
is the essential reason why this fact is not noticed. However,
from the perspective of the HOFA system approach, the
situation is quite different. Because (when all states are
measurable) the closed-loop system is linear, we can now
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easily design state observers for linear closed-loop systems,
which greatly reduces the complexity of the problem.

C. MOTIVATION AND CONTRIBUTIONS OF THIS PAPER
In our recent work [56], attitude control via state feedback
of flexible spacecraft with nonlinear time-varying inertia is
investigated in depth: we first establish a HOFA model for
the original dynamic system, and then develop stabilization
and tracking control laws based on the HOFA system
theory, which guarantees the global asymptotic stability of
the closed-loop system. However, as pointed out in the
conclusion section in [56], flexible modes of spacecraft are
often not measurable in practice, which motivates us to
further consider attitude control of flexible spacecraft via
output feedback. During the study of this specific control
problem, we extracted a general control method from the
control theory level, and finally reapplied this method to the
control of flexible spacecraft in this current paper.

Specifically, this paper discusses the state observer design
and observer-based control of HOFA systems in detail, with
the following specific contributions:

1) The concept of an exponentially stable observer is
introduced. This type of observers, different from
traditional state observers, require the observation error
of the state to converge exponentially rather than
asymptotically. Furthermore, two design methods of
exponentially stable observers based on linear matrix
inequalities (LMIs) are developed respectively on the
basis of previous works [9] and [52], the first one is less
conservative, and the second one is more convenient
and direct in application. Both of them only depend on
solving LMIs, for which the LMI toolbox in MATLAB
can be readily used.

2) A complete parametric control method based on the
exponentially stable observer is proposed. Compared
to many existing observer-based nonlinear control
methods (see, e.g., [10], [11], [12]), the proposed
approach does not rely on the solution of nonlinear
partial differential equations, thus it is easier and
more direct to use. In addition, the proposed method
can ensure that the augmented closed-loop system is
locally or globally exponentially stable (depending
on whether the Lipschitz condition holds locally or
globally), rather than bounded ([23], [34], [36], [38]),
semi-globally bounded ([22], [37]), semi-globally uni-
formly ultimately bounded ([15], [18], [19], [24]),
or global ultimately uniformly boundedness ([25]). It is
noted that although the system is generalized to be
nonlinear, the Separation Principle still holds under this
control strategy, which is a significant advantage of the
proposed method.

3) The proposed observer-based control method is applied
to the attitude control of flexible spacecraft with non-
linear inertia for the output feedback case. Comparative
simulation results show that the proposed method is

able to achieve attitude stability control and flexible
vibration suppression, while the traditional method
fails.

For convenience of description, following [42], and [43],
we introduce the following notations for a vector x ∈ Rn and
a set of matrices Ai ∈ Rr×r , i = 0, 1, · · · , n− 1:

x(0∼k) =


x
ẋ
...

x(k)

 , Bc =


0
...

0
Ir

 , (1)

A0∼n−1 =
[
A0 A1 · · · An−1

]
, (2)

8(A0∼n−1) =


0 Ir

. . .

Ir
−A0 −A1 · · · −An−1

 . (3)

In addition, for a set of vectors η1, η2, . . . , ηm ∈ Rn, denote

vec
([
η1 η2 · · · ηm

])
=
[
ηT1 η

T
2 · · · ηTm

]T
,

unvecn,m
([
ηT1 η

T
2 · · · ηTm

]T)
=
[
η1 η2 · · · ηm

]
,

and for a matrix M ∈ Rr×r , let

sym (M) = M +MT. (4)

det (M), cond (P) , λmin (M) , λmax (M) , and λi (M) repre-
sent the determinant, the condition number, the minimum
eigenvalue, the maximum eigenvalue, and the i-th eigenvalue
of the matrixM . Denote the real part of the i-th eigenvalue of
the matrix M by Reλi (M).

II. PROBLEM FORMULATION
Consider the following system{

x(n) = f (x(0∼n−1), t) + B(Cx(0∼n−1), t)u,
y = Cx(0∼n−1),

(5)

where x, u ∈ Rr are the state and the control input,
respectively, y ∈ Rm is the measured output, f (x(0∼n−1), t) ∈

Rr and B(Cx(0∼n−1), t) ∈ Rr×r are a continuous vector
function and a matrix function, respectively, satisfying
f (0, t) = 0, and C is a constant matrix, satisfying the
following assumptions:

Assumption A1:(see, e.g., [42], [43], [44])
detB(Cx(0∼n−1), t) ̸= 0, ∀x(i) ∈ Rr , i = 0, 1, · · · , n− 1.

Assumption A2: (see, e.g., [9], [52]) The function
f (x(0∼n−1), t) is local α-Lipschitz with respect to its first
argument, that is, there exists a scalar α > 0 and a convex
subset � ⊆ Rnr containing the origin such that:∥∥∥f (x(0∼n−1)

1 , t) − f (x(0∼n−1)
2 , t)

∥∥∥
< α

∥∥∥x(0∼n−1)
1 − x(0∼n−1)

2

∥∥∥ ,∀x(0∼n−1)
1 , x(0∼n−1)

2 ∈ �.
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Design for system (5) the following observer-based control
law: 

.

x̂
(0∼n−1)

= 8(A0∼n−1)x̂(0∼n−1)

+Bcv− L
(
y− Cx̂(0∼n−1)

)
,

u = −B−1(Cx(0∼n−1), t)
×(f (x̂(0∼n−1), t) + A0∼n−1x̂

(0∼n−1)
−v),

(6)

where x̂(0∼n−1) ∈ Rnr is the state of the observer, which is
the estimation of x(0∼n−1), v is an external input, A0∼n−1 ∈

Rr×nr is a gain matrix such that 8(A0∼n−1) is Hurwitz,
L ∈ Rnr×m is another gain matrix to be designed. The control
system structure is shown in Figure 1.

FIGURE 1. Observer-based control system structure.

As shown in Figure 1, x(0∼n−1) and x̂(0∼n−1) perform
essentially the state variables of the open-loop system (5) and
the observer system (6). The estimation x̂(0∼n−1) of the state
variable x(0∼n−1) is obtained based on the measured output y
and the external reference input v, and the control input u
is finally computed by using signals y, v and the estimation
x̂(0∼n−1). The control block diagram is presented in Figure 2.

FIGURE 2. The control block diagram of the proposed control law.

Then, the corresponding closed-loop system can be given
by 

x(n) = f (x(0∼n−1), t) − f (x̂(0∼n−1), t)
−A0∼n−1x̂(0∼n−1)

+v,
.

x̂
(0∼n−1)

= 8(A0∼n−1)x̂(0∼n−1)

+Bcv− L
(
y− Cx̂(0∼n−1)

)
,

(7)

which can be further rewritten into the following state-space
form: [

ẋ(0∼n−1)

.

x̂
(0∼n−1)

]

=

[
8(00∼n−1) −BcA0∼n−1

−LC 8(A0∼n−1) + LC

] [
x(0∼n−1)

x̂(0∼n−1)

]
+

[
Bc
0

] (
f (x(0∼n−1), t) − f (x̂(0∼n−1), t)

)
+

[
Bc
Bc

]
v. (8)

Based on the above preparations, the problem to be consid-
ered can be stated as follows.

Problem 1: For given system (5) satisfying Assump-
tions A1-A2, design the observer-based control law (6), such
that the equilibrium

(
x(0∼n−1), x̃(0∼n−1)

)
= (0, 0) of the

closed-loop system (8) is exponentially stable.
The above problem is solved in two steps, the first step

is the design of the exponentially stable observer, and the
second step is the design of the control system based on the
exponentially stable observer. Before giving the results, let us
present some preliminary results at first.

III. PRELIMINARIES
The following results plays important roles in the subsequent
derivation, which are given by [44] and [47], respectively.
Lemma 1: For given matrix F ∈ Rnr×nr , all the matrices

A0∼n−1 and V ∈ Rnr×nr satisfying detV ̸= 0 and

8(A0∼n−1) = VFV−1 (9)

are given by 

A0∼n−1 = −ZFnV−1 (Z ,F) ,

V = V (Z ,F) =


Z
ZF
...

