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ABSTRACT The 3D printing industry faces challenges in ensuring reliable and repeatable processes,
as increasing slopes can lead to defects and faults forming layer by layer in fabricated parts. Detecting these
defects through post-processing quality inspections is time-consuming and laborious. To address this, a new
method is proposed that incorporates a scoring scheme to quantitatively evaluate process performance using
clad height data during printing. This approach aims to save time and cost while preserving the structural
integrity of the part. The study develops a layer-wise point cloud processing technique to convert the
incoming unordered data streams into rasterized points. By transforming raw signals into spatially equidistant
points representing clad height in a 2-D Cartesian plane, a heatmap tomography of each layer is generated.
Subsequently, a novel Defects-Finder algorithm is developed to locate and cluster surface defects based on
the assigned scores. The findings demonstrate the algorithm’s ability to identify the root cause of propagated
faults, which can result in severe defects. Additionally, the study employs various statistical measures in the
layer-level analysis to evaluate miniature process faults or shifts, which may get overshadowed, including
cases of under and over-deposition. Through comparison and validation with physical artifacts, the proposed
method proves effective in identifying and assessing process faults. Ultimately, this method enhances big data
visualization for cost-effective quality control and boosts the overall productivity of additive manufacturing
processes. By streamlining defect detection and performance evaluation, it addresses the challenges faced
by the industry in ensuring reliable 3D printing outcomes.

INDEX TERMS Big data visualization, directed energy deposition, in-situ quality monitoring, performance
evaluation, surface defects detection.

I. INTRODUCTION
The recent decades have seen a paradigm shift in structural
and product design due to the advancement of Additive

The associate editor coordinating the review of this manuscript and
approving it for publication was Manuel Rosa-Zurera.

Manufacturing (AM) and, more importantly, how things are
sustainably fabricated; A layer-wise approach as opposed to
the conventional Subtractive Manufacturing (SM) method.
The core principle of SM is the removal of materials
via machining, drilling, grinding, or casting into moulds.
Research has consistently shown that SM suffers from a
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lower-level design freedom [1]. In contrast, AM, commonly
referred to as ’3D printing’, empowers end-users to produce
crucial spare parts that are intricate and costly [2]. Hence,
it has taken a central stage in the transformation of supply
chains in the new global economy. Other benefits of leverag-
ing on AM include reductions in the (1) associated costs from
the direct reduction of manufacturing lifecycle costs and non-
recurring costs, (2) lead time, and (3) mass of the components
[3]. Indeed, this disruptive technology has become part and
parcel of today’s competitive market and has expanded into
several sectors, including the military, aerospace, medical,
automotive, and dental industries [4].
The two common metal-AM technologies are selective

laser melting (SLM) and directed energy deposition (DED).
SLM technology employs layer-by-layer fabrication, and
hence, it has limited scalability (build volume). For SLM
to scale, a larger build container is required to satisfy the
maximum dimensions of the build and must be filled with
feedstock materials. On the other hand, DED allows freeform
fabrication, with DED scalability limited by the scalability of
the robotic and gantry systems. Also, DED stores feedstock
in a separate refillable container, pumps it to the deposition
head andmelts it locally. As such, DED has gained popularity
over SLM.

The fundamental process involved in DED is the use of
a highly focused energy beam to instantaneously liquefy
feedstock and substrate materials, forming a molten pool that
steadily solidifies as the beam maneuvers, guided by the pre-
set trajectories. Unlike SLM, DED can be exclusively used
for repair or retrofitting by leveraging its multiple-axis fea-
tures and its ability to produce functionally graded materials
(FGM) [5]. However, the capability of DED to manufacture
complex structures is often limited, and it frequently suffers
from lower geometrical accuracy and surface quality [6]. The
generalization of DED technology also poses a challenge;
optimized process parameters for a specific part’s structure
may not produce the same outcomes when used for printing
another part design, regardless of identical material used [7].
Despite these challenges, advancements in DED technology
have allowed DED to produce results comparable to those of
SLM.

Another challenge in the DED process is that it involves
many processing parameters that are confined to a brief
processing window. Process faults, including pores, edge col-
lapsing, and under and over-deposition, are often inevitable
[8] but can be minimized. To date, a series of post-processing
methods is required to inspect and evaluate the quality
of manufactured parts and determine their conformance to
the required standards. Chen et al. [9] asserted that extra
effort is required to develop AM standards, that is, quality
assurance. Furthermore, the evaluation process, either via
non-destructive methods (e.g., X-ray, ultrasonic, callipers,
machine vision, and roughness testing) or destructive meth-
ods (e.g., cutting into smaller samples) [10], can be costly and
time-consuming. Once evaluated, the parts may need to be

sent for further post-processing to improve their surface finish
and mechanical properties [11]. Naturally, this long-chain
process reduces AM productivity.

Alternatively, the value of in-situ monitoring amanufactur-
ing process is now widely acknowledged by the AM industry
[12]. Manufacturers of AM machines have started incorpo-
rating a diverse range of sensors into their latest models for
monitoring purposes, whilst at the same time, to understand
the relationship between process variables and part prop-
erties [13], [14], [15], [16]. In-line inspection has become
increasingly necessary [17], [18]. This is because sensor data,
combined with the AM machine axes, can be recorded to
show a complete timeline and location history of the variable
during the deposition process [19].

However, big data mining in AM, particularly with DED,
has made limited progress so far [20], [21]. Data mining
involves analyzing data collections with statistics, mathemat-
ics, computer algorithms, and graphics to uncovermeaningful
information and patterns [22]. Visualization techniques can
make datamining evenmore effective in additivemanufactur-
ing [23], and its aims usually vary naturally across industries,
with various available data taxonomies [24]. Posada et al.
[25] speculated that big data visualization is already becom-
ing indispensable and will remain relevant in Industry 4.0,
as it caters to more comprehensive and integrated solutions.
A wide range of algorithms already exists for big data visu-
alization, whether for quality monitoring or defect detection
[26]. However, there is a need for statistical methods that
can automatically detect onset defects [27], particularly in
detecting small process shifts [28].

To support the ongoing advancement of in situ monitoring,
it is crucial to create adaptable techniques that can register
and combine various data types, including sensor readings,
machine scan paths, and log files, and churn out meaningful
information from the data [29]. This paper is exactly intended
to fill in this research gap, by developing a framework that can
assess the performance of the deposition process in real-time.
The contributions from this research are:
• Devising a real-time rasterization method that can trans-
forms incoming data streams into an ordered point
cloud data structure in real-time. This is achieved by
using raster cells/voxels to represent the clad height of
adjacent raw data points. The proposed method was
validated with batch (near real-time) processing as a
benchmark using the Mean Squared Error (MSE). The
deviation between the observed melt-pool height data
and the nominal threshold value is calculated for each
cell/voxel, and the percentage deviation is apportioned
into intervals.

• Layerwise heatmap topography based on assigned
scores can be used to provide visualization, aiming to
provide information pertaining to the state of the layer
and statistical accessors to detect process shifts on each
layer. These preprocessing steps are essential for down-
stream analysis.
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• Finally, a novel defects-finder algorithm is proposed as
a by-product of our framework that iteratively searches
for clusters of defects upon the completion of each
layer. To validate our algorithm, a basis on a-priori-
identification is applied, which involves validating by
cross-comparison to data gained from ex-situ measure-
ments, i.e., visual inspections, of defects at the exact
locations [30].

