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ABSTRACT Segmentation of different regions in intra-operative brain ultrasound (iBUS) images is often
required for assisting the neuro-surgeon. Traditional level-set and active contour-based semi-automatic
image segmentation approaches suffer from low accuracy and slow convergence. This paper presents a
novel semi-automatic level-set approach for segmenting hyper-echoic (HE), hypo-echoic, and anechoic
regions with minimal user intervention. Three HE regions longitudinal fissure, choroid plexus, and tumor
and two anechoic regions, namely ventricle and resection cavity are segmented using a patch-based level-set
approach. This method is a combination of three procedures: a) unidirectional level-set curve flow (ULSCF),
b) bidirectional level-set curve flow (BLSCF) using a logarithmic patch size control, and c) cubic B-spline-
based contour smoothing. The zero level-set curve is derived using a patch-based intensity thresholding
method of the desired region. The imperfection on the blocky edges produced during the patch-based
ULSCF, are minimized using the BLSCF step that uses a local region splitting approach. Slope and curvature
discontinuities of the resulting boundaries after BLSCF are eliminated using cubic B-spline based contour
smoothing. The proposed method outperforms other state-of-the-art level-set and active contour methods,
and the desired result is obtained within reasonable time required for online monitoring during surgery.

INDEX TERMS Ultrasound guided surgery, ultrasound image segmentation, patch-based segmentation,
boundary correction, contour smoothing.

I. INTRODUCTION
The segmentation of ultrasound(US) images is important
in the diagnosis of various tissue abnormalities, detection
of the shape and size, and the state of the diseased region.
Its applications include segmenting the fetus [1], [2], [3],
the prostate [4], kidneys [5], blood vessels [6], [7], [8],
etc. Segmenting a US image is a challenging task because
of its poor resolution, the presence of speckle, acoustic
shadows, and unnatural scattering due to the presence
of blood clotting agents in the surgical cavity [9], [10].
Traditional segmentation methods [11] like region growing,
region splitting, morphological segmentation, etc. do not

The associate editor coordinating the review of this manuscript and

approving it for publication was Joewono Widjaja .

perform well for the US image segmentation due to the
intensity inhomogeneity in the images. The state-of-the-
art approaches to the segmentation of US images include
Markov random field (MRF) modelling [12], watershed
based segmentation [13], level-set [14], [15], [16], [17], [18],
[19], [20], [21], machine learning (ML) [22], [23], [24],
and deep learning(DL) [25], [26], [27], [28], [29], [30], [31],
[32], [33].

This article primarily focuses on the segmentation of
brain US (BUS) images as a prework to the brain image
registration. Brain surgery is generally performed with the
assistance of a neuro-navigation(NN) system that consists
of both pre-operative and intra-operative imaging facilities.
Intra-operative magnetic resonance(iBMR) is generally pre-
ferred compared to the intra-operative ultrasound(iBUS) for
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its better resolution and visibility of different regions. The
iBMR is not real-time and it has a large infrastructural cost
that limits its use to large super-specialty hospitals only. Intra-
operative brain computed tomography (iBCT) imaging is a
low-cost alternative to iBMR, but it has the harmful ionization
effect on the human body. US has limited applications in
brain imaging because of its inability to propagate through
bones. After opening the cranial bone during the surgery,
US can be used as an intra-operative modality to examine
the brain tissues. Therefore, pre-operative BUS (pBUS) and
iBUS can be used in an NN system to monitor the diseased
tissues during the brain surgery. In US-guided brain surgery,
the pBUS and iBUS images are rendered side by side.
To monitor the surgical process in real-time, the location of
the surgical equipment inside the brain is precisely mapped
on the rendered pre-operative image stacks. It is performed
using the following two steps [34]:

1) Before surgery, the NN system is calibrated with the
brain coordinate system using fiducial markers placed
on some predefined locations of the patient’s head.
This calibration pinpoints the position of the surgical
instrument inside the brain, and shows it on the pBUS
image stacks on the computer screen. No image related
data are required for this calibration.

2) After opening the brain and before opening the dura
mater, pBUS images can be captured using a suitable
US probe. These images show the latest position of
the diseased region without any spatial shift or any
shape distortion. The brain is composed of soft tissues
that floats in cerebrospinal fluid (CSF). Brain-shift
is a common phenomenon that occurs during the
surgical procedure. It happens due to various reasons
like applied pressure, leakage of CSF, edema, act
of gravitation, etc. [35]. Because of the brain-shift,
the NN system lose its calibration to the previously
aligned image stacks. Therefore, the location of the
diseased region in a iBUS image does not match
to the corresponding location in the pBUS image.
Unless the system is registered, the position of the
surgical equipment maps into a wrong position in the
pre-operative image stack. An efficient registration
method is therefore essential between the shifted iBUS
and pBUS images to bring back the calibration of the
NN system.

The registration between pBUS-iBUS images is challenging
due to poor resolution, low visibility, and presence of
various artifacts. For the effective registration between pBUS
and iBUS images, common regions should be present
in the registering image pairs. iBUS images suffer from
various artifacts due to the presence of saline water in
the resection cavity (RC), acoustic shadows, scattering,
etc. As a result, the desired level of similarity cannot be
guaranteed. Brain image segmentation is an effective prework
for improving the similarity between the pBUS and the iBUS
images [24], [33], [36]. It can isolate the similar regions from
the pBUS and iBUS images.