ZFn−1

 , (10)

where Z ∈ Rr×nr is a parameter matrix satisfying the
following constraint:

detV (Z ,F) ̸= 0. (11)

Lemma 2: Let A ∈ Rn×n satisfy

Reλi (A) ≤ −
µ

2
, i = 1, 2, · · · , n, (12)

where µ > 0. Then, there exists a positive definite matrix
P ∈ Rn×n satisfying

ATP+ PA ≤ −µP. (13)

IV. OBSERVER DESIGN
This section treats the exponentially stable observer design.
First, let us introduce the following definition of the
exponentially stable observer.
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Definition 1: A dynamic system
.

x̂
(0∼n−1)

= F
(
x̂(0∼n−1), y, u

)
, (14)

where x̂ ∈ Rr , is called an (locally) exponentially stable
observer of system (5) if there exist positive constant scalars c
and β satisfying∥∥∥x̃(0∼n−1) (t)

∥∥∥ ≤ c
∥∥∥x̃(0∼n−1) (0)

∥∥∥ e−βt , x̃(0∼n−1) (0) ∈ �,

(15)

where � ⊆ Rnr is a convex subset containing the origin, and

x̃(0∼n−1) (t) = x(0∼n−1) (t)− x̂(0∼n−1) (t) . (16)

Particularly, if � = Rnr , then (14) is called a globally
exponentially stable observer of system (5).

This section considers the design of state observers with
the following specific form:

.

x̂
(0∼n−1)

= 8(A0∼n−1)x̂(0∼n−1)

+Bcv− L
(
y− Cx̂(0∼n−1)

)
, (17)

which is the first equation in control law (6), and the
meaning and dimensions of the variables are given in the
“Problem formulation” Section. Regarding how to design
gain L to make (17) form an exponential stable observer
of system (5), two design methods are given based on [9]
and [52], respectively. The first method is more conservative,
while the secondmethod is more convenient and direct to use.

A. LINEAR PARAMETER-VARYING DESIGN METHOD
Firstly, let us introduce the first design method of the
exponentially stable observer.

1) AN EQUIVALENT EXPRESSION OF LIPSCHITZ CONDITION
As a preparation, the following definition is introduced.
Definition 2: ( [9]) For the following vectors

X =


x1
x2
...

xn

 ∈ Rn, Y =


y1
y2
...

yn

 ∈ Rn, (18)

define XYi ∈ Rn, i = 0, 1, . . . , n as

XYi =


[
y1 · · · yi xi+1 · · · xn

]T
,

i = 1, 2, . . . , n,
X , i = 0.

(19)

Denote

Hij = en (i) eTn (j) , i, j = 1, 2, . . . , n,

where en (i) ∈ Rn represents the vector with its i-th element
being 1 and the rest being 0. Then we have the following
result, which is a minor generalization of Lemma 7 in [9].
Lemma 3: For given function 9 : � × [0,∞) → Rn,

where � ⊆ Rn is a convex subset containing the origin, the
following two conditions are equivalent:

1) 9 is local α9 -Lipschitz with respect to its first variable,
that is,

∥9(X , t) −9(Y , t)∥

< α9 ∥X − Y∥ , ∀X ,Y ∈ �, t ≥ 0;

2) there exist

ψij : �×�× [0,∞) → R, i, j = 1, 2, . . . , n,

and constant scalars ψ̂ij and ψ̌ij satisfying

9(X , t) −9(Y , t)

=

n∑
i=1

n∑
j=1

ψij

(
XYj−1 ,XYj, t

)
Hij (X − Y ) ,

where the functions ψij (·) satisfy

ψ̌ij ≤ ψij

(
XYj−1 ,XYj, t

)
≤ ψ̂ij, ∀X ,Y ∈ �, t ≥ 0.

Proof: Although the independent variable t is added to
the function 9 (·) , and the function 9 (·) is only required
to be local Lipschitz instead of global Lipschitz, the process
of proof is the same as Lemma 7 in [9]. Thus the proof is
omitted.
Remark 1: It is noted that the above Lemma 3 also covers

the case that9 is global Lipschitz, and in such a case� = Rn.
Remark 2: Partition 9 (X) as

9 (X) =
[
91 (X) 92 (X) · · · 9n (X)

]T
.

If 9 (X) is local α9 -Lipschitz, then there exist a set of
positive scalars α9i , i = 1, 2, . . . , n such that 9i (X) , i =

1, 2, . . . , n are local α9i -Lipschitz. It is pointed out that
the constant ψ̌ij and ψ̂ij in Lemma 3 can be taken as
ψ̌ij = −α9i and ψ̂ij = α9i , respectively (see the proofs of
Lemmas 6 and 7 in [9]).

2) LMI-BASED DESIGN METHOD OF THE GAIN MATRIX L
Before giving the results, let us make some preparations at
first. Recalling (16), and using Lemma 3, we have

f (x(0∼n−1), t) − f (x̂(0∼n−1), t) =A (2) x̃(0∼n−1), (20)

where2 = vec
(
2̃
)

∈ Rn2

2̃ =
[
ψij (·)

]
ij ∈ Rn×n,

A (2) =

n∑
i=1

n∑
j=1

ψij (·)Hij,

(21)

with

ψij (·) ≜ ψij

([
x(0∼n−1)

]x̂(0∼n−1)
j−1

,
[
x(0∼n−1)

]x̂(0∼n−1)
j

, t

)
(22)

satisfying

ψ̌ij ≤ ψij (·) ≤ ψ̂ij, ∀x(0∼n−1), x̂(0∼n−1)
∈ �, t ≥ 0. (23)
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In view of (21)-(23), we have 2 ∈ In, where

In =

{
2 ∈ Rn2

∣∣∣ ψ̌ij ≤ 2̃ij ≤ ψ̂ij, 2̃ = unvecn,n (2)
}
(24)

is obviously a convex set, with its extreme points set given by

vIn =

{
2 ∈ Rn2

∣∣∣ 2̃ij ∈ {ψ̌ij, ψ̂ij}, 2̃ = unvecn,n (2)
}
.

(25)

Based on the above preparations, the following result can be
obtained.
Theorem 1: Suppose that system (5) satisfies Assump-

tions A1-A2. If the gain matrix L is taken as

L = P−1Y , (26)

where P > 0 and Y satisfy the following LMIs:

sym (P8(00∼n−1) + YC + PBcA (2))
< −εI , ∀2 ∈ vIn , (27)

with ε being a certain positive scalar. Then (17) forms a
locally exponentially stable observer of system (5).

Particularly, if Assumption A2, namely, the Lipschitz
condition, holds globally, then (17) forms a globally expo-
nentially stable observer of system (5).

Proof: It follows from the closed-loop system (8) that
the observation error given by (16) satisfies

.

x̃
(0∼n−1)

= (8(00∼n−1) + LC) x̃(0∼n−1)

+Bc
[
f (x(0∼n−1), t) − f (x̂(0∼n−1), t)

]
. (28)

In view of (20), the above equation can be further rewritten
into
.

x̃
(0∼n−1)

= (8(00∼n−1) + BcA (2)+ LC) x̃(0∼n−1). (29)

Choose V
(
x̃(0∼n−1)

)
=

[
x̃(0∼n−1)

]T
Px̃(0∼n−1), then the

derivative of V (·) can be calculated along the trajectory of
system (29) as

V̇
(
x̃(0∼n−1)

)
=

[
x̃(0∼n−1)

]T
0 (2) x̃(0∼n−1), (30)

where

0 (2) = sym [P (8(00∼n−1) + LC + BcA (2))] . (31)

If the LMIs in (27) hold, then it follows from the convex
optimization theory (see, e.g., [53]) and (26) that 0 (2) <
−εI , ∀2 ∈ In. Thus we have

V̇
(
x̃(0∼n−1)

)
< −ε

∥∥∥x̃(0∼n−1)
∥∥∥2

≤ −cV
(
x̃(0∼n−1)

)
, ∀x̃(0∼n−1)

∈ �, (32)

where c = ελ−1
max (P). Therefore, according to the well-

known Comparison Theorem, we have from (32) that

V (x̃(0∼n−1) (t)) ≤ V
(
x̃(0∼n−1) (0)

)
e−ct . (33)

In view of

λmin (P)
∥∥∥x̃(0∼n−1)

∥∥∥2 ≤ V
(
x̃(0∼n−1), t

)
≤ λmax (P)

∥∥∥x̃(0∼n−1)
∥∥∥2

and (33), we have∥∥∥x̃(0∼n−1) (t)
∥∥∥ ≤

√
cond (P)

∥∥∥x̃(0∼n−1) (0)
∥∥∥ e− c

2 t . (34)

Thus the conclusion can be immediately obtained according
to Definition 1.

