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ABSTRACT Accurate detection of target location and type is crucial for treating ocular trauma caused by
foreign bodies intrusion. However, the traditional method of manually marking CT image targets has slow
recognition speed and poor detection accuracy, which cannot meet the real-time and accuracy requirements
for detecting foreign bodies in clinical diagnosis. To address this issue, we propose a lightweight detection
and recognition model based on feature extraction and fusion. Firstly, the normalization-based attention
module and the sigmoid linear unit activation function are introduced into the inverted residual block of the
backbone network to enhance the model’s attention to salient features and improve the detection accuracy.
Then, the path aggregation feature pyramid network is utilized to fuse multiscale features, enabling the
information interaction between different levels of the network and enhancing the accuracy foreign bodies
classification. In particular, the incorporation of the space-to-depth convolution and convolutional mixing
modules into the feature pyramid network significantly reduce the computational overhead while effectively
capturing the key semantic features in both space and channel directions, thereby improving the lightweight
level of the model. Finally, the location and type information of the foreign intraocular bodies are obtained
by this model. The experimental results demonstrate the superior performance of the proposed model in
terms of mAP@0.5, accuracy, sensitivity and specificity, achieving 97.2, 93.5, 98.0 and 88.0, respectively.
Furthermore, the smaller number of parameters and faster detection time allow the proposed model run in
real-time on poorly configured hardware, making it more suitable for clinical applications.

INDEX TERMS Intraocular foreign body, feature pyramid, lightweight, real-time detection.

I. INTRODUCTION
Foreign bodies invasion of the eye refers to the entry of
various foreign bodies into the eye through the eyewall, which
is a serious ocular trauma with a high risk of blindness [1].
Due to the inherent fragility of ocular tissues, including the
lens and retina, natural recovery is impossible [2]. Therefore,
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prompt and precise diagnosis of the injury location and
type is essential [3]. Different intraocular foreign bodies can
cause varying levels of damage to the eye, leading to a
need for different treatment methods. Hence, the location and
type information of intraocular foreign bodies are crucial in
determining the surgical approach and achieving successful
treatment outcomes.

Medical imaging examination is currently the core means
of clinical disease screening, diagnosis, treatment and
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evaluation, among which CT scanning is the simplest and
non-invasive and [4] less harmful to the human body
compared to traditional radiography. Furthermore, CT scan-
ning is highly sensitive to soft tissues and organs, allowing
for clear visualization of lesion sites and obtaining high
diagnostic value images. As a result, it is widely utilized for
examining intraocular foreign bodies. Currently, the methods
for detecting foreign bodies are still at the stage of manually
marking CT images [5]. The accuracy and efficiency in
determining the orientation and type of foreign body does
not meet the needs of clinical examination [3], [6]. Therefore,
there is an urgent need for an automatic image detection and
recognition method.

With the development of artificial intelligence(AI) tech-
nology [7], [8], image processing methods based on deep
learning(DL) are widely used in the medical field [9], [10],
[11]. For example, Khan et al. [12] proposed a pyramid-based
multiscale encoder-decoder network for medical image seg-
mentation that demonstrated model segmentation accuracy
and diagnostic speed on four publicly available medical
datasets. Zhao et al. [13] used a DL model combined with
migration learning and feature fusion techniques to assist
physicians in the clinical diagnosis of thyroid nodules, which
improves diagnostic accuracy and efficiency. Especially in
the field of ophthalmology, many researchers have used
medical images to build DL models to analyze various
ophthalmic diseases [14]. Pan et al. [15] employed a DL
algorithm to automatically detect four lesions in classified
fluorescein images, achieving acute DR grading. Lin et al.
[16] introduced bounded heat map regression and signed
distance map reconstruction branches on top of the seg-
mentation framework, and proposed the first joint learning
framework, BSDA-Net, for centro-concave avascular zone
segmentation and multi-disease classification. To the best of
our knowledge, there are no AI methods for detecting and
recognizing intraocular foreign bodies.