The paper is organised into multiple sections. Section II:
Related Works outlines relevant works, including types of
defects, geometrical sensing, and point cloud processing.
Next, Section III: Materials and Methods outlines the equip-
ment utilised for data collection and the proposed framework,
which encompasses details on batch and streaming phases,
preprocessing steps, performance evaluation, and the defects-
finder algorithm. In Section IV: Results and Discussion,
we delve into the experimental setups, validate the streaming
algorithm’s effectiveness through batch processing, analyse
the proposed method at the layer level, and examine the
results of the surface defects cluster. Finally, concluding
remarks are offered in the conclusion section.

II. RELATED WORKS
A. TYPES OF DEFECTS
Significant analysis and discussions on the geometrical
defects related to DED was presented by AbouelNour and
Gupta [30] and Zehao et al. [28] The intricacies of the print-
ing process may result in flaws which may manifest at any
stage of the printing process and these flaws can signifi-
cantly impact the quality and strength of the printed parts.
Flaws may not be immediately visible and rectify these flaws
post-production may be challenging due to the large build
size and complex geometries, that could not be easily seen,
let alone, reached for post-processing rectification. Defects
can generally be categorized into three classes: (1) surface
defect, which is easily visible on the outer surface; (2) sub-
surface defect, which occurs within a depth of 1-500 µm
below the surface; and (3) internal defect, which is located at
depths greater than 500 µm, and can manifest in the shape
of pores, voids, or cracks [30], [31]. These defects can be
infinitesimal in size at their incipient stage. It is important
to meticulously monitor each layer of the printing process,
to detect any deviations from the norm as early as possible. By
doing so, the machine operator can make informed decisions
that may help minimize defects and maintain a high level
of control over the entire process to ensure consistency and
reproducibility of the process [32].

B. GEOMETRICAL SENSING
Several researchers have proposed in-situ monitoring using
different sensors. This facilitates the collection and under-
standing of process signatures, including the molten pool
temperature distribution and its gradient or geometrical
characteristics (i.e., the height, width, dilution, or wetting
angle and shape), and ultimately, can be used to identify

flaws during the manufacturing process. Indeed, previous
studies have reported that a correlation exists between differ-
ent process signatures and the quality of fabricated parts [16].
Thus, monitoring of process signature allows the computer
or operator to adjust the parameters during the manufac-
turing process or stop lengthy processes if any defects or
deviations occur to avoid wasting manufacturing time and
resources. However, these process signatures are difficult to
interpret and require several preprocessing and feature extrac-
tion techniques to convert them into meaningful information
for speeding up diagnostics in the context of quality [33],
[34]. Typically, a machine operator is responsible for mon-
itoring and intervening when faults occur. Typically, once
suitable process parameters and signatures for the monitor-
ing process are identified, suitable means of monitoring the
parameters and signatures need to be selected. For instance,
monitoring of geometrical and thermal characteristics can
be achieved through the utilization of image signals with a
visible (CCD/CMOS camera or 3D scanner/projector) and
an infrared spectrum, respectively. Xia et al. [35] provided a
comprehensive overview of various methods for monitoring
and detecting different kinds of defects, helping to guide the
selection process.

In this study, the focus is to monitor the geometrical
accuracy of the build parts; to detect normal, under- and
over-deposition. There are two monitoring approaches of
obtaining geometrical process signatures [16], [36]: laser
scanning-based [37], [38], [39], [40], [41], [42] and machine
vision-based [43], [44], [45], [46], [47], [48], each with their
strengths and weaknesses. Laser scanning-based monitoring
system has been used to obtain more precise depth infor-
mation on fabricated parts, i.e. layer height, by obtaining
high-density data in 3D coordinate systems known as point
clouds [41]. Point clouds are highly sensitive to geometric
variations, surpassing images in their ability to detect even the
smallest defects in the manufacturing process. However, laser
scanning-based monitoring system has severe limitations,
especially when it comes to in-situ monitoring of metal AM
processes. Firstly, the ineffectiveness of laser scanning for
in-situ monitoring of a molten pool stems from the obstruc-
tions of the camera’s structured light caused by the intense
light radiated by the pool [16], [38]. Secondly, scanning with
a detector may encounter two potential issues that can cause
misleading inferences. The first is the occlusion effect [49],
where the scanner scans the surface, but the detector cannot
see the region, and the second is the shadow effect [41], [49],
[50], which occurs when the part design has complex shapes
or due to surface irregularities that prevent some regions
from being reached by the laser scanner. Thirdly, as laser
scanning-based systems have limited surface area coverage
[38], the entire surface area must be scanned iteratively line-
by-line, causing longer lead times. This is especially true in
some industries, such as the aerospace industry, where larger
components are common [3]. To guarantee adequate cover-
age, a sizable laser scanning-based system may be required,
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but this comes at the expense of rising the overall manufac-
turing costs. Finally, most laser scanning-based technology
currently available is used for inspection after construction.
While it is possible to monitor upon the completion of each
layer, this would limit its processing capability to near-real-
time only [36], [38], [41], [50]. This delay would lengthen the
lead time by factoring in the time needed to scan the entire
surface area of the build.

On the other hand, machine vision is cost-effective and
compatible with various systems, particularly for in-situmon-
itoring, providing detailed contextual information for down-
stream analysis. Most of the metal AM equipment already
uses at least a binocular vision system [43], [46], [51]; thus,
depth measurement can already be attained [52]. However,
the system’s reliability depends heavily on the lighting condi-
tions, which greatly influences the benchmarks. Additionally,
machine vision-based 2D monitoring systems struggle to
accurately capture depth information with a single camera
setup, and as such, adding more cameras to the setup may
be able to improve accuracy and reliability [16]. There is
strong evidence, as suggested by Chua et al. [53], to sup-
port the use of complementary metal-oxide semiconductor
(CMOS) cameras for single-layer inspection, which involves
monitoring the process signature of the melt pool geometry
and using the information to control laser power. Multi-
layer inspections, both in-situ and ex-situ, have also been
recommended in order to identify flaws in the multiple layers
and determine their size. Traditionally, non-destructive tests
using X-ray and CT scans have been used for this purpose.
This type of inspection can reveal surface, sub-surface, and
internal defects, including voids and porosities, as well as
their relative positions. However, for this particular study, the
focus is solely on identifying surface defects on the basis of
geometrical process signatures.

