
Received 3 November 2023, accepted 15 November 2023, date of publication 20 November 2023,
date of current version 29 November 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3335094

Crafting Targeted Universal Adversarial
Perturbations: Considering Images as Noise
HUIJIAO WANG , DING CAI , LI WANG, AND ZHUO XIONG
School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin 541004, China

Corresponding author: Ding Cai (kwist_jay@outlook.com)

This work was supported in part by the Innovation Project of Guangxi Graduate Education under Grant 2023YCXS061, and in part by the
Science and Technology Major Project of Guangxi under Grant Guike AA22068072.

ABSTRACT The vulnerability of Deep Neural Networks (DNNs) to adversarial perturbations has been
demonstrated in a large body of research. Compared to image-dependent adversarial perturbations, universal
adversarial perturbations(UAPs) is more challenging for indiscriminately attacking the model inputs.
However, there are few studies on generating data-free targeted UAPs and the targeted attack success rate of
the latest method remains unsatisfactory. Not only that, fewer studies have implemented their approach on
Transformers and its efficacy remains uncertain. Therefore, a novel method denoted as Denoising Targeted
UAP (DT-UAP) is proposed in this paper that considers the training input as the noise, and takes the
input of the last layer into calculation. Specifically, the proposed method minimizes the distance between
perturbations and adversarial examples, then incorporates a targeted loss function to generate targeted
universal adversarial perturbations for different DNNs and Transformers based on different proxy datasets.
DT-UAP has achieved an average improvement of 5% to 10% in terms of both fooling rate and targeted
fooling rate comparing to the most recent method for generating targeted universal adversarial perturbation
with proxy dataset for DNNs. Additionally, DT-UAP has also achieved a targeted attack success rate of
over 80% on Transformers such as MaxVit and SwinTransformer.

INDEX TERMS Targeted universal adversarial perturbation, adversarial example, deep neural network,
transformer, image as noise, proxy dataset.

I. INTRODUCTION
Deep Neural Networks have been extensively proven to be
vulnerable to adversarial perturbations. A well-trained model
could generate incorrect or attacker-specified outputs when
these maliciously crafted and imperceptible perturbations are
overlayed with natural images. The concept of adversarial
perturbations was firstly introduced by Szegedy et al. [1].
They added the elaborately crafted perturbations to an image
and made the model to misclassify it. These perturbations
are known as image-dependent adversarial perturbations.
However, universal adversarial perturbations (UAPs) are
not specific to a single image, but can cause most of
normal images input to DNNs to be misclassified, which
was proposed by Moosavi-Dezfooli et al. [2]. Compared
to image-dependent adversarial perturbations, the study of
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universal adversarial perturbations poses a greater challenge
to the security of DNNs. Universal adversarial perturbations
can indiscriminately attack any image input to DNNs.
It allows attackers to launch real-time attacks on target
models using a single well-trained universal adversarial
perturbation, while it is not possible for image-dependent
adversarial perturbations. There are numerous fascinating
attributes for UAPs, such as dominant labels in non-targeted
universal attacks, the original transferability of UAPs, and so
on. However, few studies have explained these phenomena.
Moreover, only a limited number of works are related
to the crafting of data-free targeted UAPs, while recent
works primarily focus on transferable non-targeted universal
attacks. The success rate of current targeted universal attack
works is unsatisfactory, warranting further research in this
area. It should also be noted that only a few studies
have applied their methods to transformers, and the perfor-
mance of their methods on transformers remains unknown.
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Based on these facts above, there is an urgent need for
additional research on targeted universal attacks, especially
under data-free conditions, which motivates our current
study.

Several studies have made significant contributions to the
study of universal adversarial perturbations in recent years.
Zhang et al. [33] discovered a strong similarity between
universal adversarial perturbations and adversarial examples.
They suggested that targeted universal adversarial pertur-
bations themselves (independent of the images to attack)
are features, while images behave like noise to them.
In addition, Ye et al. [28] leveraged the phenomenon of
Neural Collapse (NC) in their model and proposed FG-UAP.
By calculating the loss based on the input to the last layer of
the model, it effectively improved the attack effectiveness of
the crafted UAP.