Furthermore, there is a growing tendency in DL applica-
tions to implement models on end-side platforms, such as
mobile and embedded devices, that are capable of running
in real-time and in real-world environments. These platforms
are distinguished by their low memory and processor
capabilities, which impedes the deployment of networks
requiring highmemory and computational resources, necessi-
tating the development of lightweight network architectures.
SqueezeNet [17] is an early and classic lightweight network
that uses the Fire module for parameter compression.
The MobileNet [18], [19], [20], [21]series network is the
predecessor of the MobileViT [22] series network, which
has a smaller volume, fewer calculations, higher accuracy
and great advantages in lightweight neural networks. A fully
connected layer-based attention mechanism was proposed in
the GhostNetv2 [23] architecture, which possesses the ability
to quickly execute on common hardware whilst capturing
dependencies between long-distance pixels. ShuffleNetv2
[24] addressed the issue of inadequate feature channels in
the face of limited computing resources. The You Only Look

Once(YOLO) [25], [26], [27] family is a typical class of
one-stage target detection algorithms that use anchor boxes
to combine classification with the regression issue of target
location, leading to high efficiency, flexibility and good
generalisation performance.

At present, there exist three primary challenges in the
intelligent detection and recognition of intraocular foreign
bodies in CT images. Firstly, the area of the foreign body
part is extremely small compared with the overall brain CT
image, resulting in a high missed detection rate. Secondly,
some structures in the brain regions external to the eyeball are
highly similar to intraocular foreign bodies, leading to false
detection of foreign bodies. Lastly,the detection times of tra-
ditional algorithms is slow and cannot meet the actual needs
of rapid clinical diagnosis. To address these issues and meet
the need for lightweight, we propose a real-time method for
detecting and recognising intraocular foreign bodies, which
uses MobileViTv3 network as the feature extraction model
and path aggregation feature pyramid network (PAFPN) as
the feature fusion model. The proposed method can obtain
the location and type information of the foreign bodies in real
time. Compared with other lightweight models, the proposed
model has lower computational overhead, less detection times
and higher detection accuracy.

Therefore, to address these issues and meet the need for
lightweight, we propose a real-time method for the detection
and recognition of intraocular foreign bodies, which uses
MobileViTv3 network as the feature extraction model and
path aggregation feature pyramid network (PAFPN) as the
feature fusion model. The proposed method can obtain the
location and type information of the foreign bodies in real
time.

II. METHODS
From the perspective of functional structure, the proposed
model mainly includes two parts: feature extraction and
feature fusion. Among them, MobileViTv3 is used as the
backbone network for extracting features, and PAFPN is
used for fusing features. Taking the eye CT image as
input, the location and type information of the intraocular
foreign bodies are obtained after feature extraction and fusion
processing, as shown in Figure 1. In the following, the
detailed architecture of the feature extraction and fusion
model will be introduced in detail.

A. FEATURE EXTRACTION MODEL
The backbone network is mainly composed of multiple
inverted residual block(IRB) and multiscale representation
block(MRB), which are used to extract local and global visual
features of CT images. In order to enhance the model’s
attention to salient features of foreign intraocular bodies
and improve the calculation accuracy of the deep network,
the normalization-based attention module (NAM) and SiLU
activation function are introduced into the IRB. Then, three
feature layers of different scales are output by three MRBs as
the input of the feature fusion network.
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FIGURE 1. Block diagram of detection and recognition model fused with
feature pyramid.

1) IRB MODULE
Different from the traditional residual block, the IRB
structure has a large number of intermediate channels but
a small number of channels at both ends. The purpose
is to adopt the strategy of initially increasing the number
of channels and then reducing the number of channels to
balance the contradiction between the number of convolution
calculations and the number of feature channels. The IRB
module extends the input features to higher dimensions to
increase the nonlinear changes in each channel to obtain
higher detection accuracy with less calculation. Figure 2
shows the three parts of the IRB module.