As for the global case, just note that � = Rnr , except that
the proof process is exactly the same as in the local case, so it
is omitted. Then the proof is completed.

B. ANOTHER DESIGN METHOD BASED ON LMIs
In this subsection, inspired by the method in [52], another
design approach of exponentially stable observer is proposed
as follows.
Theorem 2: Suppose that system (5) satisfies Assump-

tions A1-A2. If the gain matrix L is taken as

L = P−1Y , (35)

where Y and P > 0 satisfy the following LMI:[
sym [P8(00∼n−1) + YC] + ε1

(
α2 + ε2

)
I P

P −ε1I

]
< 0,

(36)

with ε1 and ε2 being positive scalars. Then ( 17) forms a
locally exponentially stable observer of system (5).

Particularly, if Assumption A2, namely, the Lipschitz con-
dition holds globally, then (17) forms a globally exponentially
stable observer of system (5).

Proof: It follows from the closed-loop system (8) that
the observation error defined by (16) satisfies (28). If the
Lyapunov function candidate is chosen as V

(
x̃(0∼n−1)

)
=[

x̃(0∼n−1)
]T
Px̃(0∼n−1), where P ∈ Rnr×nr is a positive

definite matrix. Then, taking the derivative of V (·) along the
trajectory of the system (28), yields

V̇
(
x̃(0∼n−1)

)
= ξT5ξ, (37)

where

ξ =

[
x̃(0∼n−1)

f (x(0∼n−1), t) − f (x̂(0∼n−1), t)

]
, (38)

5 =

[
sym [P (8(00∼n−1) + LC)] P

P 0

]
. (39)

It follows from (35)-(36) that

5− ε1M < 0, (40)

where

M =

[
−
(
α2 + ε2

)
I 0

0 I

]
. (41)
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Substituting the above equation (40) into (37), and in view of
Assumption A2, we have

V̇
(
x̃(0∼n−1)

)
< ε1

(
−

(
α2 + ε2

) ∥∥∥x̃(0∼n−1)
∥∥∥2 + ∥1f (·)∥2

)
≤ −ε1ε2

∥∥∥x̃(0∼n−1)
∥∥∥2

≤ −cV
(
x̃(0∼n−1)

)
, (42)

where c = λ−1
max (P) ε1ε2. Repeating the proof process

in (32)-(34), we can immediately obtain the conclusion
according to Definition 1.

The proof for the global case is exactly the same as the
proof for the local case except � = Rnr and is therefore
omitted. Then the proof is completed.
Remark 3: In Theorems 1 and 2, the observer design

problem has been transformed into the solutions of the
LMIs (26)-(27) and (35)-(36), respectively. The feasibility of
the LMIs can be directly verified by using the LMI toolbox
in MATLAB.

V. OBSERVER-BASED CONTROL
It is pointed out at the end of the “Problem formulation”
Section that Problem 1 is to be solved in two steps. The
first step is the design of an exponentially stable observer,
which has been discussed in depth in the previous section.
In this section, we investigate the second step, namely, the
control law design based on the exponentially stable observer.
The core of this problem is to discuss the stability of the
closed-loop system (8).

A. STABILITY OF THE CLOSED-LOOP SYSTEM
Recalling (16), the closed-loop system (8) can be rewritten
into

ẋ(0∼n−1)
= 8(A0∼n−1)x(0∼n−1)

+BcA0∼n−1x̃(0∼n−1)

+Bc1f
(
x(0∼n−1), x̃(0∼n−1), t

)
,

.

x̃
(0∼n−1)

= (8(00∼n−1) + LC) x̃(0∼n−1)

+Bc1f
(
x(0∼n−1), x̃(0∼n−1), t

)
,

(43)

where

1f
(
x(0∼n−1), x̃(0∼n−1), t

)
= f (x(0∼n−1), t) − f (x(0∼n−1)

− x̃(0∼n−1), t), (44)

satisfies∥∥∥1f (x(0∼n−1), x̃(0∼n−1), t
)∥∥∥

≤ α

∥∥∥x̃(0∼n−1)
∥∥∥ , ∀x(0∼n−1), x̃(0∼n−1)

∈ �, (45)

in view of Assumption A2. Regarding the stability of the
above system (43), we have the following result.

Theorem 3: Suppose that system (5) satisfies Assump-
tions A1-A2. If

1) the first equation in the control law (6) forms a locally
exponentially stable observer of system (5), and

2) for arbitrarily given positive constant scalar µ, there
hold

Reλi (8(A0∼n−1)) ≤ −
µ

2
, i = 1, 2, . . . , nr . (46)

Then, the observer-based control law (6), with v = 0,
guarantees that the equilibrium

(
x(0∼n−1), x̃(0∼n−1)

)
= (0, 0)

of the closed-loop system (43) is locally exponentially stable.
Particularly, if Assumption A2, namely, the Lipschitz

condition, holds globally, and the first equation in the control
law (6) forms a globally exponentially stable observer of sys-
tem (5), then the equilibrium

(
x(0∼n−1), x̃(0∼n−1)

)
= (0, 0) of

the closed-loop system ( 43) is globally exponentially stable.
Proof: It follows from the assumptions in this theorem

that there exist positive constant scalars c and β such that∥∥∥x̃(0∼n−1) (t)
∥∥∥

≤ c
∥∥∥x̃(0∼n−1) (0)

∥∥∥ e−βt , x̃(0∼n−1) (0) ∈ �. (47)

According to Lemma 2, when (46) holds, there exists P > 0
satisfying

P8(A0∼n−1) +8T(A0∼n−1)P = −µP. (48)

Let Vx(x(0∼n−1)) =
[
x(0∼n−1)

]T
Px(0∼n−1), and denote

ϕ (·) ≜ BcA0∼n−1x̃(0∼n−1)
+ Bc1f

(
x(0∼n−1), x̃(0∼n−1), t

)
,

then, using the Young Inequality and Assumption A2,
we have

V̇x = −µVx + 2
[
x(0∼n−1)

]T
Pϕ (·)

≤ −µVx + 2 ∥P∥

∥∥∥x(0∼n−1)
∥∥∥ ∥ϕ (·)∥

≤ −µVx + ∥P∥

(
ε

∥∥∥x(0∼n−1)
∥∥∥2 +

1
ε

∥ϕ (·)∥2
)

≤ −β1Vx + β2

∥∥∥x̃(0∼n−1)
∥∥∥2 , (49)

with

β1 = µ− ε ∥P∥ λ−1
min (P) > 0,

β2 =
∥P∥

ε
(∥BcA0∼n−1∥ + α ∥Bc∥)2 ,

where ε > 0 is a sufficiently small constant scalar satisfying

β1 ̸= 2β. (50)

According to the Comparison Theorem, it follows
from (49) that

Vx(x(0∼n−1) (t))

≤ e−β1tVx(x(0∼n−1) (0))

+ β2

∫ t

0
e−β1(t−τ )

∥∥∥x̃(0∼n−1) (τ )

∥∥∥2 dτ.
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Substituting (47) into the above equation, and in view of (50),
we have

Vx(x(0∼n−1) (t))