C. POINT CLOUD PROCESSING
Rasterization is commonly employed to process high-
dimensional unordered point clouds, transforming them into
ordered point clouds or images to enhance the performance
of downstream algorithms [54]. Lyu and Manoochechri [41]
developed an online laser scanning system that efficiently
monitors the Fused Filament Fabrication (FFF) process. The
system uses a custom program that reduces noise with a point
cloud library (PCL) [55] and extracts the upper surface of
the part with the RANSAC algorithm [56]. Subsequently,
a rasterization method was used to explain surface quality by
calculating the depth of each grid node based on the distance
of accumulated neighbouring projected scanned points—the
ratio of grid depth to the designed layer thickness was used
to identify over and under extrusions through colour coding.
Afterwards, a CNN model was used to classify the state of a
manually labelled layer into fourmain classes: normal, under-
deposition, over-deposition, and severe under-deposition, and
based on the classification results, the process parameters

were adjusted for the subsequent layer. However, generally
labelling thewhole layer as having either of the three anomaly
classes based on only some areas of the layer with defects
could result in issues for the previously deposited normal
areas. This is because, whilst the adjusted process parameters
may be suitable for some of the layers with defect, it may not
be suitable for the layer as a whole. Localizing these defects
separately with multi-classification and make the appropriate
adjustments to the process parameters solely in those affected
regions would have been a more productive actions.

Similarly, Ye et al. [57] used the rasterization technique
for point cloud transformation, however, they have asserted
that the technique is insufficient for detecting defects and that
only minor differences can be observed when comparing the
distributions of the rasterized pixels. Ye et al. [28] proposed a
framework for detecting manufacturing process defects using
in-situ point clouds. A series of preprocessing steps, includ-
ing translation, orientation, and scaling, was used to measure
the planes’ affinity between the unordered and reference point
clouds to describe the surface variations. This was necessary
since the captured point clouds were not on the same plane.

Point cloud data structure can be further leveraged for
a follow-up analysis to identify surface, sub-surface and
internal defects. Kalami and Urbanic [49] used point cloud
data to establish a correlation with surface roughness. This
non-destructive approach formed an integral part of a post-
processing procedure, whereby surface roughness results
were subsequently compared with those obtained from
destructive testing. Petrich et al. [58] combined toolpath data
with process signatures to form a point cloud after each layer
was fabricated. Subsequently, the point cloud was converted
into a raster image, with pixel values assigned based on the
average of the nearest data points. Additionally, a homogra-
phy technique was used to align the registered computerised
tomography (CT) and layerwise electro-optical imagery data
with the toolpath through iterative optimization. With this
technique, spatial and temporal data were integrated through
synchronization. Subsequently, clusters of anomalous CT
voxels could be detected based on the CT scan’s grayscale
intensity.

The use of point clouds in metal AM for in-situ inspec-
tion, however, remains limited, as most studies have focused
on post-processing approach. Gronle et al. [59] visualized
the unordered point cloud representation of each layer’s
raw InGaAs photodiode signal. Chen et al. [60] exploited
unordered point clouds obtained from a laser profiler to
detect surface defects through unsupervised and supervised
machine learningmethods. Initially, DBSCANclusteringwas
used to segregate the point cloud regions that may contain
surface defects. Subsequently, the clustering outcomes were
fed into a supervised classification algorithm to classify the
type of defects. Garmendia et al. [61] used third-party GOM
inspection software to visualize the layer height deviations.
However, the software’s capability is limited to visualizing
the deviations of the outer surface of the manufactured part
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FIGURE 1. A schematic diagram of DLMF system hardware: (a) DMX 01 Metal 3D printer, (b) DMX 01 deposition head (Standard DLMF Print Module
800) that is equipped with dual machine vision-based (CMOS) cameras and powder feeder delivery system, along with a magnified control panel,
and (c) DLMF process illustrating the laser-powder interaction with its resultant clad.

only and not the internal segment. In real industrial settings,
it is essential to ensure the reliability of parts; therefore, infor-
mation on the internal section of the part is also necessary to
prevent the need for destructive testing.Meanwhile, Bernhard
et al. [62] tackled this problem by transforming the unordered
toolpath coordinates into ordered point clouds, each pixel
representing the melt-pool temperature data using OCTAVE
software to enable the in-line inspection. However, quantifi-
able results of the process performance were not presented.
Furthermore, visualization was only created once the print
was completed and not in a layer-wise manner—relying on
third-party software. In contrast, Heralić et al. [38] introduced
a simple preprocessing technique to transform the sampling
points into a set of N discrete points along the deposition
toolpath. Instead of temperature data, they measured the per-
formance of the process by measuring the error between the
mean of the layer height and the reference height of the robot.

However, this approach does not capture information between
the layers; that is, if the layer has small, accumulated layer-
by-layer defects; hence, localizing these faults or errors on
the layer is not possible.

III. MATERIALS AND METHODS
A. HARDWARE SETUPS AND DATA ACQUISITION
In-situ process monitoring data was acquired on a direct laser
metal forming (DLMF) process, which is a type of DED
process, on a DMX 01 Metal 3D printer, as shown in Fig. 1.
A close inspection of the DMX 01 deposition head in Fig. 1
reveals an integrated system comprising an intricate powder
delivery system, with a dual vision-based monitoring system.
The DMX 01 utilizes a coaxial nozzle design that allows the
powder stream assisted by the carrier gas to enclose the Ytter-
bium (Yb) fiber laser beam into a conical shape protected
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FIGURE 2. The proposed framework architecture for process in-situ monitoring and defects detection based on point cloud processing.

FIGURE 3. An ordered point cloud data structure: (a) indicates the prior layer deposition, (b) shows the next layer deposition shifted by the k step
due to the inclined slope. (Yellow, Blue, and Green colours represent the local, global, and new subdivisions, respectively), (c) An ordered point
cloud structure of the shifted layers in a 3D representation while structuring the pixels (X- and Y-coordinates) within the corresponding Z-direction;
leaving the unsupported layers (overhangs), which are marked by a red line.

by the shielding gas (Argon gas) to avoid oxidation. The
distance between the workpiece and nozzle has been adjusted
to a 9mm offset. A machine vision-based monitoring system,
developed based on the US7423236B2 patent [63], using dual
complementary metal-oxide-semiconductor (CMOS) cam-
eras are used. The cameras are mounted off-axially to obtain
the melt pool height data [16], [64], [65]. The pixel is about
800 × 600 with a frame rate of 60 Hz. Toolpath trajectories
or scan vectors are logged by the machine and contain infor-
mation regarding the AM build strategy, including (i) time,
(ii) laser position, (iii) laser power, and (iv) melt pool height.
Variations in the melt pool can be adjusted by utilizing laser
power as the controller parameter due to its instantaneous

response rate from the external control signal. Comparatively,
mechanical-based motion control is slower, i.e., scanning
speed. Powder flow control is even slower, causing a delay
in the order of seconds from powder reservoirs [46].