This paper is motivated by the aforementioned works
and intriguing issues of universal perturbations and presents
a novel method DT-UAP for generating targeted universal
adversarial perturbations with proxy dataset. The generating
process is illustrated in Figure 1. The performance of
DT-UAP on different datasets is discussed along with the
relationship between the targeted UAP, the model and the
training dataset. The transferability of DT-UAP is also
analyzed, which has explored the issue of weak transferability
of targeted UAP. And DT-UAP was conducted on the latest
transformer models to further evaluate attack performance.
In summary, the main contributions of this paper are as
follows
• It is suggested that training images can be considered as
noise that affects the robustness of model output from
target UAPs.

• A novel method, DT-UAP, is proposed for generating
targeted UAPs with the proxy dataset by distinctively
computing the distance between UAPs and adversarial
examples, and then combining it with the Mean Square
Error and Cross Entropy loss.

• To verify the effectiveness of the proposed method,
the ImageNet and Place365 are used for the proxy
datasets to attack the prevalent models of both DNNs
and Transformers.

• The original transferability of the UAPs generated
by DT-UAP is analyzed to provide an explanation
for the transferable UAPs based on the experimental
data.

II. RELATED WORK
A. IMAGE-DEPENDENT ATTACKS
The concept of adversarial perturbations was first introduced
by Szegedy et al. [1]. They generated adversarial pertur-
bations by using the L-BFGS method with optimization
and specified constraints in 2013. Subsequently, numerous
researchers attempted to explain the existence of adversarial
perturbations. In 2014, Goodfellow et al. proposed the Fast
Gradient Sign Method(FGSM) [3], which rapidly generated
adversarial perturbations. They suggested that the existence

of these perturbations was due to the local linearity of
DNNs. This hypothesis has been supported and validated
by subsequent works of the variants of FGSM, such as
I-FGSM [6], MI-FGSM [5], DI-FGSM [4], and VMI-
FGSM VMI-FGSM [7]. However, the linear hypothesis
failed to explain the existence of non-linear adversarial
examples [8] and the strong robustness of many linear
models against adversarial perturbations [9], [10], [11].
Moosavi-Dezfooli et al. [12] introduced the concept of
decision boundaries and developed the DeepFool method
in 2016, which iteratively optimized the loss function to
move the adversarial samples towards the decision boundary
and eventually surpass it. Carlini and Wagner proposed
the C&W method [13], which minimized the generated
adversarial perturbations by optimizing the loss function
using an optimizer. Another variant of FGSM, called
Projected Gradient Descent (PGD) [8], argued that for a non-
linear model, the direction obtained in a single iteration using
FGSM was not necessarily the best. PGD incorporated an
iterative process that repeatedly searched for the strongest
adversarial examples within a specified range by controlling
the perturbation size using the parameter ϵ. PGD is currently
regarded as one of the most efficient attack methods to
date. All of the aforementioned works are part of white-
box attacks, where the target model is accessible. However,
the information about the target model is unknowable in
the scenario of black-box or transferable attacks, only the
information of training data is required. The first black-box
based attack was proposed by Papernoe et al. [14] in 2017,
which generated substitute models to simulate the decision
boundaries of the target model. The same year, Liu et al. [15]
introduced the idea of ensemble model. In 2020, generative
adversarial networks(GANs) were introduced to generate
synthetic samples by Mingyi et al. [16]. Li et al. [17] com-
bined differential evolution(DE) strategy with approximated
gradient signmethod to deploy black-box attack in 2022. And
Giulivi et al. [18] utilized the form of the scratches in images
to generate more deployable attacks in 2023.