≤ e−β1tVx(x(0∼n−1) (0))

+ β2

∫ t

0
e−β1(t−τ )

(
c
∥∥∥x̃(0∼n−1) (0)

∥∥∥ e−βτ)2 dτ
= e−β1tVx(x(0∼n−1) (0))

+ β2c2
∥∥∥x̃(0∼n−1) (0)

∥∥∥2 e−β1t ∫ t

0
e(β1−2β)τdτ

= e−β1tVx(x(0∼n−1) (0))

+ β2c2
∥∥∥x̃(0∼n−1) (0)

∥∥∥2 e−β1t
×

1
β1 − 2β

(
e(β1−2β)t

− 1
)

= e−β1tVx(x(0∼n−1) (0))

+
β2c2

∥∥x̃(0∼n−1) (0)
∥∥2

β1 − 2β

×

(
e−2βt

− e−β1t
)
. (51)

If β1 > 2β, then it follows from (51) that

Vx(x(0∼n−1) (t))

≤ e−β1tVx(x(0∼n−1) (0))

+
β2c2

∥∥x̃(0∼n−1) (0)
∥∥2

β1 − 2β
e−2βt

≤ (Vx(x(0∼n−1) (0))

+
β2c2

∥∥x̃(0∼n−1) (0)
∥∥2

β1 − 2β
)e−2βt . (52)

If β1 < 2β, then we know from (51) that

Vx(x(0∼n−1) (t))

≤ e−β1tVx(x(0∼n−1) (0))

−
β2c2

∥∥x̃(0∼n−1) (0)
∥∥2

β1 − 2β
e−β1t

≤ (Vx(x(0∼n−1) (0))

+
β2c2

∥∥x̃(0∼n−1) (0)
∥∥2

2β − β1
)e−β1t . (53)

In view of (50), the following conclusion can be obtained by
combining the above two cases (52) and (53):

Vx(x(0∼n−1) (t)) ≤ (Vx(x(0∼n−1) (0)) + σ )e−β̃t , (54)

where

σ =
β2c2

|2β − β1|

∥∥∥x̃(0∼n−1) (0)
∥∥∥2 , β̃ = min {β1, 2β} . (55)

It is obvious that

c′1
∥∥∥x(0∼n−1) (t)

∥∥∥2 ≤ Vx(x(0∼n−1) (t))

≤ c′2
∥∥∥x(0∼n−1) (t)

∥∥∥2 ,

where c′1 = λmin (P) and c′2 = λmax (P), thus it follows
from (54) that∥∥∥x(0∼n−1) (t)

∥∥∥2
≤

1
c′1
Vx(x(0∼n−1) (t))

≤
1
c′1
(Vx(x(0∼n−1) (0)) + σ )e−β̃t

≤
1
c′1
(c′2
∥∥∥x(0∼n−1) (0)

∥∥∥2
+

β2c2

|2β − β1|

∥∥∥x̃(0∼n−1) (0)
∥∥∥2)e−β̃t

= (
c′2
c′1

∥∥∥x(0∼n−1) (0)
∥∥∥2

+
β2c2

c′1 |2β − β1|

∥∥∥x̃(0∼n−1) (0)
∥∥∥2)e−β̃t

≤ (
c′2
c′1

∥∥∥X (0∼n−1) (0)
∥∥∥2

+
β2c2

c′1 |2β − β1|

∥∥∥X (0∼n−1) (0)
∥∥∥2)e−β̃t

≤ µ

∥∥∥X (0∼n−1) (0)
∥∥∥2 e−β̃t , (56)

where

X (0∼n−1) (t) =

[
x(0∼n−1) (t)
x̃(0∼n−1) (t)

]
, µ =

c′2
c′1

+
β2c2

c′1 |2β − β1|
.

Combining (47) and (56), we have∥∥∥X (0∼n−1) (t)
∥∥∥

≤

∥∥∥x(0∼n−1) (t)
∥∥∥+

∥∥∥x̃(0∼n−1) (t)
∥∥∥

≤
√
µ

∥∥∥X (0∼n−1) (0)
∥∥∥ e− β̃

2 t + c
∥∥∥x̃(0∼n−1) (0)

∥∥∥ e−βt
≤

√
µ

∥∥∥X (0∼n−1) (0)
∥∥∥ e− β̃

2 t + c
∥∥∥X (0∼n−1) (0)

∥∥∥ e−βt
≤
(√
µ+ c

) ∥∥∥X (0∼n−1) (0)
∥∥∥ e−ϖ t ,

where ϖ = min
{
β̃
2 , β

}
, revealing that the equilibrium(

x(0∼n−1), x̃(0∼n−1)
)

= (0, 0) is locally exponentially
stable. From the definition of the exponential stability, the
assumptions in the global sense certainly lead to the stability
results in the global sense. Then the proof is completed.
Remark 4: It should be noted that the second condition in

Theorem 3 does not bring any conservatism to the design
of the control gain A0∼n−1, because the constant µ can be
selected arbitrarily small. As long as 8(A0∼n−1) is Hurwitz,
there always exists a constant µ satisfying (46), thus this
condition essentially requires 8(A0∼n−1) to be Hurwitz.
We only need to select proper A0∼n−1 such that all the
eigenvalues of 8(A0∼n−1) have negative real part.

The above Theorem 3 also reveals an important fact: the
controller part and the observer part of the observe-based
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control law (6) can be independently designed, which means
that although the system is generalized to be nonlinear, the
Separation Principle is still valid under the proposed control
strategy. The observer design part has been discussed in depth
in the “Observer design” Section. Next we further discuss the
design of the control gain A0∼n−1.

B. ALGORITHM OF THE OBSERVER-BASED CONTROL
METHOD
Based on Lemma 1, we can use the following algorithm to
directly parameterize the gain matrix A0∼n−1.

Algorithm 1: [Parameterization of the control gain
A0∼n−1 ]
1) Choose a positive constant scalar µ, and select appro-

priate F ∈ Rnr×nr according to practical requirements,
such that

Reλi (F) ≤ −
µ

2
, i = 1, 2, . . . , nr . (57)

2) Establish the following complete parametric expres-
sion for the gain matrix A0∼n−1 using Lemma 1:

A0∼n−1 = −ZFnV−1 (Z ,F) ,

V (Z ,F) =


Z
ZF
...

ZFn−1

 , (58)

where Z ∈ Rr×nr is an arbitrary parameter matrix
satisfying the following constraint:

detV (Z ,F) ̸= 0. (59)

3) Optimize the parameter matrix Z to meet additional
design requirements or achieve better performance. For
example, Z can be appropriately selected to make the
system have better anti-disturbance performance, lower
sensitivity to parameter perturbations, and smaller
control gain (see, e.g., [54], [55], [56] for details).

4) Substitute the optimal parameter Z∗ into the parametric
expression (58) to obtain the final design of A∗

0∼n−1.
Remark 5: The above parametric design of the gain

A0∼n−1 preserves all design degrees of freedom, which come
not only from Z , but also from F . In fact, F can be optimized
together with Z to improve system performance, whileF only
needs to satisfy the constraint (57).

Combining the above Algorithm with Theorems 1 or 2,
gives the following algorithm, which summarizes the specific
design process of the proposed observer-based control law.

Algorithm 2: [Procedure of the observer-based controller
design]

1) Establish the HOFA model (5) for the considered
system, and calculate the Lipschitz constant α of the
function f (x(0∼n−1), t).

2) Obtain the observation gain L by using Theorems 1
or 2.

3) Design the control gain A0∼n−1 using Algorithm 1.

4) Substitute the obtained observation gain L and control
gain A0∼n−1 into (6) to give the observer-based control
law.

C. AN ILLUSTRATED EXAMPLE
Consider the following numerical example{

ẍ = f
(
x(0∼1)

)
+ B (x) u

y = Cx,
(60)

where

f
(
x(0∼1)

)
= 0.3

√
x2 + 3 +

ẋ2

2
(
ẋ2 + 1

) + 0.2 arctan
(
x +

1
2
ẋ
)
,

B (x) = x2 + 5, C =
[
1 0

]
.