FIGURE 2. IRB module.

(1) In the first part, a Conv operation of convolution of
size 1×1 is performed on the input feature layer to achieve
dimensionality elevation. Then, the batch normalisation (BN)
layer is used to normalise the features, which makes the loss
function smoother and conducive to gradient descent. In this
study, the sigmoid linear unit(SiLU) activation function is
used as shown in formula 1, which is better than the original
activation function and has stronger robustness under low-
precision calculation.

SiLU (x) = xσ (x), σ =
1

1 + e−x
(1)

(2) In the second part, a 3×3 depthwise convolution
(DWConv) module is used to extract features, which is also
connected with the BN layer and SiLU activation function.
As shown in the lower left of Figure 2, the channel of each
convolution kernel of DWConv is 1; it is only responsible
for one channel of the input feature matrix. Therefore, the
number of convolution kernels must be equal to the number of
channels of the input feature matrix. The number of channels
of the convolution outputfeature matrix is also equal to the
number ofchannels of the input feature matrix.

(3) In the third part, dimension reduction is achieved
using the Conv convolution of size 1×1, followed by the
BN processing layer. The IRB structure removes the final
activation function in this part. When the input dimension is
the same as the output dimension, the IRB structure connects
the output with the input residual, which avoids the gradient
failure phenomenon during the depth convolution process.
The single-depth convolution does not increase the number
of parameters in the high-dimensional feature layer.

FIGURE 3. NAM module.

In this study, the NAM module is added before feature
dimension reduction. Furthermore, the contribution factor
of weight is used to improve the performance of the
attention mechanism. The NAM adopts the integration
method of the channel-spatial hybrid attention module
and redesigns the channel attention and spatial attention
submodules. For the channel attention submodule, the scaling
factor in BN is used, and the channel variance is calculated by
the scaling factor as the basis for measuring the importance
of weights:

Bout = BN (Bin ) = γ
Bin − µβ
√

σ 2 + ε
+ β (2)

where µβ and σβ denote the mean and standard deviation of
the minibatch β, respectively, and γ and β are trainable affine
transformation parameters. The channel attention and spatial
attention modules in the NAM are shown in Figure 3, where
Mc represents the output features of the channel attention
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module, as shown in Eq(3), and γi represents the scaling
factor of each channel. The NAM also applies the BN scaling
factor to the spatial dimension to measure the importance
of pixels, which is called pixel normalisation. The spatial
attention module in the NAM is shown in the Eq (4),where
Ms represents the output of the spatial attention module and
λi represents the scaling factor.

Mc = Sigmoid
(
Wγ (BN (F1))

)
, Wγ = γi/

∑
j=0

γj (3)

Ms = Sigmoid (Wλ (BNs (F2))) ,Wλ = λi/
∑
j=0

λj (4)

The global scheduling mechanism of NAM improves the
performance of deep convolutional networks by reducing
information reduction and amplifying the global interaction
representation, reducing the weight of non-salient features
more efficiently and improving the accuracy of foreign
body detection. Given the sparse weight penalty applied
to the attention module, the weight calculation is more
efficient whilst maintaining the same feature enhancement
performance.

2) MRB MODULE
MRB can fully extract the feature information of the image
with a small number of parameters. Its specific structure
is shown in Figure 4, which is mainly composed of three
submodules, namely, the local information encoding module,
the global information encoding module and the feature
fusion module.

The local information encoding module initially models
the local features of the input feature map X of size
H×W×Cin through a 3×3 depth convolution layer, and then
uses a convolution layer with a convolution kernel size of
1×1 to adjust the number of channels. The global information
encoding module performs global feature modelling by an
Unfold-Transformer Block-Fold structure, after which the
number of channels is adjusted back to the original size by
a convolutional layer of size 1×1. To reduce the number of
parameters, we use the dot product operation of pixels in
was applied to the same position in the Transformer block
to avoid information redundancy caused by the self-attention
operation on all pixels and further improve the detection
speed of model, which is shown in Figure 5.