B. IMAGE-AGNOSTIC ATTACKS
Universal adversarial attacks, also known as image-agnostic
attacks, were first introduced by Moosavi-Dezfooli et al. [2]
in 2017. They iteratively applied the DeepFool method [12]
to generate UAPs that could cause most input images to
yield incorrect outputs fromDNNs. Poursaeed et al. proposed
the GAP method [19], which utilized generative adversarial
networks (GANs) to generate UAPs. As research progressed,
efforts were made to construct data-free UAPs that do not
rely on the original training dataset. Khrulkov et al. [20]
constructed UAPs using the Jacobian matrix of hidden layers
in the network. The Fast Feature Fool [21] approach utilized
the mean activation outputs of intermediate layers in convolu-
tional neural networks (CNNs) as a loss function to generate
UAPs. Additionally, other works such as [22], [23], [24],
and [25] have also attempted to construct data-freeUAPs. The
most recent approach for crafting data-free UAPs was intro-
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duced by Li et al. [26] in 2022, where the instance-specific
and universal attacks were integrated through a feature-based
approach. In 2021, Zhang et al. proposed Cosine-UAP [27].
They treated the logit outputs of DNNs between the original
image and the adversarial sample as high-dimensional
vectors. Specifically, they generated UAPs by minimizing
the cosine similarity between these vectors through iterative
optimization. And an improved method FG-UAP [28] was
introduced by Ye in 2023, which utilized the input of the last
layer of the model as the model output. It further enhanced
the effectiveness of UAP attacks. In 2023, Zhang et al. [29]
introduced the spatial transformation technique for universal
attacks, which eliminated the need for additive perturbations.
Liu et al. [30] suggested that gradient aggregation presents
an efficient means of augmenting the efficacy of universal
attacks.

The methods mentioned above primarily focus on con-
structing non-targeted UAPs, yet there are fewer methods
for constructing targeted UAPs. CD-UAP [31] specifically
attacks images of a particular class, without affecting normal
images of other classes. And DTA [32] overlays the targeted
class image with the constructed UAP to redirect it to
a pre-specified class. To the best of our knowledge, the
latest method for constructing targeted UAPs with proxy
datasets is the DF-UAPmethod proposed by Zhang et al. [33]
in 2020. It explored the similarities between normal images,
adversarial examples and the UAPs. Then they constructed
targeted UAPs based on multiple loss functions, which has
achieved a fabulous targeted attack performance. In 2023,
Ma et al. [34] proposed an approach for class-balanced UAPs
to enlarge the dispersion of the predicted labels for universal
attacks. Weng et al. [35] leverage the Kullback–Leibler (KL)
divergence loss to implement both targeted and non-targeted
universal attacks. And universal adversarial attacks can be
adopted to different tasks such as remote sensing [36], text
recognition [37], watermarking [38], object detection [39]
and so on.

III. CRAFT TARGETED UAPS BY DENOISING
The detailed reasoning and implementing process of DT-UAP
are demonstrated in this section.

A. PROBLEM DEFINITION
In the image classification task, given a distribution of images
X ∈ Rd , where X = {x1, x2, . . . , xN }. By defining a
classification function f (·), the classification process can be
represented as y = f (x), where x ∈ X . The objective of
generating targeted universal adversarial perturbations is to
find a perturbation vector v ∈ Rd that, when added to x,
causes the predicted result of f (·) to direct most x ∈ X to our
predefined target label ytarget. Furthermore, the perturbation
vector v is subject to an lp norm constraint, such that |v|p ≤ ϵ,
where ϵ is a given threshold that determines the magnitude of
the influence of v on the image x. With all the requirements,
the objective function for constructing targeted UAPs can be

formulated as follows

C(x) =

{
1, f (x + v) = ytarget .
0, otherwise.

argmax
v

N∑
i=0

C(xi), s.t. ∥v∥p ≤ ϵ, x ∈ Rd (1)

In the case of non-targeted universal adversarial perturba-
tions, the objective is to maximize the change in the original
output of f (·) by adding the perturbation vector v to the input
image x. The specific objective function can be formulated as
follows

Ĉ(x) =

{
1, f (x + v) = f (x)
0, otherwise.