First, it is easy to see

∂f
∂x

=
0.3x

√
x2 + 3

+
0.2

1 +

(
x +

1
2 ẋ
)2 ≤ 0.5,

∂f
∂ ẋ

=
0.5(

ẋ2 + 1
)2 +

0.1

1 +

(
x +

1
2 ẋ
)2 ≤ 0.6,

thus f
(
x(0∼1)

)
is globally Lipschitz with the following

Lipschitz constant

α =

√(
∂f
∂x

)2

+

(
∂f
∂ ẋ

)2

= 0.78.

Then, the observation gain L can be immediately derived by
using Theorem 2 as follows

L =

[
−8.8759
−16.5894

]
. (61)

Secondly, choose

F =

[
−1 0.5

−0.5 −1

]
, (62)

with µ = 1. Then, the controller gain A0∼1 can be obtained
using Algorithm 1 as

A0∼1 =
[
1.25 2

]
. (63)

Finally, substituting (61) and (63) into (6), gives the control
law.

To verify the effect of the proposed method, numerical
simulation is carried out with the following initial value

x(0∼1)
=

[
2

−1

]
, x̂(0∼1)

=

[
0
0

]
,

and the simulation result is shown in Figure 3.
Is is seen from Figure 3 that the state variables x̂(0∼1) of

the observer can realize the estimation of the unmeasurable
state of the system, and all state variables converge to zero
smoothly, which fully verifies the effect of the proposed
method.
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FIGURE 3. Simulation results of the illustrated example (60).

VI. ATTITUDE CONTROL OF FLEXIBLE SPACECRAFT WITH
NONLINEAR INERTIA
In this section, the attitude control of flexible spacecraft
with nonlinear inertia via output feedback is considered.
In our recent work [56], the HOFA system model is derived
from the original dynamic equation of the system, and then
the control system via state feedback is designed based
on the HOFA system theory. This paper further treats the
case that only partial state can be measured, for which the
observer-based control method proposed in this paper is
applied, guaranteeing the exponential stability of the closed-
loop system. Simulation is carried out based on practical
engineering parameters to verify the effect of the proposed
method.

A. SYSTEM MODEL
The attitude system of a flexible spacecraft with nonlinear
time-varying inertia is given by ( [56]):{

I
(
θ, θ̇ , t

)
θ̈ + bq̈ = u,

q̈+ 2ξ3q̇+32q+ bθ̈ = 0.
(64)

where θ is the attitude angle, q is the flexible mode, u is
the control torque, b, I and are coefficients, I

(
θ, θ̇ , t

)
is the

moment of inertia associated with θ , θ̇ and t , satisfying the
following assumptions:

Assumption A3: 3, ξ and b are non-zero constants.
Assumption A4: For any θ, θ̇ ∈ R and t ∈ [0,+∞), there

holds

1
(
θ, θ̇ , t

)
≜ I

(
θ, θ̇ , t

)
− b2 ̸= 0. (65)

It is proved in our recent work [56] that system (64)
satisfying the above Assumptions A3-A4 can be transformed
into the following HOFA system form:

x(4)1 = f
(
ẍ1,

...
x 1, θ, θ̇ , t

)
+ B

(
θ, θ̇ , t

)
u, (66)

where

f
(
ẍ1,

...
x 1, θ, θ̇ , t

)
= −

23ξ I
(
θ, θ̇ , t

)
1
(
θ, θ̇ , t

) ...
x 1

−
32I

(
θ, θ̇ , t

)
1
(
θ, θ̇ , t

) ẍ1, (67)

and

B
(
θ, θ̇ , t

)
= −

b33

2ξ1
(
θ, θ̇ , t

) ̸= 0. (68)

Moreover, the relation between the variables x1, ẋ1, ẍ1,
...
x 1

of the HOFA system (66) and the variables θ, q, θ̇ , q̇ of
the original system (64) can be described by the following
invertible state transformation:

x1
ẋ1
ẍ1...
x 1

 =
1
2ξ


−b3 3

(
4ξ2 − 1

)
2ξb 2ξ

0 −2ξ32
−b3 −3

0 33 0 0
0 0 0 33



×


θ

q
θ̇

q̇

 , (69)

or, equivalently,
θ

q
θ̇

q̇

 = −
2ξ
b33


32 2ξ3 1 0
0 0 −b 0
0 32 2ξ3 1
0 0 0 −b



×


x1
ẋ1
ẍ1...
x 1

 . (70)

On one hand, in practical situation, only the attitude angle θ
and the attitude angular velocity θ̇ can be measured, thus it
follows from (70) that the measured output equation is given
by

y =

[
θ

θ̇

]
= Cx(0∼3)

1 , (71)

where

C = −
2ξ
b33

[
32 2ξ3 1 0
0 32 2ξ3 1

]
. (72)

On the other hand, substituting the relation (71)
into (66)-(68), yields

x(4)1 = f
(
x(0∼3)
1 , t

)
+ B

(
Cx(0∼3)

1 , t
)
u, (73)

where

f
(
x(0∼3)
1 , t

)
= −

23ξ I
(
Cx(0∼3)

1 , t
)

1
(
Cx(0∼3)

1 , t
) ...

x 1

−

32I
(
Cx(0∼3)

1 , t
)

1
(
Cx(0∼3)

1 , t
) ẍ1,
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and

B
(
Cx(0∼3)

1 , t
)

= −
b33

2ξ1
(
Cx(0∼3)

1 , t
) . (74)

Combining (71) with (73), gives the following HOFA sys-
tem model with a measured output equation for system (64):{

x(4)1 = f
(
x(0∼3)
1 , t

)
+ B

(
Cx(0∼3)

1 , t
)
u,

y = Cx(0∼3)
1 ,

(75)

which is in the same form as (5).

B. CONTROL SYSTEM DESIGN
It follows from Assumptions A3-A4 that the above sys-
tem (75) obviously satisfies Assumptions A1-A2. Therefore,
according to the control law (6) given in the “Problem
formulation” Section, we can design for the system (73)-(74)
the following observer-based control law:

.

x̂
(0∼3)

1 = 8(a0∼3)x̂
(0∼3)
1 + Bcv− L

(
y− Cx̂(0∼3)

1

)
,

u = −B−1(Cx(0∼3)
1 , t)f (x̂(0∼3)

1 , t) + a0∼3x̂
(0∼3)
1 −v,

(76)

where Bc =
[
0 0 0 1

]T
.

First, design the control gain a0∼3. Select the desired
eigenvalues of 8(a0∼3) as

(−1.1915 ± 1.3995)× 10−2 i,−0.6049,−7.1630 × 10−3.

Then, according to Algorithm 1, the gain a0∼3 in the control
law ( 76) can be calculated as

a0 = 1.4637 × 10−6, a1 = 3.1001 × 10−4,

a2 = 1.9255 × 10−2, a3 = 0.6359. (77)

Secondly, design the observation gain L. In a certain
convex subset � ⊆ R4 containing the origin, the Lipschitz
constant of f

(
x(0∼3)
1 , t

)
is α = 0.3404, and thus the gain L

can be designed using Theorem 2 as

L =


124.5428 −1.0016 × 104

−5.3065 × 103 −5.2440 × 103

−180.8737 −233.1855
−3.3240 −6.1768

 . (78)

Finally, substitute (77) and (78) into (76 ), gives the designed
control law.

For comparison, we also design the observer-based control
law by using the method in [54] for the nominal system case
that I = 20667.25

(
kg · m2) . To make an equal comparison,

the desired closed-loop poles set is selected as

eig (8(a0∼3)) ∪ eig (8(00∼n−1) + LC) ,

in such a case the control law is given by
.