B. OVERVIEW OF THE PROPOSED FRAMEWORK
Flowchart representation of the proposed framework is given
in Fig. 2. The real-time rasterization technique transforms
the unordered point cloud of the incoming data streams,
including process signature information, into spatially coor-
dinated equidistant coordinates. In this work, the point cloud
generation involves a 5D data stream (x, y, z, t , h), where x,
y and z are coordinates, t is the time index and h is the clad
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FIGURE 4. A schematic of real-time rasterization of the point cloud process flow.

height. Clad height is included as part of the layer-wise mon-
itoring and addresses the critical challenges of information
processing posed by the existing point cloud generation using
existing point cloud-based approaches. Point clouds captured
by laser scanning-based or process information logged by the
machine often have an unordered data structure, as AM prod-
ucts are frequently associated with freeform geometries (arbi-
trary toolpath) with different shape at every layer. Therefore,
the proposed method addresses these issues by considering
the points ordering based on the prior layers, as shown in
Fig. 3. As clad height at the current layer is affected by the
clad height at the previous layer, re-computation of the new
height representing each raster/voxel cell is performed. These
recomputed clad heights are then used to assess the layer-wise
deposition process at the current layer. Consequently, a novel
algorithm to localize defects that trail on the surface of the
build parts without the need for external hardware has been
proposed. After preprocessing, the high-dimensional point
cloud data are thoroughly examined to further extract features
characterized as defects for process monitoring. Clusters of
defects that propagate along the growth direction that may
have originated from previous layers and could potentially
weaken the quality of the final product are identified using
the novel defect-finder algorithm.

1) BATCH RASTERIZATION OF THE UNORDERED POINT
CLOUDS AS BENCHMARK OF RASTERIZATION METHOD
The laser head moves along the substrate, leaving behind
trails of sampling points following the tool path. Because
of the inconsistent sampling rates, these time-dependent
tool-path data points may not be equally distributed; there-
fore, a re-sampling technique is performed to transform the
tool-path data points (time-dependent signal) into spatial
equidistant sampling points in a 2-D Cartesian plane.

Before describing the proposed real-time rasterization
method, a batch-processing approach of rasterization,
a widely known technique in the literature [28], [29], [36],
[41], [54], [57], [58] is described in this section. The method
is used for comparison study and benchmarking purpose with
the proposed real-time rasterization method. It is noted that
the batch-processing approach can only be used to analyze the
deposited layer information upon completion. This contrasts
with the proposed real-time rasterization method, which

rasterizes the data streams real-time during the deposition as
the laser head moves along the pre-defined tool path.

For the pre-processing step, boundaries encompassing the
entire structure of the dataset (XminL ,XmaxL ,YminL and YmaxL )
are first obtained, where L is the total number of layers. Sub-
sequently, equidistant sampling points are generated in the
2-D coordinate space within the bounds of the structure, sep-
arated by k resolution (offset). These equidistant point coordi-
nates are conjoined with their respective bounding boxes and
appended to a dictionary, where the point coordinates act as
keys while the values (x−k

/
2, x+k

/
2, y−k

/
2 and y+k

/
2)

store its bounding box boundary. Furthermore, a re-sampling
procedure for each layer by obtaining the X and Y boundaries
of the current ith layer li (Xminli ,Xmaxli ,Yminli and Ymaxli ) layer
have been defined, the relevant time-dependent sampling
points within a pre-defined size k of the bounding boxes
(or pixels) can be congregated. Subsequently, the median or
mean of the clad height data was obtained. However, in some
cases, the key does not contain any sampling points and,
thus, returns a null value. In such cases, a simple data null
imputation procedure needs to be performed by creating a
padding of size n surrounding the null key offset by a k
resolution (3 × 3 window), and then taking the median or
mean of the height data on the padding [41]. This median
or mean value was used to impute the key with a null value.
These re-sampling and null-filling procedures are repeated
until all layers are processed.

As an output of the batch rasterization re-sampling
approach, consider the re-sampled list D containing a set of
re-sampled clad height arrays. The list D contains vectors in
the form of

{
X ∈ RM ,Y ∈ RN ,Z ∈ RL

}
and a matrix format

as {H ∈ RM×N×L}, where X , Y , and Z denote the X, Y, and
Z coordinates of the re-sampled points, respectively, and H
denotes the clad height data. Notations M , N , and L repre-
sent the dimensions of the re-sampled X, Y, Z coordinates,
respectively. It is worth noting that the dimension of the Z
coordinate is equal to the total number of layers L. The results
of this algorithm are used in the subsequent steps.

2) THE PROPOSED REAL-TIME RASTERIZATION OF THE
UNORDERED POINT CLOUDS
Although the batch rasterization method can generate
equidistant spatial sampling points, it can only be performed
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at the end of the layer deposition during the dwell time
phase when all the data have been collected. A real-time
re-sampling method is needed to provide real-time feed-
back to the operator and to ensure that the error does not
accumulate. A real-time method is also able to retain the
temporal aspects of the re-sampled data on top of the spatial
aspects; thusmaking it a spatiotemporal (space-time)method,
as shown in Fig. 4. For instance, retaining the temporal
information in the real-time rasterization technique, repre-
senting the deposition’s tool path, may help the researcher
to pinpoint any abnormalities found in the re-sampled time-
series data, i.e., ordered point cloud with time ordering. This
is not possible with the prior batch re-sampling method;
consequently, during the aggregation stage, raw data points ri
within the raster cell may contain a number of raw data points
separated by a significant difference in timestamps that will
be aggregated together, causing tool-path disarray. However,
the statistical properties of the data cannot be easily computed
in a real-time rasterization method, in contrast to the batch
re-sampling method, where all the data have been collected
and are already available before processing and analysis.
In real-time situations, the deposition tool path is arbitrary.
Considering all of the above, an alternative rasterization
re-sampling algorithm that can be deployed in real-time has
been developed.

A simple and intuitive explanation of this method is pre-
sented in Fig. 4. At time t1, for the first observation or pixel,
an artificial box with a boundary offset of k/2 resolution
surrounding it during the initialization stage is created. In
the real-time rasterization, the resolution k is constrained
to the 3D printer setup, i.e., hatch spacing of the tool-path.
Therefore, resolution k cannot be changed, unlike batch ras-
terization. Subsequently, in the next time step, there will be
at most two possibilities in which the raw data point rt+1
either lies within or outside the recently created pixel. In
real applications, more than one raw data point may exist
within a single pixel. If the next raw data point rt+1 lies
within the recently created pixel pi = {r1, r2, . . . , rt , the
mean of the clad height and timestamps of all raw data points
belonging to pi is recomputed to give pi(x, y, z, ti, hi). On the
other hand, if rt+1 falls outside pi, then the padding search
algorithm is activated, creating a padding (initialize with
a 3× 3 window) offset by k with size n surrounding pi (refer
to Algorithm 1). If it fails to detect within the first padding,
the algorithm stacks the additional padding surrounding the
previously created padding until the next rt+1 is located. In
the real-time rasterization process, unobserved or new pixels
are iteratively updated to global subdivisions, as shown in
Fig. 3b. This procedure is necessary to ensure that all the
pixels in the subsequent layers are aligned along the Z -axis,
for example, stacking on top of the previous layer pixels.
In the case of null imputation of missing pixels during the
rasterization technique, instead of creating a 3 × 3 window
and taking the median, this method uses 1-D linear interpo-
lation to account for the mixing pixels’ values as delineated
in Fig. 4. A more comprehensive and detailed explanation of

the real-time rasterization re-sampling method is provided in
Algorithm 2.