argmin
v

N∑
i=0

Ĉ(xi), s.t. ∥v∥p ≤ ϵ, x ∈ Rd (2)

Indeed, it is evident that generating targeted universal adver-
sarial perturbations is significantly more challenging than
non-targeted ones. Because targeted universal adversarial
perturbations need to not only change the original output
result but also align the output towards a specific target class.
In the case of targeted attacks, the objective is to find a
perturbation vector v that, when added to the input image x,
not only maximizes the change in the output of f (·), but also
redirects the output towards a predefined target class ytarget .
It adds an additional constraint to the optimization problem,
which makes it more difficult to achieve a successful targeted
attack. A deeper understanding of decision boundaries of the
target model and the relationship among different classes
are required in generating targeted universal adversarial
perturbations. It involves finding a delicate balance between
perturbing the image to induce a misclassification and
ensuring that the perturbation drives the output towards the
desired target class. Due to this additional requirement of
aligning the output towards the target class, the generation of
targeted universal adversarial perturbations is more intricate
and computationally demanding compared to non-targeted
perturbations.

B. MOTIVATION
This paper is initially inspired by thework of Zhang et al. [33].
In their study, the authors discussed the similarities between
natural images, adversarial perturbations, and adversarial
examples that were the images obtained by adding the
perturbations to the original images.
The similarity mentioned above can be represented by

a distance function denoted as Dis(X ,Y ), where X or Y
denotes the respective vectors. A smaller value of Dis(·)
indicates higher similarity, while a larger value of Dis(·)
indicates lower similarity. There are several metric options
available to calculate Dis(·), including but not limited
to Euclidean Distance, Manhattan Distance, Normalized
Euclidean Distance, Negative Cosine Similarity, Negative
Pearson Correlation Coefficient, and others.
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FIGURE 1. Procedure for generating targeted UAPs.

Zhang et al. found that for image-dependent adversarial
perturbations, both targeted and non-targeted, the impact on
natural images resembled Gaussian noise. In other words,
when considering the similarity between natural images x
and their corresponding adversarial example x + v, the
value of Dis(x, x + v) was found to be smaller than the
distance between the perturbations v and the adversarial
example x + v. It implied that image-based adversarial
perturbations reduced the similarity between natural images
and the corresponding adversarial examples by introducing
noise.

However, the situation was different for universal adversar-
ial perturbations, where the similarities between these three
components exhibited completely different patterns. For non-
targeted UAPs, Dis(v, x + v) was smaller than Dis(x, x + v).
Especially for targeted UAPs, Dis(v, x + v) was significantly
smaller than Dis(x, x + v). In this case, the behavior of
the image resembled noise. Based on these observations,
the proposed method in our paper considers the original
input image as noise and continuously optimizes to reduce
Dis(v, x + v) by minimizing the influence of the input image
on the logit outputs of targeted UAPs. The ultimate goal
is to generate targeted UAPs that, when added to the input
image and fed into the classification network, yield robust
output results with minimal changes compared to the original
outputs. Furthermore, inspired by the work of Ye [28], our
method chooses to calculate the similarity using the input of
the final layer of the neural network. Rather than calculating
with the logit outputs directly, it enhances the effectiveness
of targeted UAP attacks.

C. TARGETED ATTACK BY DENOISING
After stating the reasoning process of our viewpoint, now
we will describe the specific implementation process of
DT-UAP in detail below. A random perturbation vector v
is initialized and added to the normal image x to create
an adversarial sample x + v. In many existing methods for
generating UAPs such as Cosine-UAP [27], FG-UAP [28],
and DF-UAP [33], x and x + v are input to the model,

and the optimization of the perturbation v is performed
by computing the relationship between these two inputs.
However, what distinguishes our approach from the others
is that we input v and x + v into the model and compute
the resemblance between their outputs, while other methods
compute between x and x + v. It corresponds to the left part
of Figure1. In our method, training images are considered
as input noise that have a significant impact on the original
output of the UAP. However, if the initial noise is too strong,
it will be difficult to find the correct optimization direction
during training. Therefore, a parameterα is introduced to vary
during the training process to control the magnitude of the
input noise, where α ∈ [0, 1]. To continuously increase the
similarity between v and x + v during the training process,
a distance function is required to measure the distance or
similarity between them, denoted as Dis(v, x + v). In the
proposed approach, Mean Squared Error (MSE) is chosen
to represent the distance between v and x + v, which is
calculated as