X̂ = AX̂ + Bu− L
(
y− CmX̂

)
,

u = KX̂ ,
(79)

where

y =

[
θ

θ̇

]
, A =


0 0 1 0
0 0 0 1
0 b32

I−b2
0 2b3ξ

I−b2

0 −32I
I−b2

0 −23ξ I
I−b2

 ,

B =


0
0
1

I−b2
−b
I−b2

 , Cm =

[
1 0 0 0
0 0 1 0

]
,

KT
=


−1.4329 × 10−2

169.3030
−3.0347
−49.6332

 ,

L =


−1.2834 × 10−2

−1.0000
−12.8410 −187.7868
3.1068 −0.4863
589.3338 −92.2486

 .
C. SIMULATION RESULTS
In this subsection, numerical simulations are carried out
based on the following practical parameters of a flexible
spacecraft with a large antenna ( [54]):

b = −108.88
√
kg·m, ξ = 0.005, 3 = 2π × 0.151,

I = 527.78 sin
[
3.424θ (t)+ 1.072θ̇ (t)

]
+ 20667.25

(
kg · m2

)
.

Choose the initial values as
θ (0)
q (0)
θ̇ (0)
q̇ (0)

 =


−45◦

2◦

0.5 (◦/s)
−1 (◦/s)

 ,

x̂(0∼3)
1 (0) =


−8.1149 × 103

90.6377
0.5962

−0.4472

 .
The simulation results based on the proposed control law are
shown in Figures 4 and 5, where q̂ and ˆ̇q are estimations of q
and q̇, respectively, which, in view of (70), are given by[

q̂
ˆ̇q

]
= −

2ξ
b33

[
0 0 −b 0
0 0 0 −b

]
x̂(0∼3)
1 ,

q̃ and ˜̇q are observation errors of q and q̇, respectively, defined
by

q̃ = q− q̂, ˜̇q = q̇− ˆ̇q.

As shown in Figure 4, the attitude angle and angular
velocity converge to zero smoothly in about 700 seconds
without overshoot. Besides, it is seen form Figure 5 that
the estimates q̂ and ˆ̇q of the states asymptotically track the
flexible modes q and q̇, and the flexible modes gradually
decay to 0, indicating that the vibrations are effectively
suppressed, thus revealing the effect of the designed observer.
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FIGURE 4. Simulation results of system (64) based on the proposed
control law.

FIGURE 5. Response of flexible modes and observation errors of
system (64) based on the proposed control law.

Furthermore, although the control torque bears the burden
of canceling the nonlinearity of the system, its amplitude
is still within 1.5 Nm, which is acceptable in practical
engineering. Thus the effect of the proposed observer-based
control method is fully verified.

For comparison, we select another set of initial values
closer to the origin as follows

θ (0)
q (0)
θ̇ (0)
q̇ (0)

 =


2◦

0.5◦

−0.5 (◦/s)
−0.2 (◦/s)

 ,

X̂ (0) =


2◦

0◦

−0.5 (◦/s)
0 (◦/s)

 ,

and carry out the simulation based on the control
method in [54], the simulation results are shown in
Figure 6.

FIGURE 6. Simulation results of system (64) based on the control law
in [54].

FIGURE 7. Response of flexible modes and observation errors of system
(64) based on the control law in [54].

As shown in Figures 6 and 7, although the initial
values of the state are chosen to be very small, when
the control method in [54] is applied, the state of the
system diverges rapidly, and the amplitude of the control
torque quickly exceeded 104 Nm in about 30 seconds. This
shows that the observer-based linear control law designed
for the nominal system fails when the inertia has nonlinear
characteristics.

VII. CONCLUSION
In [54], [55], and [57], the observer-based parametric control
of linear systems are discussed from different perspectives.
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In this paper, we extended this parametric design method
to nonlinear time-varying systems based on the HOFA
system approach. The HOFA system studied in this paper
is first proposed in two recent series of papers [39],
[40], [41] and [42], [43], [44], [45], [46], [47], [48],
[49], [50], [51]. These two series of papers have fully
demonstrated that the HOFA model, although subject to
the full-actuation condition, is actually a general model
of dynamic control systems parallel to the state-space
model, rather than representing a small class of nonlinear
systems. This paper develops an observer-based parametric
control method for HOFA systems, and makes the following
contributions:

1) An exponentially stable observer is proposed, which,
different from traditional nonlinear observers, requires
not only asymptotic convergence of observation
errors, but also exponential convergence. After-
wards, two design methods for exponentially stable
observers are developed inspired by the theories
in [9] and [52], respectively. The former is less
conservative, while the latter is more convenient and
direct to use.

2) A parametric control method based on the expo-
nentially stable observer is proposed. Unlike many
existing observer-based nonlinear control approaches
(see, e.g., [10], [11], [12]), the method developed in
this paper does not rely on the solution of nonlinear
partial differential equations, so it is easier and more
direct to apply. Furthermore, the proposed method
can ensure that the augmented closed-loop system is
locally or globally exponentially stable (depending
on whether the Lipschitz condition holds locally or
globally), rather than bounded ( [23], [34], [36], [38]),
semi-globally bounded ( [22], [37]), semi-globally uni-
formly ultimately bounded ( [15], [18], [19], [24]),
or global ultimately uniformly boundedness ([25]). It is
noted that although the system is generalized to be
nonlinear, the Separation Principle still holds under this
control strategy, which is a significant advantage of the
proposed method.

3) The proposed method is successfully applied to the
attitude control of flexible spacecraft with nonlin-
ear inertia, and comparative simulations are carried
out based on practical engineering parameters, ver-
ifying the effect and superiority of the proposed
method.

Finally, it should be pointed out that, for the sake
of simplicity, this paper considers a single-order HOFA
system, but in fact the proposed method can be extended to
multi-order HOFA systems in parallel. Considering that the
design ideas and processes are identical and the length of the
paper is limited, we do not discuss the multi-order HOFA
systems.

It should be noted that, as shown in (5), the control
matrix B(Cx(0∼n−1), t) is required to be associated with

the measured output y = Cx(0∼n−1) instead of the state
variable x(0∼n−1). In fact, control problems of systems for the
general case of B(x(0∼n−1), t) is one of our future research
directions. In addition, by combining the proposed method
with the design approaches in [44], [45] and [47], it may also
be possible to further extend the control method to disturbed
systems case, uncertain systems case, and the case of systems
with unknown parameters, etc. These may also become future
research directions.

REFERENCES
[1] A. Zemouche, R. Rajamani, G. Phanomchoeng, B. Boulkroune,

H. Rafaralahy, and M. Zasadzinski, ‘‘Circle criterion-based H∞ observer
design for Lipschitz and monotonic nonlinear systems–enhanced LMI
conditions and constructive discussions,’’ Automatica, vol. 85, no. 1,
pp. 412–425, Nov. 2017.

[2] T. Berger, ‘‘On observers for nonlinear differential-algebraic sys-
tems,’’ IEEE Trans. Autom. Control, vol. 64, no. 5, pp. 2150–2157,
May 2019.

[3] Y. Sun, J. Xu, G. Lin, W. Ji, and L. Wang, ‘‘RBF neural network-based
supervisor control for maglev vehicles on an elastic track with network
time delay,’’ IEEE Trans. Ind. Informat., vol. 18, no. 1, pp. 509–519,
Jan. 2022.

[4] Y. Sun, H. Qiang, L. Wang, W. Ji, and A. Mardani, ‘‘A fuzzy-logic-system-
based cooperative control for the multielectromagnets suspension system
of maglev trains with experimental verification,’’ IEEE Trans. Fuzzy Syst.,
vol. 31, no. 10, pp. 3411–3422, Oct. 2023.

[5] Y. Sun, J. Xu, C. Chen, and W. Hu, ‘‘Reinforcement learning-based
optimal tracking control for levitation system of maglev vehicle with
input time delay,’’ IEEE Trans. Instrum. Meas., vol. 71, pp. 1–13,
2022.

[6] H. Katayama, ‘‘Design of reduced-order observers for nonlinear
sampled-data strict-feedback systems with actuator dynamics and
disturbances,’’ Int. J. Control, vol. 92, no. 9, pp. 2112–2122,
Sep. 2019.