In contrast to the batch rasterization method, which can
only preserve spatial data, the real-time algorithm preserves
the spatiotemporal aspects of the data (both space and time).
List D contains a mixed set of vectors and matrice as{
X ∈ RM ,Y ∈ RN ,Z ∈ RL ,H ∈ RM×N×L ,T ∈ RM×N×L

}
,

where X , Y , and Z denote the X , Y , and Z coordinates of the
re-sampled (ordered) point clouds, respectively,T denotes the
timestamps of the actual deposition, and H denotes the clad
height data. Notations M, N, L represent the dimensions of
the re-sampled X, Y, Z coordinates, respectively. The results
of this algorithm are used in the scoring evaluation algorithm.

Algorithm 1 Padding Search
1: Function PaddingSearch(pi (x, y) , rt (x, y) , k):
2: n← 0
3: locate← 0
4: while locate ̸= 1:
5: n← n+ 1
6: dpad ← Create padding with size n

surrounding pi (x, y)
7: Xpad ← Get all unique X coordinate from dpad
8: Ypad ← Get all unique Y coordinate from dpad
9: for x in Xpad :
10: for y in Ypad :
11: if

(
x − k

/
2 ≤ rt (x) < x + k

/
2
)

and
(
y− k

/
2 ≤ rt (y) < y+ k

/
2
)
:

12: locate← 1
13: return pi+1 (x, y), i+1
14: else:
15: Continue
16: end Function

3) CALCULATIONS OF THE NEW POINT CLOUD HEIGHT
By default, the sensor reads out the new clad height at a
particular point in time from the reference plane to the top
of the clad geometry. In this study, the vision-based sensor
resets the reference plane to zero for every new layer. For
instance, from Fig. 5., the original reading of the total height
at pixel 2 is 1010, but this is somewhat misleading because of
the nature of the vision height camera sensor data acquisition
approach, as stated previously.

Since the data structure of the point clouds had been trans-
formed using the proposed real-time rasterization approach,
it is possible to re-correct these point clouds’ attribute,
particularly, their clad height data, such that any under or
over-deposition at a particular point is not being compen-
sated. A re-computation is necessary to account for these
incorrect measurements during the process using:

hnew(m, n, l) = [(l − 1)× δ + h(m, n, l)]

−

∑l−1

j=0
hnew(m, n, j) (1)
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Algorithm 2 Real-Time Rasterization Re-Sampling Method
Input: Streaming data, rt ∈ R
Output: pglob = []

D = {p1 (x, y, h1) , p2 (x, y, h2) , . . . ,

pi (x, y, hi)}
1: while printing a layer
2: i← 0
3: Xglob←Get all the unique X-coordinate from pglob
4: Yglob←Get all the unique Y-coordinate from pglob
5: if initialize ̸= 1:
6: try:
7: i← i+ 1
8: if

(
Xglob − k

/
2 ≤ rt (x) < Xglob + k

/
2
)

and
(
Yglob − k

/
2 ≤ rt (y) < Yglob + k

/
2
)

9: Initialize pi(x, y) using the pglob(x, y)
10 else
11 Initialize pi(x, y) using the rt (x, y)
12 except
13 Establish pi(x, y) at the vicinity of any

pglob(x, y) offset by k
14 Append rt to pi(x, y)
15 ti, hi← Get the mean of the timestamps and

clad height from rt (x, y)
16 pi(x, y, ti, hi)← Assign ti, ht to pi(x, y)
17 Append pi(x, y, ti, hi) to D
18 else
19 if

(
pi(x)− k

/
2 ≤ rt (x) < pi(x)+ k

/
2
)
and(

pi(y)− k
/
2 ≤ rt (y) < pi(y)+ k

/
2
)

20 Append rt to pi(x, y)
21 Re-compute ti and hi based on all r in pi(x, y)
22 Re-assign pi(x, y, ti, hi) from
23 else
24 pi (x, y) , i← PaddingSearch pi (x, y) , rt

(x, y) , k()
25 Append rt to pi(x, y)
26 ti, hi← Get the mean of the timestamps and

clad height from rt (x, y)
27 pi(x, y, ti, hi)← Assign ti, ht to pi(x, y)
28 Append pi(x, y, ti, hi) to D
29 if null pixel(s) exist then
30 Assign h of null pixel(s) using 1-D

linear interpolation between the pixels of
the null pixel

where h(m, n, l) and hnew(m, n, l) are the raw and new clad
height instances, respectively, at the mth, nth, l th indices of
re-sampled point index, where m ∈ M , n ∈ N , and l ∈ L,
respectively. The constant δ is the nominal threshold value
which corresponds to the machine’s setup of z-increment at
every layer. Referring back to Fig. 5 together with (1), the
height recorrection method involves adding the ideal height,
δ, up to the previous layer l − 1, to the pixel height indexed
at mth, nth, l th of the resampled point and then, deducting the
cumulative re-corrected height of the same index point up to

the preceding layer l − 1. This process is executed across
every pixel within the layer to output the new re-corrected
height hnew.
It is clear from the equation that the new clad height

hnew(m, n, l) is not only dependent on the raw clad
height deposited in the l th layer, but also the new clad height
instances of the previous layers. Consequently, if no action
is done at the l th layer to rectify under- or over-deposition,
the defect may propagate and even worse, worsen at the
subsequent layer.

FIGURE 5. An illustration shows before (left) and after (right)
re-calculates the raster/voxel height. The orange dashed line indicates
the reference layer height.

4) PERFORMANCE EVALUATION
During deposition, variations in clad height hnew may be
observed within the same layer (l ∈ L), which may be due
to the chosen process parameters, including the type of depo-
sition pattern, laser power, powder feed rate, travel speed,
and other external disturbances. The percentage deviation
between the observed melt-pool height data and the nomi-
nal threshold value δ can be used as a performance metric,
as shown in Fig. 1c, with percentage deviation d(m, n, l) at
the mth, nth, l th indices can be determined:

d(m, n, l) =
hnew(m, n, l)− δ

δ
× 100 (2)

where hnew(m, n, l) is the re-corrected clad height instance at
the mth, nth, l th indices of re-sampled point index of l th layer.

Given that the laser power p(m, n, l) can be used to
control the amount of deposition h(m, n, l) at the current
layer and that the new clad height hnew(m, n, l) is dependent
on the new clad height instances of the previous layers,
it can be determined that the percentage deviation d(m, n, l)
is then dependent on both the laser power and the previ-
ous layers’ new clad height instances, i.e., d (m, n, l) =
f (p(m, n, l), hnew (m, n, i) : i = 1, . . . , l−1). The aim of laser
power controlled at the l th layer should then be to minimise
percentage deviation at that layer l,

min
p(m,n,l,)

{d(m, n, l)}2 (3)

subject to hnew (m, n, i) : i = 1, . . . , l − 1 (4)

Furthermore, d(m, n, l) alone is insufficient to detect any
abnormalities. Thus, feature scaling is indispensable to avoid
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FIGURE 6. The intuitive schematic diagram of the defects-finder algorithm process.

the domination of features with larger or smaller values.
A scoring evaluation algorithm can be used to summa-
rize the overall process performance. This study proposed
an S-point scoring system, via a 7-point scoring system,
S= {0, 1, 2, 3, 4, 5, 6, 7}, with 0 and 7 indicating the worst
and best possible scores, respectively. Subsequently, the
assignment of these scores is apportioned to the respective
set of intervals Int ,

Ints←

 100, s = 0

100−
(
s×

100
|S| − 1

)
, s > 0

(5)

Consequently, each instance hnew(m, n, l) is assigned to a
score function,

score (hnew(m, n, l)) =

{
0, |d(m, n, l)| ≥ Int0
s, Ints ≤ |d(m, n, l)| < Ints−1

(6)

The generation of layerwise heatmap tomography uses the
results containing a set of arrays of scores after computing
the re-sampled list D using the abovementioned equations.
This heatmap tomography provides insights that reveal spa-
tial defects in the context of geometrical characteristics, that
is, under (negative d(m, n, l)) and over-deposition (positive
d(m, n, l)) of the process. The colors are mapped based on
set of percentage deviation intervals.