Dis(X , X̂ ) = MSE(X , X̂ ) =
1
S

S∑
i=1

(Xi − X̂i)2, X , X̂ ∈ Rd

(3)
where S denotes the sum of all the points in X . Other distance
metrics such as Cosine Similarity, Euclidean Distance,
Mahalanobis Distance, and Pearson Correlation Coefficient,
have also been conducted to measure the attack performance.
However, the experimental results showed that they were
inferior to Mean Squared Error (MSE), so MSE is ultimately
chosen as the distance metric. Then following the insight
from FG-UAP [28], to avoid the phenomenon of neural
collapse [50] and achieve more efficient generation of
universal adversarial perturbations, the logit outputs f (·) are
not directly utilized for distance calculation. Instead, it is
computed between the inputs of the neural network’s last
layer, denoted as fl(·). The ultimate objective is to boost
the logit output of the target class relative to the remaining
classes. Therefore, the Cross-Entropy loss function that
calculates the discrepancy between the target class ytarget and
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Algorithm 1 Denoising Targeted UAPs
Input: Train Dataset X , classifier f , output layer’s input fl ,

batch size m, max epoch N , UAP magnitude ϵ, target
label ytarget , image noise magnitude α

Output: Targeted UAP vector v
1: Randomly Initialize the vector v
2: for epoch=1,2,. . . ,N do
3: B ∼ X , |B| = m Randomly Sample B

4:
gv← E

x∼B
[
h

MSE(fl(v), fl(αx + v)) +
h

CE(f (αx + v), ytarget ]
h

Gradient
5: v← optim(gv)
6: v← clamp(v,−ϵ, ϵ)
7: end for

TABLE 1. Targeted fooling rate(%) of the proposed mothod compared to
other white-box targeted universal attack. Results are separated by
accessing to the original ImageNet training data (upper) and data-free
methods (lower). 8 classes are randomly selected and the average value
is reported. Difference values are shown in below.

the logit output of x + v, is incorporated into the current loss
function. It can be formulated as follows

Cross_Entropy(f (x), ytarget )

= − log(
ef (x)[ytarget ]∑K
i=1 e

f (x)[i]
)

= −f (x)[ytarget ]+ log(
K∑
i=1

ef (x)[i]), x ∈ Rd (4)

where K represents the number of the classes. The overall
objective function can be expressed as a combination of the
original loss function and the additional cross-entropy loss.
Based on the above, the loss function for generating targeted
universal adversarial perturbations can be constructed as
follows

LT = MSE(fl(v), fl(αx + v))+ CE(f (αx + v), ytarget ) (5)

The construction process of targeted universal adversarial
perturbations is illustrated in the diagram in Figure 1. The
detailed algorithm can be found in Algorithm 1. In this
process, the training images are considered as noise that
affects the robustness of model outputs of the perturbation.
Therefore, the entire training process can be described as
a denoising process, referring to this method as Denoising
Targeted UAP (DT-UAP).

TABLE 2. Comparison of the proposed method to other data-free
methods (Without access to the original Imagenet training data). The
reported non-targeted fooling ratio(%) represents the mean value over
8 different target classes in targeted attack.

TABLE 3. Performance of the proposed method against Transformers.
Results are divided into non-targeted fooling ratio(upper) and targeted
fooling ratio(lower). Access to the Imagenet training data is also
considered(with data/data-free). 8 classes are randomly selected in the
scenario of targeted attack, and the average value is reported.