[7] L. Chang, Q.-L. Han, X. Ge, C. Zhang, and X. Zhang, ‘‘On designing
distributed prescribed finite-time observers for strict-feedback nonlin-
ear systems,’’ IEEE Trans. Cybern., vol. 51, no. 9, pp. 4695–4706,
Sep. 2021.

[8] S. Lee, ‘‘Observer design for feedforward nonlinear systems with delayed
output,’’ IEICE Trans. Fundam. Electron., Commun. Comput. Sci.,
vol. E97.A, no. 3, pp. 869–872, 2014.

[9] A. Zemouche and M. Boutayeb, ‘‘On LMI conditions to design observers
for Lipschitz nonlinear systems,’’ Automatica, vol. 49, no. 2, pp. 585–591,
Feb. 2013.

[10] B. Yi, R. Ortega, andW. Zhang, ‘‘On state observers for nonlinear systems:
A new design and a unifying framework,’’ IEEE Trans. Autom. Control,
vol. 64, no. 3, pp. 1193–1200, Mar. 2019.

[11] V. Andrieu and L. Praly, ‘‘On the existence of a
Kazantzis–Kravaris/Luenberger observer,’’ SIAM J. Control Optim.,
vol. 45, no. 2, pp. 432–456, Jan. 2006.

[12] B. Yi, R. Ortega, and W. Zhang, ‘‘Relaxing the conditions for parameter
estimation-based observers of nonlinear systems via signal injection,’’ Syst.
Control Lett., vol. 111, no. 1, pp. 18–26, Jan. 2018.

[13] Y.-G. Liu and J.-F. Zhang, ‘‘Reduced-order observer-based control design
for nonlinear stochastic systems,’’ Syst. Control Lett., vol. 52, no. 2,
pp. 123–135, Jun. 2004.

[14] B. Song and J. K. Hedrick, ‘‘Observer-based dynamic surface control for
a class of nonlinear systems: An LMI approach,’’ IEEE Trans. Autom.
Control, vol. 49, no. 11, pp. 1995–2001, Nov. 2004.

[15] S. Tong, X. Min, and Y. Li, ‘‘Observer-based adaptive fuzzy tracking
control for strict-feedback nonlinear systems with unknown control
gain functions,’’ IEEE Trans. Cybern., vol. 50, no. 9, pp. 3903–3913,
Sep. 2020.

[16] P. Parsa, M. Akbarzadeh-T, and F. Baghbani, ‘‘Observer-based
adaptive emotional command-filtered backstepping for cooperative
control of input-saturated uncertain strict-feedback multi-agent
systems,’’ IET Control Theory Appl., vol. 17, no. 7, pp. 906–924,
Feb. 2023.

VOLUME 11, 2023 132251



Z. Tianyi et al.: Observer-Based Control for High-Order Fully Actuated Systems

[17] Y. Li, Y. Liu, and S. Tong, ‘‘Observer-based neuro-adaptive optimized
control of strict-feedback nonlinear systems with state constraints,’’
IEEE Trans. Neural Netw. Learn. Syst., vol. 33, no. 7, pp. 3131–3145,
Jul. 2022.

[18] C. L. P. Chen, G.-X. Wen, Y.-J. Liu, and Z. Liu, ‘‘Observer-based adaptive
backstepping consensus tracking control for high-order nonlinear semi-
strict-feedback multiagent systems,’’ IEEE Trans. Cybern., vol. 46, no. 7,
pp. 1591–1601, Jul. 2016.

[19] S. Tong, Y. Li, and P. Shi, ‘‘Observer-based adaptive fuzzy backstepping
output feedback control of uncertain MIMO pure-feedback nonlinear
systems,’’ IEEE Trans. Fuzzy Syst., vol. 20, no. 4, pp. 771–785,
Aug. 2012.

[20] J. Qiu, K. Sun, T. Wang, and H. Gao, ‘‘Observer-based fuzzy adap-
tive event-triggered control for pure-feedback nonlinear systems with
prescribed performance,’’ IEEE Trans. Fuzzy Syst., vol. 27, no. 11,
pp. 2152–2162, Nov. 2019.

[21] Y. Wei, L. Wang, and Z. Li, ‘‘Observer-based active fault-tolerant
control for a class of pure-feedback switched nonlinear systems,’’ Int.
J. Adapt. Control Signal Process., vol. 36, no. 11, pp. 2754–2777,
Aug. 2022.

[22] B. Chen, H. Zhang, and C. Lin, ‘‘Observer-based adaptive neural
network control for nonlinear systems in nonstrict-feedback form,’’
IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no. 1, pp. 89–98,
Jan. 2016.

[23] H. Ma, Q. Zhou, L. Bai, and H. Liang, ‘‘Observer-based adaptive fuzzy
fault-tolerant control for stochastic nonstrict-feedback nonlinear systems
with input quantization,’’ IEEE Trans. Syst., Man, Cybern. Syst., vol. 49,
no. 2, pp. 287–298, Feb. 2019.

[24] L. Cao, Q. Zhou, G. Dong, and H. Li, ‘‘Observer-based
adaptive event-triggered control for nonstrict-feedback nonlinear
systems with output constraint and actuator failures,’’ IEEE
Trans. Syst., Man, Cybern. Syst., vol. 51, no. 3, pp. 1380–1391,
Mar. 2021.

[25] M. Cai, X. He, and D. Zhou, ‘‘Fault-tolerant tracking control for nonlinear
observer-extended high-order fully-actuated systems,’’ J. Franklin Inst.,
vol. 360, no. 1, pp. 136–153, Jan. 2023.

[26] J. Zhai, H. Wang, J. Tao, and Z. He, ‘‘Observer-based adaptive fuzzy
finite time control for non-strict feedback nonlinear systems with
unmodeled dynamics and input delay,’’ Nonlinear Dyn., vol. 111, no. 2,
pp. 1417–1440, Jan. 2023.

[27] Y. Zhan, X. Li, and S. Tong, ‘‘Observer-based decentralized control
for Non-Strict-Feedback fractional-order nonlinear large-scale systems
with unknown dead zones,’’ IEEE Trans. Neural Netw. Learn. Syst.,
vol. 34, no. 10, pp. 7479–7490, Oct. 2023, doi: 10.1109/TNNLS.2022.
3143901.

[28] H.-W. Jo, H.-L. Choi, and J.-T. Lim, ‘‘Observer based output feedback
regulation of a class of feedforward nonlinear systems with uncertain
input and state delays using adaptive gain,’’ Syst. Control Lett., vol. 71,
pp. 44–53, Sep. 2014.

[29] Z. Duan, A. Wei, X. Zhang, and R. Mu, ‘‘Observer-based formation
tracking control for feedforward nonlinear multi-agent systems with
dead-zone input,’’ Int. J. Syst. Sci., vol. 53, no. 15, pp. 3215–3225,
Oct. 2022.

[30] L. Liu, S. Xu, X.-J. Xie, and B. Xiao, ‘‘Observer-based decentralized
control of large-scale stochastic high-order feedforward systems with
multi time delays,’’ J. Franklin Inst., vol. 356, no. 16, pp. 9627–9645,
Nov. 2019.

[31] H. Hammouri, M. Kinnaert, and E. H. El Yaagoubi, ‘‘Observer-
based approach to fault detection and isolation for nonlinear sys-
tems,’’ IEEE Trans. Autom. Control, vol. 44, no. 10, pp. 1879–1884,
Oct. 1999.

[32] S. Ibrir, ‘‘Observer-based control of a class of time-delay nonlinear systems
having triangular structure,’’ Automatica, vol. 47, no. 2, pp. 388–394,
Feb. 2011.

[33] D. Efimov, T. Raissi, and A. Zolghadri, ‘‘Control of nonlinear and
LPV systems: Interval observer-based framework,’’ IEEE Trans. Autom.
Control, vol. 58, no. 3, pp. 773–778, Mar. 2013.

[34] Y. Wang, B. Zhu, H. Zhang, and W. X. Zheng, ‘‘Functional observer-
based finite-time adaptive ISMC for continuous systems with
unknown nonlinear function,’’ Automatica, vol. 125, Mar. 2021,
Art. no. 109468.