The feature fusionmodule performs concatenation(Concat)
splicing on the output feature maps after global and local
feature extraction through a shortcut branch, and then
performs residual connection with the original input feature
map after dimension reconstruction to obtain the final output
graph Y with the size of H×W×Cout . The output after
the fusion of local features and global features is called an
intermediate fusion feature. The reason why it is fused with
the input feature residual is to ensure that the input feature is
independent of the local and global features at other positions
in the feature map, so as to simplify the learning task of
the fusion module and enhance the training efficiency of the
model. In addition, experiments show that the introduction of

residual connections in the new MRB architecture is helpful
for improving the detection accuracy.

B. FEATURE FUSION MODEL
The traditional feature pyramid network (FPN) [28] can
greatly improve the detection performance by using simple
up-sampling, down-sampling and directional splicing of
feature channels. However, for a lightweight detection
network with less feature information, we need to design
richer feature linking methods and high-performance feature
processing modules to improve the extraction efficiency
of high-dimensional semantic information and enhance the
ability of the model to detect and identify intraocular foreign
bodies.

In this study, the PAFPN based on FPN is used to fuse
multiscale features, which makes it easier to transfer the
bottom information to the high level by introducing the
bottom-up path to realize the efficient fusion of different lev-
els of features. To this end, the spatial pyramid pooling fusion
cross-stage partial connection (SPPFCSPC) module is opti-
mized by reconstructing the spatial pooling layer and the con-
volutional layer connections for reducing the computational
overhead. And the multiple concatenation(Multi-concat)
module is used for fusing diverse features and further enrich
feature information. In particular, two lightweight modules,
namely, the spatial-to-depth convolution(SPD-Conv) and
convolutional mixing module(ConvMix) are introduced to
capture the key semantic features in spatial and channel
directions. Some important modules in the PAFPN are
described below.

1) MULTI-CONCAT AND SPPFCSPC MODULES
Figure 6 shows the specific structure of the Multi-Concat
and SPPFCSPC modules, where the CBS submodule is a
fundamental convolution calculation module consisting of
a Conv layer, a BN layer and a SiLU activation function.
The Multi-Concat structure is composed of multiple CBS
submodules, which improve the learning ability of the
network by guiding the calculation blocks of different feature
groups to learn more diverse features while preserving the
original gradient path. In the Multi-Concat module, the input
of the final stacking part contains multiple branches. The
lower branch is a CBS module with a convolution kernel
size of 1 that compress the number of feature channels to
half, while the upper branch employs the same CBS module
initially for channels adjustment and subsequently connects
four CBS modules with a convolution kernel size of 3 to
extract feature information. The four CBS modules reduce
the number of feature channels to a quarter and output
them to the final stacked section following the hierarchy.
Once the above output feature layers are stacked, they are
reintegrated by a standardized convolution to obtain the final
output. The denser residual structure of multi-branch stacking
corresponds to an improved accuracy by increasing the depth.
At the same time, the various residual blocks are constructed
in a stacked pattern of skip connections, effectivelymitigating
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FIGURE 4. MRB module.

FIGURE 5. Same position pixel dot product operation.

the issue of gradient vanishing that arises with increased
depth.

FIGURE 6. Multi-Concat and SPPFCSPC modules.

Unlike the typical spatial pyramid pooling structure, the
SPPFCSPC module is redesigned to expand the recep-
tive field. Meanwhile, the pooling window size and the
connection mode of Maxpool are adjusted, which have
larger residual edges for auxiliary optimization and feature
extraction and further reduce the computational overhead.
Initially, the input feature is divided into two branches: the
lower branch undergoes regular convolution, and the upper
branch utilizes spatial pyramid pooling. Finally, the two
branches are merged and connected, which can improve the

detection accuracy whilst halving the amount of calculation.
Specifically, the SPPFCSPC module incorporates multiple
Maxpool operations into a sequence of CBS convolutions.
It rearranges the three Maxpool layers that were arranged
in a parallel structure into serial connections, and uniformly
sets the size of the pooling window to 5. This enables better
detection of small foreign bodies, while also avoiding image
distortion.