IV. EXPERIMENTS
In our experiment, six DNN models are employed:
AlexNet [40], GoogleNet [43], VGG16 [44], VGG19 [44],
ResNet50 [45], and ResNet152 [45]. Six Transformer models
are also included: MaxVit [47], SwinTransformer [48],
SwinTransformer_v2 [49], Deit_tiny [46], Deit_small [46],
and Deit_base [46]. These models are all pre-trained on
the full ImageNet and have great performance on image
classification tasks. Two datasets were used as surrogate
training datasets: the classic ImageNet dataset [41] and the
Places365 dataset [42]. The hyperparameters in Algorithm 1
were set as follows: the number of epochs N=10, the batch
size m=16, the perturbation magnitude ϵ = 10/255, Adam
optimizer with a learning rate of 0.01 and weight decay
of 1e-10. The experiments were conducted on an NVIDIA
GeForce RTX 3070 GPU, and the code was implemented
on PyTorch.

A. PERFORMANCE AND COMPARISON
Our attacks are firstly conducted on commonly used
DNN models and trained the perturbations using popular
datasets for image recognition tasks, the ImageNet and
the Places365. Table 1 has shown the results comparing
with the DF-UAP, which also constructs targeted universal
adversarial perturbations. Compared to the DF-UAP method,
DT-UAP achieves an average improvement of approximately
5% to 10% in terms of fooling rate and targeted fooling
rate. The fooling rate indicates the percentage of model
output that was fooled, and the targeted fooling rate indicates
the percentage of model output that was redirected to the
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TABLE 4. After selecting appropriate target classes(best performance class), the transfer attack capability of targeted UAPs generated by DT-UAP in terms
of fooling rate(left) and targeted fooling rate(right) across both DNN models and Transformer models. The values in bold are the white-box attacks.

pre-defined target label. The higher value of the fooling rate
and targeted fooling rate indicates a preferable attacking
performance. Regardless of whether it is a DNN model
or a Transformer model, there are obvious differences in
attack effectiveness when selecting different target attack
classes, typically ranging from 10% to 20%. Moreover, when
selecting the Dominant-Label [2] as the target class, both
DNN models and Transformer models achieve the highest
fooling rate and targeted fooling rate.

Compared to DNN models, when attacking Transformer
models, the Dominant-Label is not the only effective target
class. In other words, DT-UAP can achieve superior attack
performance on multiple classes, not just the Dominant-
Label. When using different datasets as training datasets, but
with the same target class, the differences in attack results
are not significant. However, these datasets describe totally
different objects. Based on this result, randomly generated
Gaussian noise is utilized as the training dataset. But it leads
to a significantly reduced fooling rate and a near-zero success
rate for targeted attacks.

The proposedmethod is also comparedwith other data-free
UAP methods in the metric of non-targeted fooling rate to
further evaluate attacking effectiveness in Table 2. It has been
observed that our attack success rate is closely matched by
the latest method, but it is undeniable that the non-targeted
fooling rate of our proposed method is not the best. We will
explain the specific reasons below. First of all, our non-
targeted attack’s success rate is not due to our altering the loss
function, but rather to the non-targeted attack capability of
the targeted universal perturbation generated by our proposed
method. In other words, the success rate of non-targeted
attacks we have calculated is the average of the attack effects
after selecting 8 different target classes, not the highest value.
This had also been illustrated in [35]. Secondly, it is easier
to implement non-targeted universal attacks than targeted
universal attacks. The former only involves modifying the
original output results of the model, whereas the latter
involves modifying the original output results while guiding

the model’s output towards a predefined target class. This
also precisely demonstrates the capability of targeted attacks
to conduct non-targeted attacks. The explanation for the
difference between targeted fooling ratio and non-targeted
fooling ratio from the same targeted universal perturbation
is that targeted universal perturbations result in a change in
the model’s output, but they do not necessarily push it into
the target class we have predefined. As for why targeted
universal attacks have different attack effects on different
classes, we believe that the model learns different levels of
features for different classes. A general classification model’s
accuracy across different classes varies. Our attack depends
on the specific model, which directly results in varying attack
effects on different classes.