5) DEFECTS-FINDER ALGORITHM
A score of 0 indicates a percentage deviation of over 100%
from the nominal value and this strongly suggests the pres-
ence of a defect that may induce to larger defects. For the
application at hand, the preprocessed point cloud data P ∈
Ri×j×k with the assigned scores can be represented based on
XYZ voxels within the build coordinate system, as shown
in Fig. 6. From the figure, it can be seen that each layer
contains red-colored voxel with 0-score. Fig. 6. also shows
an example of detected defects constellated into two clusters
with different sizes. The central idea of this defects-finder
algorithm is based on the recursive function that finds adja-
cent anomalous voxels (0-score) in 3D space, merging them
into individual clusters, as outlined in Algorithms 3-4. Each
voxel is marked as not visited in the initialization phase to

avoid repetitive searches at the exact locations. Suppose an
anomalous and unvisited voxel is detected by Algorithm 3,
then it will count as a cluster root. Then, the DefectsSize
function (see Algorithm 4) will recursively search by creating
a 3×3×3 cuboids window to search for adjacent anomalous
voxels from the initial voxel.

Algorithm 3 Defects-Finder

Input: Point cloud matrix with scores, P ∈ Ri×j×k

Selected score, s
Output: Defects cluster, C : ID→ (size, coordinates),

where ID is the cluster index
1: Function Defects-Finder(P, s):
2: cluster_count ← 0
3: visited ∈ Mi×j×k (False)
4: for l in range(i):
5: for y in range(j):
6: for x in range(k):
7: if (Pijk==s) (visited ijk==False):
8: cluster_count = cluster_count + 1
9: cluster_size =

DefectsSize(P, visited, s, x, y, l)
10: Get the cluster coordinates and assign

to CID along with the cluster_size
11: return C
12: end Function

IV. RESULTS AND DISCUSSION
A. EXPERIMENTAL SETUPS
Most studies in this field have focused mainly on simple
structure analysis, such as single- or multi-track and thin-
wall structures, despite the fact that objects with complex
shapes are commonly fabricated in real-world applications.
Quite a few studies have investigated the optimal processing
parameters for achieving the maximum inclination angle,
such as the type of deposition pattern, z-increment, laser
power, scanning speed, and powder feed rate [66], [67], [68],
[69], [70]. However, the purpose of this paper is not to achieve
that goal. Rather, the objective is to verify the effectiveness
of the proposed framework, in which the overhang structure
was used as an experiment; since DED can print without
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Algorithm 4 Determine the size of the clusters
1: Function DefectsSize(P, visited, s, x, y, l):
2: if (l < 0) or (l ≥ i) or (y < 0) or (y ≥ j) or (x < 0)

or (x ≥ k)
or (visited ijk==True) or (Pijk ̸=s) :

3: return 0
4: visited ijk==True
5: cluster_size = cluster_size+ 1
6: for l2 in range(l − 1, l + 2, 1):
7: for y2 in range(y− 1, y+ 2, 1):
8: for x2 in range(x − 1, x + 2, 1):
9: if (l2, y2, x2, ) ̸= (l, y, x) :
10 cluster_size + =

DefectsSize(P, visited, s, x, y, l)
11: returncluster_size
12: end Function

a supporting structure [71], avoiding the need for a post-
treatment process.

Unlike its counterpart, the SLM process relies on the
powder bed that acts as a support structure, simultane-
ously mitigating thermal warping adjacent to overhanging
areas. However, the removal of the additional support struc-
ture is often laborious, with an extensive support structure
that directly increases post-processing time and costs and
inescapably leads to high surface roughness after peeling
off the support materials [72]. This experiment was done
to ensure the dependability and resilience of the proposed
framework by detecting any slight process changes that might
lead to significant surface flaws.

Consequently, overhang structures with inclination angles
ranging from 0 to 10◦ were used for evaluation purposes.
These experiments were tested using real experimental data
generated from the DLMF DMX 01 (Hwacheon Machinery
Co., Ltd, South Korea), as depicted in Fig. 1. Powder of
Inconel 718, a nickel alloy manufactured by Sandvik with
a size range of 53-150 µm, has been selected due to its
industrial relevance, in particular for the aerospace industry
[73]. The substrate material used for the experiments was
a 20 mm thick stainless steel (S45C) sheet. Each structure
was first constructed at an inclined angle of 0◦ up to 10 mm
in height, upon which a slope of N◦ was deposited. The
total height of all the structures was 30 mm. The process
parameters included a z-increment of 0.25 mm, scanning
speed of 850 mm/min, powder feed rate of 4.5 g/min, and
coaxial gas flow rate of 6.8 l/min. The laser power was
adjusted based on the closed-loop control strategy, according
to the melt-pool height. The filling deposition pattern was
zigzag with a tool spacing of 0.5 mm. Additionally, the k
resolution used in this study was 0.5 mm. To enhance the geo-
metrical accuracy of the manufactured part, a double-contour
scanning strategy was deployed for this experiment, that is,
contour-filling-contour.

Fig. 7. shows the results for the overhang structure. The
purpose of the experiment was to correlate and verify the
physical defects that can be clearly observed on the edges and
surfaces of the structure with the results from the proposed
method.

The experiments were conducted on a MacBook M1 Pro
2021 with 16 GB RAM, using Python 3.9. Several prepro-
cessing steps were required to separate the printing mode
(contours and filling) using the laser power values as an
indicator. When the laser head moved to a new position after
finishing a print of either the contour or filling mode, the laser
was turned off during this process. Thus, both the reading
value of the laser from the system and the vision height sensor
value would be zero. As such, this laser-off period indicates
the transition phase from one mode to another. Because
the deposition process is sequential, that is, contour-filling-
contour, they can be easily identified based on the sequence
(first contour, laser-off, filling, laser-off, and second contour).
As part of data preprocessing, the time-series data of the
laser-off period were removed, keeping only the important
information, as shown in Fig. 8. For data visualization, the
focus was only on the filling mode. Moreover, the layers were
separated based on the Z-axis coordinate of the laser head. As
mentioned previously, a z-increment of 0.25 mm was used in
the experiment, with every increment indicating that a new
layer was established.

FIGURE 7. (a) Physical artifacts of the printed parts ranging from 0 to 10◦;
(b) 3D CAD Overhang Model.