2) SPD-CONV MODULE
The performance of the traditional feature pyramid structure
composed of a common CNN rapidly degrades when tackling
small object detection tasks in complex environments due
to the loss of fine-grained information caused by strided
convolution and pooling operations, and the low efficiency
of feature representation learning. The SPD-Conv module
includes a Space-to-depth(SPD) layer and a Non-strided
Convolution(Nconv) layer, thereby obviating the convolution
step and the pooling operation. Incorporation the SPD-Conv
into PAFPN can enhance the network’s ability to capture
small foreign bodies.

FIGURE 7. Schematic diagram of the SPD convolution operation.

Figure 7 illustrates how SPD-Conv cooperates with a
down-sampling factor scale of 2.Fristly, the SPD layer
splits the input features of S×S×C1 into four subfeature
maps.Then,it transforms these maps into the reconstructed
features of s/2 ×

s /2 × 4C1.The Nconv layer continues to
further convert the reconstructed feature map X’ into the
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output feature of s/2 ×
s /2 × C2 by utilizing nonstrided

convolution with a stride of 1, where C2 < 22 × C1.The
Nconv can retain all discriminative feature information
to the greatest extent and prevent nondiscriminatory loss
of information. Substituting convolution step and pooling
layers with SPD-Conv can effectively improve the detection
accuracy while also reducing computational parameters.
In addition, the network fused with SPD-Conv exhibits
better generalisation, which reduces the workload of model
hyperparameter tuning.

3) CONVMIX MODULE
High-dimensional features in deep networks tend to possess
more feature channels and contain abundant semantic feature
information. Considering that the repetition of gradient
information during network optimisation leads to an increase
in the computational overhead of inference, we suggest the
application of the ConvMix module to optimize the gradient
information transmission while lowering the number of
inference calculations. The ConvMix employs a dual-branch
structure, as shown in Figure 8. The upper branch compresses
the feature channel through the CBS unit, reducing the
amount of calculation before transmitting it to the DWConv
processing unit. The lower branch also uses the CBS unit
to compress the number of channels to one-half and then
performs Concat splicing with the output feature map of the
upper branch so that the model can learn enough feature
information. The final connected CBS unit is used to adjust
the final output size to be consistent with the input.

The ConvMix module initially divides the feature maps
of the base layer into two sections and then merges them
by crossing the stage hierarchy to decrease the amount of
computation whilst ensuring accuracy. The input is connected
to the DWConv result by a residual structure and then by a
pointwise convolution with a convolution kernel of 1. After
two convolution operations, the GELU activation function
is connected with the BN layer. The ConvMix module
designed on the basis of DWConv can greatly reduce the
calculation overhead of the model and realize the lightweight
reconstruction of the PAFPN.

The final output shown in Figure 1 is the classifier
and regressor for obtaining the final location and type
information of intraocular foreign bodies. Three enhanced
effective feature layers can be fused by PAFPN. At this time,
the feature map can be regarded as a set of feature points, each
feature point has a target prior box and each prior box has
several features of the channel. The classifier and regressor
can determine whether the prior box at the feature point
corresponds to an object, which is implemented in a 1×1
convolution.

III. RESULTS AND DISCUSSION
A. DATASET
Based on the study and analysis of 82 patients’ brain CT [29]
images, we selected 931 typical CT images of intraocular

FIGURE 8. ConvMix module.

foreign bodies to generate the initial dataset. Among them,
652 lesions were related to foreign bodies, 400 lesions to air
accumulation, and 121 lesions to blood accumulation. Some
images contained more than one type of intraocular foreign
body, as shown in Figure 9.
Given the specificity of medical images, the CT image

dataset of intraocular foreign bodies manifests the problems
of a small sample size and an imbalanced number of
positive and negative samples. The performance of the object
detection network based on DL shows a positive correlation
with the number of images present in the dataset. Expanding
the original dataset through the use of data augmentation
technology can effectively improve the performance of the
network in detecting and recognizing intraocular foreign
bodies, even in complex environments.