Additionally, DT-UAP is also applicable to popular
Transformer models, which have gained popularity in recent
years. The attack effectiveness of DT-UAP on Transformer
models is shown in Table 3, which demonstrates a great
attack performance. In DNN models, the difference between
fooling rate and targeted fooling rate can reach up to 30%,
while in Transformer models, the difference is at most 3%.
It indicates that DT-UAP demonstrates higher stability and is
more suitable for Transformer models.

B. TRANSFERABILITY
Based on the understanding of previous related works,
it has been observed that universal adversarial perturbations
themselves possess certain transferability in terms of their
attack capabilities. Therefore, the best-performing targeted
universal perturbations for each model are selected to
evaluate their transferability by conducting DT-UAP transfer
attacks on all twelve models. The results are presented
in Table 4.

Overall, the transferability of fooling rate is significantly
higher than targeted fooling rate. And in many cases,
the transferability of target rates is close to zero across
different models. This discrepancy in transferability may
be attributed to the significant differences between models,
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FIGURE 2. The variation of the cosine similarity between x , v , and x + v
during the training process.

where fooling the model to produce incorrect outputs is easier
than redirecting to specific classes.

The transferability of targeted universal perturbations is
stronger when models are more similar. This is particularly
evident in the case of VGG16 andVGG19, where the transfer-
ability is relatively strong. However, this phenomenon does
not hold for Transformer models. The transferability among
Deit_tiny, Deit_small, and Deit_base remains low. Similarly,
the transferability between Swin_tiny and Swin_v2_tiny is
also unsatisfactory. It suggests that the transferability of
targeted perturbations is influenced by factors beyond the
similarity between the models, and Transformer models have
demonstrated different transferability patterns compared to
DNN models.

V. DISCUSSIONS
A. SIMILARITIES
By measuring the cosine similarity, Figure 2 has shown the
changes observed in the similarity between the original image
x, the perturbation v, and the perturbed image x+v. The result
shows that the generated targeted UAP indeed reduces the
similarity between x and x+vwhile increasing the similarity
between v and x + v, further confirming the effectiveness of
DT-UAP. Based on Figure 2, we discovered that the similarity
between the perturbation v and the adversarial sample x + v
increases in the initial training stage, reaches a maximum,
and then decreases. After decreasing to a certain degree, the
similarity rises again and continues to rise steadily. However,
the process of falling and then rising in the middle is an
intriguing issue. As mentioned previously, our belief remains
that a well-trained universal adversarial perturbation’s model
output is robust, with the superimposed image only affecting
its robustness as noise. This view is the one that has
consistently been held in our paper. However, there is a risk of
encountering a local extremum problem. In the early stages
of training, as the process continues, the perturbation v will
be optimized in our predetermined direction. At this stage,
the model’s output against perturbation v lacks robustness

FIGURE 3. The targeted UAPs generated with DT-UAP.

FIGURE 4. For the Deit_base model, natural image(top) and the
adversarial examples after applying the perturbations with target class
‘umbrella’(bottom).

due to inadequate training data and a limited number of
iterations. Each training iteration’s gradient superposition
significantly alters the outcome of v’s model output, leading
to an optimization direction change, thus causing a decline
in similarity. However, as the training data and training times
increase, the ongoing comprehension of the model leads to
more robust model output. Consequently, similarity gradually
increases during subsequent training sessions.

B. VISUALIZATIONS
The impact of different datasets on the effectiveness of
generated targeted UAP is not significant. It is believed that
the generation of targeted UAP depends more on the model
rather than the training dataset. In other words, it has limited
correlationships with the dataset. Additionally, by observing
the generated UAP images in Figure 3, it is noticed that there
are noticeable differences between the UAP images generated
for DNN models and Transformer models. UAPs generated
for DNN models tend to be more continuous, while UAPs
generated for Transformer models are more discrete and
modular. The observation above is particularly evident in the
UAPs generated for Deit models, where the 224×224 images
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FIGURE 5. The variation of the attack performance with the varying
perturb magnitude ϵ, which denotes the maximum value of the
perturbation in the pixel value in [0,255].

are divided into 14 × 14 rectangles that are 16 × 16-sized,
which aligns with the basic architecture of Deit models.
It further validates the notion that targetedUAPs dependmore
on the model. And the natural images and the adversarial
examples overlaid with UAPs are shown in Figure 4.