B. ALGORITHM EFFECTIVENESS
As previously discussed, the main drawback of near real-time
batch processing is that it causes tool path discontinuities as it
aggregates data points from different timestamps, particularly
when the resolution is large. On the other hand, if the resolu-
tion is small, there will be many pixels without the timestamp
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FIGURE 8. Preprocessed time series of the vision height sensor values
and the deposition toolpath visualization of one of the layers.

attribute. Assigning a timestamp t to these pixels alters the
original toolpath with a smaller hatch spacing. These are
the main problems encountered when batch processing with
different resolutions is performed.

As previously discussed, the real-time rasterization
approach can only achieve a resolution k = 0.5 mm bounded
by the tool-path’s hatch spacing during the initialization of
the 3D printer setups. Nevertheless, this method preserves
temporal and spatial information, including tool-path deposi-
tion in the Cartesian space and its trajectories, which benefits
researchers in detecting abnormalities and mapping coordi-
nates back to the timestamps for further analysis. On the other
hand, the batch rasterization method has more flexibility in
changing the resolution k but loses temporal information.
Therefore, there is a trade-off between choosing a finer or
coarser resolution k or a fixed resolution k bound with the
hatch spacing but retaining tool-path trajectories.

To compare batch (near-real-time) and real-time process-
ing methods for the rasterization process, it is necessary to
quantitatively measure the differences between them for val-
idation purposes, with the Mean Squared Error (MSE) used
for this purpose. As both methods use the same data structure
and coordinates, comparing the computed height data pixel-
by-pixel is possible. The closer the value is to zero, the more
accurate the real-time method is to the batch rasterization
method.

MSE =
1
P

M∑
m=0

N∑
n=0

L∑
l=0

[
hbnew(m, n, l)− hrnew(m, n, l)

]2
(7)

where P is the total pixels, hbnew and hrnew represent batch and
real-time pixel heights, respectively, and both are indexed
at the same mth, nth, l th re-sampled point for comparisons,
where m ∈ M , n ∈ N , and l ∈ L, respectively. Small MSE
suggests small variation between the benchmark re-sampling
method (batch) and the proposed method (real-time).

A validation summary of the real-time and batch rasteriza-
tion approaches is tabulated in Table 1. These variations exist
between the twomethods because of the different re-sampling
methods, specifically in the null imputation process. Batch

TABLE 1. The results of MSEs between batch and real-time approach at
different inclination angles.

rasterization infers a null value based on the mean or median
of neighboring pixels. Meanwhile, real-time rasterization
uses interpolation between two re-sampled data points of the
null value. The lowest (0.9999) and highest (42.4962) MSEs
occurred at 0◦ and 10◦ inclination angles, respectively. The
average MSE for all the inclination angles was 12.16. In
addition, the MSE of the 7◦ inclination angle is relatively
high compared to 6◦ and 8◦, and the possible reasons for
this high error may be caused by (1) the aforementioned null
value imputation differences; if the neighboring values are
too high, the null value inference is also high, thus inducing
high errors for the respective pixels and (2) human error or
other related external factors during the deposition process
may cause the quality to degrade, resulting in high deviations,
and subsequently affect the reasoning mentioned above. In
this study, the batch processing uses the median operator with
a 3 × 3 window to compute the missing measurement pixels
[41]. Meanwhile, our proposed method, uses the interpola-
tion between the ordered point clouds to deal with missing
pixels/raster cells. One way to circumvent this problem is to
replicate the experiments with the same parameters (similar to
the case of 0◦ with ten different samples), average the MSEs
of each inclination angle of different samples, and consider
the uncertainties between the experiments.

C. STATISTICAL MEASURES AND ANALYSIS AT THE LAYER
LEVEL
Visualizing the most important features in two-dimensional
space is vital for observing meaningful patterns that are usu-
ally difficult to identify in raw sensor readings. In accordance
with the present results, correlations between the physical
defects and the proposed method are possible by producing
a heatmap tomography of the layer. Fig. 9 depicts the results
of the batch and real-time re-sampling algorithms for one of
the layers in a 10◦ structure. Additionally, based on these two
figures, the real-time algorithm has visually similar results,
as validated by the batch processing algorithm.

Moreover, it appears that an inclined angle of 10◦ has
several faults, for example, dark blue at the inflection points,
indicating that this particular layer experienced under- depo-
sition below −100%. This particular fault was verified by
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FIGURE 9. Results of (a) batch and (b) real-time rasterization methods at
29.5 mm layer of a 10◦ structure.

comparing it with the defects in the physical structure,
as shown in Fig. 10. The proposed methods, either batch
or real-time approach, imitate X-ray computed tomography
(CT) functionality, which is widely used in the dimensional
measurement of the inner and outer geometries of manufac-
tured parts. Evidently, the proposed method also provides
vital information during the process, allowing for profiling
the internal structure of the component using 1D time-series
data, that is, clad height. However, implementing CT scans
for in-situ monitoring results in a slower building process.

A score between 0 to 7 describes the summary performance
of the deposition layer based on the corresponding statistical
measures. The overall score ratio in this example is the sum of
all computed scores divided by the sum of all the maximum
scores for that layer. It is apparent from Table 2 that the layer
performance at an inclination angle of 1◦ outperforms that
at 10◦. This poor performance occurs because some of the
regions at 10◦ are left unsupported by the previous layer; thus,
an inclined angle of 10◦ is more prone to defects.

The results from this table present several important
insights. First, all three inclined angles had the same median
value, which is not surprising as the median is robust to out-
liers or extreme values; hence, the medianmay not be suitable
for evaluation. Second, the mean for the inclined angle of 1◦

was slightly higher than that of 5◦ and 10◦. At layer 111,
mean values are 6.478 ± 0.040, 6.300 ± 0.049, and 6.137 ±
0.070, for 1◦, 5◦ and 10◦, respectively. From the mean of the
three different angles, 10◦ had the lowest mean compared to
the rest, but the difference was not significant. The mean for
the inclined angle of 10◦ indicates that the process was still

good despite the fact that there were critical faults in the layer,
as depicted in Fig. 10. This poor representation was similar
to the overall score statistic.

Interestingly, the percentile emerged as a better way to
assess performance. The 10th percentile of an inclined angle
of 1◦ in layer 111 is 6 points, indicating that over 90% of
the total re-sampled points scored above 6 points, and less
than 10% scored less. However, the 10th percentile for the
10◦ inclination angle indicates that less than 10% of the
total re-sampled points contain 5 points and below, which is
slightly lower than the 1◦ angle. In addition, the 5th percentile
of an inclined angle of 10◦ is 3 points, indicating that 5%
of the total data scores 3 points, while the 1◦ layer scores
2 points higher. As for the 1st percentile of the 10◦ angle,
it scores 0 points, which 1% of the total re-sampled points
of that layer contain bad scores, including extreme over- or
under-deposition of more than 100% than the nominal value.
This outcome can also be observed in layer 101 of the 10◦

angle.
As the laser head deposits the material layer by layer,

the process may be susceptible to inheriting defects from
previous layers containing severe prints, even in a small area.
From Table 2, the 1◦ structure reports almost consistent per-
formance at the 1st percentile, with scores of 3, 3, 4, 3, and 4,
at layers 41, 61, 81, 101, and 111, respectively. For the 5◦

structure, at layers 61 and 101, the 1st percentile scores 1 and
0 points, respectively, indicating that defects start to occur.
Meanwhile, the 10◦ structure reported poor indicators starting
from layer 61 and persistently did not improve further.