FIGURE 9. Different types of intraocular foreign bodies in brain CT
images.

As depicted in Figure 10, the intraocular foreign body
only appears in the inside and edge area of the patient’s
eyeball, which corresponds to the upper eyeball part in the
whole CT image, that is, the key area where the target to be
detected appears. Therefore, by maximizing the utilization of
the key detection area of the image, the imbalance between
the number of positive and negative samples in the dataset
can be effectively improved, ensuring that the target detection
network extracts sufficient lesion features. In this study,
we cross-segmented each CT image in the original intraocular
foreign body dataset to obtain four image slices of the same
size. The scattered image slices were reorganized into the
original size by randomly splicing them together, both in key
areas and throughout the cross-cut image slice set. Only the
CT image slice containing the eyeball region was randomly
recombined by slice random stitching. The reconstructed
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image sizes of from both methods were consistent with the
original image. The above scheme is an effective solution for
addressing the difficulty of training with limited samples.

FIGURE 10. Data augmentation of CT images of intraocular foreign
bodies.

By segmenting and reconstructing CT images randomly,
a larger dataset can be generated, thus increasing the
network model’s resilience. Furthermore, for the particular
dataset relating to intraocular foreign bodies, the randomized
slicing approach in pivotal areas significantly boosts target
utilization efficiency, thereby augmenting feature extraction,
detection, and recognition abilities of the model within
intricate environments. Data augmentation was performed
on the original dataset, expanding it to 10,587 images. The
training set and the testing set are divided at a ratio of 8:2.
In addition, we selected 500 CT images that did not contain
intraocular foreign bodies as the specificity test data set to
calculate the misjudgment ratio of the proposed model.

B. MODEL TRAINING AND CONVERGENCE ANALYSIS
To decrease the model training time, the pretrained parameter
values on the COCO public dataset are used as the initial
values for the proposedmodel parameter training. This model
has an input image size of 640×640 and a network layer
consisting of 448 layers with Adam as the optimizer. The
initial learning rate for the model is set to 0.001, the batch
size is 32 and the training epoch is 300.

The model training process mainly contains three aspects
of loss, namely, rectangular loss (loss-box), confidence
loss (loss-object) and classification loss (loss-class). The
rectangle represents the size and location of the object, whilst
the confidencemeasure displays the level of confidence in the
predicted rectangle, evaluated within a range of 0 to 1. Higher
values indicate a greater probability of finding the target
within the rectangle. The classification probability defines
the class of the object. The network loss is a combination
of three losses that are weighted. Firstly, we calculate the

FIGURE 11. Loss function and mAP@0.5 index changes during model
training.

rectangular box loss by using the complete intersection
over union(CIOU) loss. Secondly, we use the binary cross
entropy(BCE) loss to calculate the confidence loss and
classification loss. As indicated in Figure 11, the rectangular
box loss and classification loss decrease significantly with
increased training rounds, while the confidence loss curve
exhibits greater fluctuations during the initial stage of training
and later decreases smoothly. The mAP@0.5 indicator curve
rises smoothly with training rounds, reaches a maximum at
approximately 150 rounds and then remains flat.

C. ABLATION EXPERIMENTS
In this study, we propose a real-time method for detecting
and recognizing intraocular foreign bodies, which employs
MobileViTv3 network as the feature extraction model and
PAFPN as the feature fusion model. To more clearly
understand the influence of each module of the models on
the overall detection and recognition effect, we conducted
ablation experiments and summarized results are shown in
Table 1.