C. ABLATION STUDIES
The discussion about the variation of the attack perfor-
mance was conducted for constant epsilon values ranging
from 1 to 16 with the pixel value in [0,255] when applied to
VGG16, as illustrated in Figure 5. In most white-box attacks,
the epsilon was set as 10 (our setting) while it was 16 in
the black-box setting. It was apparent that the targeted and
non-targeted fooling ratio could reach 100% if the epsilon
was set to 16. And higher value of epsilon indicated that
we could make greater changes to the image, but it also led
to more perceptible perturbations. There are typically two
methods to limit the magnitude of the perturbations. One is to
continuously optimize the perturbation through an optimizer
to achieve better attack performance while minimizing the
perturbation. However, a major issue with this approach is
the lack of direct control over the impact of perturbations
on the image, which may result in excessive changes to
the image, making it difficult for human observers to detect
these perturbations or causing incorrect identification due
to excessive interference. Therefore, the advantages of this
approach are quite limited. Another more commonly used
method is to directly limit the maximum value of the
perturbation, in which we can more intuitively limit and
observe the impact of the perturbation on natural images.
As shown in the figure, when limiting the maximum
perturbation value to less than 8, the target and non-target
attack performances are greatly improved as the ϵ increases.
When the value of ϵ is between 8 and 10, the success rate
of both attacks tends to be stable. Here we view it as a
trade-off between attack effectiveness and magnitude of the
perturbation, taking into account both attack effectiveness

and limiting the magnitude of perturbation as much as
possible. This is also the fundamental idea behind the first
method for constraining the magnitude of perturbations,
indicating that we can benefit from both approaches by
selecting an appropriate value for epsilon. When the limit
on ϵ is further relaxed, although the attack effectiveness may
be limitedly improved, this improvement comes at a greater
expense to the visual quality of the adversarial examples.

D. FURTHER DISCUSSIONS
Based on the analysis of the transferability result, it is
believed that improving the transfer attack capability of
targeted UAPs should be approached from the perspective
of the model. The similarity between models significantly
influences the transferability of UAPs, while improving the
transferability from the perspective of the dataset is not
practical or has limited effectiveness. The initial intention
behind designing this method is based on the idea that
targeted UAPs act as noise that affects the robustness of the
model’s output. The obtained attack results further validate
this idea. However, there is still a need to explore why
perturbations that are significantly smaller in magnitude
compared to the normal image can have a greater impact
on the model, or in other words, what are the distinct
characteristics of targeted UAPs that cannot be concealed.
This is a issue that requires further exploration.

VI. CONCLUSION
In this paper, a novel method called DT-UAP is proposed for
generating targeted universal adversarial perturbations based
on the idea that training images act as noise that affects the
robustness model outputs of targeted UAPs. The ImageNet
and Places365 are utilized as training datasets, and the
proposed method aim to minimize the distance between the
perturbation v and the adversarial examples x+ v after taking
the input of the model’s final layer. Then a directional loss
function is introduced to create targeted universal adversarial
perturbations, which steer almost all samples toward the
predefined target class. The results have demonstrated that
DT-UAP has achieved an improved targeted attacking effec-
tiveness not only on DNN models but also on Transformer
models. The transferability of targeted UAP is also discussed
and analyzed, revealing that the generation of targeted UAP
relies more on the model rather than the training data. It is
prospective to integrate the idea of considering the training
images as noise with existing black-box attack techniques
to explore the methods for improving the transferability of
universal adversarial perturbations. Additionally, the reasons
behind the relatively low transferability of targeted universal
adversarial perturbations and the theoretical explanations for
the existence of universal adversarial perturbations should
also be investigated in future works.
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