This statistical property (percentile) provides an early indi-
cation of the alarming situation during the deposition process
in real-time, even with multiple small defects in the layer.
This situation is often true in real applications; as the product
is fabricated layer-by-layer, a small detrimental defect could
propagate as the layer grows, as illustrated in Fig. 10. and
Fig. 11b, which could lead to severe defects.

D. SURFACE DEFECTS CLUSTERS RETRIEVED VIA
DEFECTS-FINDER ALGORITHM
In Fig. 12, the Defects-Finder algorithm’s results are dis-
played, showcasing twelve unique clusters that represent
surface defects that occurred during the DLMF process. Only
collections of surface defects with a size of 10 voxels or more
were shown, as the focus was to detect the clusters of surface
defects. These defects were validated by visually inspecting
the physical artifact of the 10◦ overhang structure, as shown
in Fig. 13a-d. One of the challenges found in this study is to
confirm defects with linear horizontal patterns among them,
as illustrated in Fig. 12a; upon checking the Fig. 13c-d, based
on the eyeballing test, the surface roughness on that particular
sides is found to be slightly rough (e.g., white frizzy trails).
However, it is difficult to correlate these directly, and the
algorithm did not pick this up as a significant cluster defect
as preset earlier.

However, Fig. 12b highlights the atrocious surface defects
that were picked up by the algorithm, indicated by clusters
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FIGURE 10. A side-by-side comparison between the physical structure and the proposed method; (a) Physical structure of an inclined angle
of 10◦ shows the edge collapse defects at the inflection points; The proposed method heatmap tomography at a (b) layer of 19.5 mm,
(c) layer of 24.5 mm, and (d) layer of 30.0 mm.

FIGURE 11. The layer-wise score of (a) the normal pixel at coordinate
(−56.25, −40) and (b) the degradation of a pixel at coordinate
(−59.75, −25.5) of the 10◦ structure.

ID#{320, 243, 223, 126, 331, 241, 211, 137}. These defects
were apparent based on the eyeballing test and can be ref-
erenced in Fig. 12b. The most exciting aspect of Fig. 12c is
that it delineates the root cause of each cluster and the layer
it originated from, and until which layer it ends. This result
is tabulated in Table 3. Cluster ID#211 is the largest cluster

amongst all, with a size of 539 voxels, originating from layer
77 up to the final layer. The second largest cluster, ID#320,
is disjointed from other smaller clusters with ID#{243, 223}
and spans from layer 100 until the last layer with a size of
220 voxels. It is clear that these defects propagate as the
layer grows. Based on the results, it can be confirmed that the
geometrical characteristics of the clad height are somewhat
correlated to surface defects. This is similar to Tang et al. [16]
which asserted that the surface quality is pertinent to the geo-
metrical process signatures. Finally, clusters with ID#{294,
102, 128, 239} do not result in severe defects. However,
they cause an accumulation of over-deposition at the frontal
inflection points or edges, displaying pointy edges, which can
be easily observed through visual inspection.

According to the expertise of domain specialists [74], parts
with amaximumpore size below 97.10µmmeet expectations
and are designated as ‘‘pass’’ parts. Parts with a maximum
pore size between 97.10 µm and 220.40 µm fall within a
margin area and are labeled as ‘‘flag’’ parts. Parts with amaxi-
mum pore size exceeding 220.40µm are considered ‘‘failed’’
parts. In this study, the voxel size is 500 × 500 ×250 µm,
which may be potentially classified as ‘‘failed’’ parts. An
investigation into the correlation between internal defects,
such as porosities or keyholes, and internal disjointed voxels
is rather interesting and should be explored in the future.
With the aid of the X-ray CT scan equipment serves as a
reliable source of ground truth and should be utilized to
confirm any potential correlations derived from the proposed
algorithm.
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FIGURE 12. (a) Unfiltered voxels with 0-score (red in colour), (b) The clusters of surface defects detected by the Defects-Finder algorithm,
(c) A scatterplot that shows the clusters’ growth size as layer increases.

FIGURE 13. Physical artifact of a 10◦ overhang structure: (a) Front view, (b) Back view, (c) Right-side view, (d) Left-side view.

In the future, it would be interesting to use artificial intel-
ligence (AI) techniques to provide an early indication of
failures in advance [75], [76], [77]. For instance, prediction

of the anticipated future layers in the subsequent succes-
sive layers so that the operator or AI could make necessary
adjustments to the reference sets of process parameters. This
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TABLE 2. Statistical performance results between three different inclination angles of the layer-level comparison.

TABLE 3. The results of the Defects-Finder algorithm display the ID of each cluster along with its size and the starting and ending layers of its growth.

advancement could help decrease the lead time and cost
related to post-processing approaches, i.e., rectifying the
failed printed components.

V. CONCLUSION
To ensure fabricated parts meet the required specifications,
it is crucial to monitor the manufacturing process and under-
stand the variables that can lead to deviations. Fortunately,
the layer-by-layer nature of additive manufacturing allows
for insights into each layer’s topography, such as geometry
and potential of over or under-deposition, which play a crit-
ical role in quality control. A Defects-Finder approach as a
real-time rasterization method capable of locating anomalous
agglomerated voxels without the need for external hardware
or post-processing, has been proposed in this paper. The
proposed method rasterizes the incoming data streams in
real-time, generating structured point cloud data with spatial-
temporal information. This is in contrast to the near-real-time
state-of-the-art technologies of rasterization method, which
when combined with need of inter-layer inspection, can dras-
tically increase inter-dwelling times. Therefore, this advance-
ment in point cloud processing, together with the downstream
analysis—Defects-Finder—is a remarkable improvement in
metal AM; improving the manufacturing lead time and

foregoing the need of post-processing. Overhang structures
ranging from 0◦ to 10◦ were used to validate the proposed
method. The study demonstrates that the algorithm effec-
tively localizes faults in the deposition process on the layer.
Several statistical properties were employed to evaluate the
performance at a layer level, providing insights into which
properties better represent the overall performance—notably,
increasing the inclination angle adversely impacted perfor-
mance. In layer 111 of a 10◦ slope structure, the overall score,
mean, and median were 0.877, 6.137, and 7, respectively.
These values were deemed high, erroneously indicating that
the deposition process of that layer was good, considering a
scoring scheme with a maximum value of 7. However, the
1st, 5th, and 10th percentiles were 0, 3, and 5, respectively;
making the percentile the best measure for guaranteeing
abnormality detection in the imbalance classification prob-
lem, as it quantified the number of non-zero points, which
other statistical measures failed to do.

Subsequently, this study paves the way for an alternative
to quality control in AM and a closed-loop control strategy to
compensate for faults/errors found within the vicinity. In the
future, expert domain knowledge can aid in labeling anoma-
lous presence in the layer for further analysis, such as defects
classification based on Convolutional Neural Networks.
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