TABLE 1. Comparison of ablation study performance.

The combination of the IRB structure and NAM module
improves the mAP@0.5 index by 0.5 without intensifying
the computational burden of the network. Additionally, the
detection time of the model remain at a lightweight level.
Thereafter, on the foundation of the backbone network,
the PAFPN structure is added for feature fusion between
different scales, and the detection performance of the model
is greatly improved. The mAP@0.5 is increased to 97.0,
but it inevitably causes a surge in the number of model
parameters, and the detection time of the model is greatly
reduced. The detection time per CT image increases from
3.1 to 5.7 ms/sheet. Therefore, we introduce the SPD module
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TABLE 2. Performance comparison of models using different feature extraction networks.

and the ConvMix module to lightly reshape the feature fusion
structure to improve the detection speed. The SPD con-
volution structure optimizes the down-sampling procedure
in the deep network to avoid the enormous computational
overhead caused by high-dimensional features. When the
SPD convolution structure is added to PAFPN, the model
parameters are reduced by 2 M and the detection time is
reduced by 0.6 ms/sheet.

The ConvMix module enhances the transmission of
gradient information in deep network, reducing the amount
of inference calculation. Integrating the ConvMix module
into PAFPN reduces the model parameters by 3 M and
the inference time by 0.6 ms/sheet, but a slight decrease
in mAP@0.5 is also observed. It is possible that the
ConvMix module possesses a weaker capability to extract
feature information at the lower part of the network when
compared to both the feature extraction module in YOLOv5l
[30] and feature extraction module in YOLOv7l [31].
However, the SPD module can address this issue due to
its competence in exploring the feature depth information.
Therefore, incorporating the SPD module and ConvMix
module into the PAFPN structure leads to improved detection
performance and reduced detection time. Our model achieves
an mAP@0.5 of 97.2 and a detection time of 5.0 ms/sheet,
which is 0.7 less than that of the traditional PAFPN. This
advancement is beneficial in promoting clinical injury detec-
tion. In addition, as shown in Fig. 12, we compared the actual
visual detection effect graphs of MobileViTv3+IRB and
MobileViTv3+IRB+PAFPN for intraocular foreign bodies
with our model, and ours exhibits superior foreign object
position detection accuracy. Therefore, the combination of
this model is optimal in terms of the number of parameters,
mAP@0.5, detection time and location accuracy.

D. COMPARISON OF ALGORITHMS
1) PERFORMANCE COMPARISON OF MODELS BY USING
DIFFERENT FEATURE EXTRACTION NETWORKS
To evaluate the effectiveness of the MobileViTv3 as a
feature extraction network in detecting and recognizing
intraocular foreign bodies, this study compares it with
eight other lightweight models, including MobileNetv1 [19],
MobileNetv2 [20], MobileNetv3 [18], ShuffleNetv2 [24],

GhostNetv2 [23], MobileViTv1 [22], MobileViTv2 [32], and
MobileViTv3 [21]. The comparison is carried out in this
section.

Table 2 illustrate the superior performance of our proposed
model in terms of mAP@0.5, sensitivity and specificity.
Meanwhile, the accuracy is only 1.2 lower than that of
the original MobileNetv3 used as the feature extraction
network. Our analysis of MobileNetv3’s low sensitivity and
specificity indexes has revealed that its poor recall ability
yields a high accuracy rate for foreign bodies detected
in a limited range, ultimately leading to a falsely high
detection accuracy. In regards to accuracy and sensitivity
for clinical examination, the MobileNet series, GhostNetv2,
and ShuffleNetv2 fail to meet the necessary requirements.
Our model, compared to the original MobileViTv3, reduces
the number of parameters by approximately 1 M and the
detection time by 0.2 ms/sheet. Meanwhile, compared with
MobileViTv1 and MobileViTv2, the difference in detection
time of the proposed model is less than 0.5 ms/sheet, while
showing a significant advantage in mAP@0.5.