[35] X. Xu, B. Açikmese, and M. J. Corless, ‘‘Observer-based con-
trollers for incrementally quadratic nonlinear systems with distur-
bances,’’ IEEE Trans. Autom. Control, vol. 66, no. 3, pp. 1129–1143,
Mar. 2021.

[36] D. V. Efimov and A. L. Fradkov, ‘‘Robust and adaptive observer-based
partial stabilization for a class of nonlinear systems,’’ IEEE Trans. Autom.
Control, vol. 54, no. 7, pp. 1591–1595, Jul. 2009.

[37] H. Wang, P. X. Liu, and P. Shi, ‘‘Observer-based fuzzy adaptive output-
feedback control of stochastic nonlinear multiple time-delay systems,’’
IEEE Trans. Cybern., vol. 47, no. 9, pp. 2568–2578, Sep. 2017.

[38] X. Yang, W. Huang, and Y. Wang, ‘‘Distributed-observer-based output
regulation of heterogeneous nonlinear multi-agent systems,’’ IEEE Trans.
Autom. Control, vol. 61, no. 11, pp. 3539–3544, Nov. 2016.

[39] G. R. Duan, ‘‘High-order system approaches: I. Full-actuation and
parametric design,’’ (in Chinese), Acta Automatica Sinica, vol. 46, no. 7,
pp. 1333–1345, May 2020.

[40] G. R. Duan, ‘‘High-order system approaches: II. Controllability and
fully-actuation,’’ (in Chinese), Acta Automatica Sinica, vol. 46, no. 8,
pp. 1571–1581, Aug. 2020.

[41] G. R. Duan, ‘‘High-order system approaches: III. Observability and
observer design,’’ (in Chinese), Acta Automatica Sinica, vol. 46, no. 9,
pp. 1885–1895, Dec. 2020.

[42] G. Duan, ‘‘High-order fully actuated system approaches: Part I. Models
and basic procedure,’’ Int. J. Syst. Sci., vol. 52, no. 2, pp. 422–435,
Jan. 2021.

[43] G. Duan, ‘‘High-order fully actuated system approaches: Part II. General-
ized strict-feedback systems,’’ Int. J. Syst. Sci., vol. 52, no. 3, pp. 437–454,
Feb. 2021.

[44] G. Duan, ‘‘High-order fully actuated system approaches: Part III. Robust
control and high-order backstepping,’’ Int. J. Syst. Sci., vol. 52, no. 5,
pp. 952–971, Apr. 2021.

[45] G. Duan, ‘‘High-order fully actuated system approaches: Part IV. Adaptive
control and high-order backstepping,’’ Int. J. Syst. Sci., vol. 52, no. 5,
pp. 972–989, Apr. 2021.

[46] G. Duan, ‘‘High-order fully actuated system approaches: Part V. Robust
adaptive control,’’ Int. J. Syst. Sci., vol. 52, no. 10, pp. 2129–2143,
Feb. 2021.

[47] G. Duan, ‘‘High-order fully-actuated system approaches: Part VI. Dis-
turbance attenuation and decoupling,’’ Int. J. Syst. Sci., vol. 52, no. 10,
pp. 2161–2181, Feb. 2021.

[48] G. Duan, ‘‘High-order fully actuated system approaches: Part VII.
Controllability, stabilisability and parametric designs,’’ Int. J. Syst. Sci.,
vol. 52, no. 14, pp. 3091–3114, May 2021.

[49] G. Duan, ‘‘High-order fully actuated system approaches: Part VIII.
Optimal control with application in spacecraft attitude stabilisation,’’ Int.
J. Syst. Sci., vol. 53, no. 1, pp. 54–73, Jan. 2022.

[50] G. Duan, ‘‘High-order fully-actuated system approaches: Part IX. Gener-
alised PID control and model reference tracking,’’ Int. J. Syst. Sci., vol. 53,
no. 3, pp. 652–674, Feb. 2022.

[51] G. Duan, ‘‘High-order fully actuated system approaches: Part X. Basics
of discrete-time systems,’’ Int. J. Syst. Sci., vol. 53, no. 4, pp. 810–832,
Mar. 2022.

[52] G. Phanomchoeng and R. Rajamani, ‘‘Observer design for Lipschitz
nonlinear systems using Riccati equations,’’ in Proc. Amer. Control Conf.,
Baltimore, MD, USA, 2010, pp. 6060–6065.

[53] G. R. Duan and H. H. Yu, LMIs in Control Systems: Analysis, Design and
Applications. London, U.K.: CRC Press, 2013.

[54] G.-R. Duan and T.-Y. Zhao, ‘‘Observer-based multi-objective parametric
design for spacecraft with super flexible netted antennas,’’ Sci. China Inf.
Sci., vol. 63, no. 7, pp. 1–21, Jun. 2020.

[55] G. Duan and T. Zhao, ‘‘Parametric output regulation using observer-based
PI controllers with applications in flexible spacecraft attitude control,’’ Sci.
China Inf. Sci., vol. 64, no. 7, pp. 1–17, May 2021.

[56] T. Zhao and G.-R. Duan, ‘‘Fully actuated system approach to attitude
control of flexible spacecraft with nonlinear time-varying inertia,’’ Sci.
China Inf. Sci., vol. 65, no. 11, pp. 1–15, Oct. 2022.

[57] T. Zhao and G. Duan, ‘‘Parametric design for observer-based P2I controller
with applications to high-accuracy tracking control in space optical
communication,’’ Int. J. Control, Autom. Syst., vol. 21, no. 2, pp. 452–463,
Feb. 2023, doi: 10.1007/s12555-021-0944-9.

132252 VOLUME 11, 2023

http://dx.doi.org/10.1109/TNNLS.2022.3143901
http://dx.doi.org/10.1109/TNNLS.2022.3143901
http://dx.doi.org/10.1007/s12555-021-0944-9


Z. Tianyi et al.: Observer-Based Control for High-Order Fully Actuated Systems

ZHAO TIANYI received the B.S. degree in control
science and engineering and the Ph.D. degree
in navigation, guidance and control from the
Harbin Institute of Technology, in 2018. He is
currently a Postdoctoral Fellow with the Beijing
Institute of Aerospace Systems Engineering. His
current research interests include robust control,
eigenstructure, and spacecraft control.

DUAN GUANGREN (Fellow, IEEE) received the
Ph.D. degree in control systems sciences from
the Harbin Institute of Technology, Harbin, China,
in 1989. After a two-year postdoctoral experience
with the Harbin Institute of Technology, where
he became a Professor of control systems theory,
in 1991. He visited the University of Hull, The
University of Sheffield, and the Queens Univer-
sity of Belfast, U.K., from December 1996 to
October 2002. He is currently the Founder and

the Honorary Director of the Center for Control Theory and Guidance
Technology, Harbin Institute of Technology. He is in charge of the Center
for Control Science and Technology, Southern University of Science
and Technology. He is also an Academician with the Chinese Academy

of Sciences. He is the author and co-author of five books and over 400 SCI
indexed publications. His research interests include parametric control
systems design, nonlinear systems, descriptor systems, and spacecraft
control. He served as a member for the Science and Technology Committee,
ChineseMinistry of Education, and theVice President for the Control Theory
and Applications Committee, Chinese Association of Automation (CAA).
He is a fellow of CAA and IET. He served as an associate editor for a few
international journals.

XIN WANQING received the Ph.D. degree in
aircraft guidance, control and navigation from
the Beijing University of Aeronautics and Astro-
nautics. His research interest includes aircraft
design. In May 2020, he was awarded the
‘‘Second National Innovation Medal.’’ In August
2021, he was selected into the preliminary list
of candidates for the 2021 additional election
of academicians of the Chinese Academy of
Sciences (Ministry of Technology and Science).

In February 2023, he received the 2021 Ho Leung Ho Lee Foundation
Science and Technology Award (Science and Technology Progress Award).

VOLUME 11, 2023 132253