2) PERFORMANCE COMPARISON OF MODELS USING
DIFFERENT FEATURE FUSION NETWORKS
In order to verify the effectiveness of the enhanced PAFPN
developed in this study, we have chosen to carry out compara-
tive experiments using four different feature fusion networks,
namely, PANet+YOLOv5l [33], PANet+YOLOv5l, ASFF
[34] and BiFPN [35]. In this section, we only concentrate
the performance of the feature fusion network, thus adopting
the improvedMobileViTv3 is selected as the backbone for all
models.

TABLE 3. Performance comparison of models using different feature
fusion networks.

According to Table 3, the feature fusion network proposed
achieves superior results in all indicators, with significant
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FIGURE 12. Comparison of visual effects of ablation experiment (a)Ground Truth (b)MobileViTv3+IRB (c)MobileViTv3+IRB+PAFPN (d)Ours.

advantages in its detection performance and speed. Notably,
the BiFPN model performs similarly to this model in terms

of mAP@0.5, but its high large number of parameters
and long detection time render it unsuitable for real-time
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FIGURE 13. Comparison of visualization effects of different object detection networks.

clinical detection. The combined models of PANet with two
YOLO feature fusion networks also display good detection
efficacy. In comparison to the BiFPN structure, which
has a significant computational overhead, this study finds
the parameter number and detection time of the proposed
method to be acceptable. Furthermore, in the desighn
of the feature fusion network, this study introduces two
high-performance convolution processing modules, Multi-
Concat and SPPCSPC, to lightly reshape the network
structure while ensuring the detection effect. As a result, the
proposed model achieves faster speed and better detection
and recognition performance.

3) PERFORMANCE COMPARISON WITH OTHER OBJECT
DETECTION ALGORITHMS
In this section, we compare the performance indicators
of various object detection networks in the detection of

intraocular foreign bodies to validate the effectiveness of
our model. Figure 13 displays the visual effects of the
algorithm comparison. The comparison algorithms are pri-
marily divided into three categories. The study evaluated five
single-stage object detection algorithms namely, YOLOv5l
[30], YOLOv7l [31], YOLOX [26], CenterNet [36] and
CornerNet [37]; a two-stage object detection approach, Faster
RCNN [38]; and a fully transformer-based object detection
algorithm,DETR [39]. Table 4 shows that ourmodel achieved
the best results in various detection performance indicators.
In particular, the proposed model is faster in terms of
detection time than the single-stage detection networks,
and more accurate in terms of detection accuracy than the
two-stage detection network. Furthermore, our model has
obvious advantages in the specificity index, indicating that
its false positive target false detection problem has also been
improved.
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TABLE 4. Performance comparison of different object detection networks.

IV. SUMMARY
To address the issues of imprecise marking, large positioning
error, cumbersome operation process and high detection time
during the detection of intraocular foreign bodies in CT
images by current technical means, a lightweight detection
and recognition model based on feature exaction and fusion
is proposed in this study. We use MobileViTv3 as the
backbone network and utilize the PAFPN to fuse multiscale
feature information. By redesigning and incorporating mul-
tiple modules, a lightweight model for real-time detection
and recognition is constructed, which realizes the efficient
detection and diagnosis of intraocular foreign bodies injuries
in brain CT images.

The experiments indicate that the proposed model devel-
oped in this research has a mere 30 M parameters and
detection time of 5.0 ms/sheet. Compared with other
lightweight models, it has lower computational cost and faster
detection speed, which allows the proposed model to run
in real time on poorly configured hardware. Furthermore,
in comparison to various object detection algorithms, this
model achieves the highest mAP@0.5 of 97.2, sensitivity
of 98.0 and accuracy of 93.5. The specificity index of
88 also demonstrates that this model effectively addresses
the issue of high false positive rate of detection results.
This proposed model presents significant advantages in
the detection and recognition of intraocular foreign bodies,
making it well-suited for clinical applications.
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