Based on the echogenicity, the regions of a B-mode BUS
image can be classified into hyper-echoic, hypo-echoic, and
anechoic regions [37]. The regions producing large echos,
appear bright and are known as HE. In a BUS image,
the choroid plexus (CP), tumors (third or higher grade),
longitudinal fissure (LF), and corpus callosum (CC) [10]
appear HE. The regions which mostly contain fluids and do
not produce large echos, thus appearing black are known as
anechoic regions. All four ventricles, sub-arachnoid space,
blood vessels, and cyst appear anechoic. Other regions with
moderate echogenicity like thalamus, caudate nucleus, and
cerebrum are seen as hypo-echoic regions.

Level-set is a curve evolution strategy that was first
formulated by Osher and Sethian [38]. Application of the
classical level-set includes evolving interfaces in computation
geometry, fluid mechanics, material science, and computer
vision and image processing [39]. It consists of two major
steps: a) Energy function formulation and b) Level-set curve
evolution. There are various approaches to the level-set,
such as geodesic active contour (GAC) [14], active contour
without edge (ACWE) [17] and distance regularized level set
evolution (DRLSE) [20]. For the segmentation of speckle-
free images, the performance of these methods is satisfactory;
however, when speckle increases, it degrades significantly.
Figure 1 depicts these occurrences, with segmented outputs
from the GAC, ACWE, and DRLSE on speckle-free images
(a1), (b1), and (c1) respectively. The segmented outputs are
shown by the red-colored boundaries. Five zones contain
different intensities with different intensity gradients on the
boundaries. The increase in the intensity gradient makes the
segmentation easy. Out of 5 different shapes, the pentagonal
region have the least intensity gradient. All three algorithms
successfully segment all the five zones in the absence of
speckle. However, as the speckle variance increases, their
performance degrades. The output for a speckle variance
of 0.01 is shown in Figure 1.(a2), (b2), and (c2), and
the output for a speckle variance of 0.1 is shown in
Figure 1.(a3), (b3), and (c3) respectively. The speckle used
in these images is synthetic and was developed in MATLAB
using the methodology outlined in [2]. The hexagonal region
has stronger intensity gradients than other boundaries, which
were segmented using the ACWE approach, but failed by
DRLSE and GAC. The segmentation of the pentagonal
region fails for all these methods for a speckle variance
of 0.01 and higher, which are shown in (a2-c2) and (a3-c3).
Based on these findings, we conclude that the level-set-
based approaches are significantly influenced by speckle.
Our suggested solution uses a patch-based level-set-based
architecture that is fast, speckle-resistant, and yields adequate
accuracy. Our proposed approach is topology-independent
and produces regular-shaped boundaries of the desired
regions.

Recently, ML- and DL-based approaches are being
used widely for medical image segmentation. DL-based
segmentation methods have been successfully applied for
the segmentation of the prostate [23], [40], [41], ovary and
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FIGURE 1. (a1), (b1), and (c1) are specklefree phantom images. The results of the various segmentation algorithms are
represented by red boundaries across these images. The GAC method’s outputs are (a1) to (a3), the ACWE method’s outputs are
(b1) to (b3), and the DRLSE method’s outputs are (c1) to (c3). The outputs for the speckle of variance 0.01 are shown in rows
(a2)-(c2), while the outputs for the speckle of variance 0.1 are shown in rows (a3)-(c3).

its follicles [26], thyroid nodule [42], optic nerves [43],
breast tumors [28], [29], [30], kidneys [44], [45], arteries
[32], heart [46], [47], fetus [48], [49], [50], intracranial
aneurysms [51], etc. The successful architectures applied
in this field are U-Net [42], [46], [52], CR-Unet [26], 3D
ResNet [40], [53], Dual Path U-Net (DPU-Net) [31], Dense-
Net [32] and the generative adversarial network (GAN) [28].
Most of these models are fully supervised learning-based.
They require radiologists to annotate large-scale training
data, which is rather a labour-intensive and time-consuming
task. To alleviate this issue, many researchers attempted
implementing segmentation tasks in a semi-supervised man-
ner using limited annotated images [54], [55]. Meng et al.
[48] followed a semi-supervised approach to find the acoustic
shadow in fetal US images. To the best of our knowledge,
there are no big labeled datasets available for 2D BUS image
segmentation.

In a patch-based segmentation of BUS image [56],
we introduced a fully automatic patch-based method for
extracting the HE regions from the pBUS and iBUS images.
Generally, the HE regions possess better similarity between
the pBUS and iBUS images. But many image pairs have

smaller HE regions between them. The extraction of those
regions cannot attain much similarity between the registering
image pairs and the registration often fails. On the other hand,
many anechoic and hypo-echoic regions present in the pBUS
and the iBUS images also contain significant information
that may help in registration. The inclusion of the anechoic
and the hypo-echoic regions, improves the accuracy of the
estimation of the transformation function. This article focuses
on the segmentation of five specific regions with different
levels of echogenicity. It is a semi-automatic approach that
requires minimal user intervention to mark the desired region
for segmentation.

A. EXISTING METHODS FOR BUS IMAGE SEGMENTATION
Literature on BUS segmentation is limited to a few recent
publications only. Canalini et al. [33] extracted various
HE regions as a preprocessing step for the registration
between pBUS and iBUS images. Nitsch et al. [24] used a
superpixel-based approach. This method applied a random
forest-based classifier for segmenting various regions of
the BUS and MR images. The ML model trained with
random-forest algorithm, finds the posterior probabilities of a
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superpixels to be in a segment. For obtaining a segment, con-
catenation of multiple sub-clusters are performed applying
various rule-based thresholding of the posterior probabilities.
Chel et al. [56] published an automatic patch-based approach
for the separation of HE regions from the BUS images. It is
simple and uses thresholding, morphological hole filling, and
B-spline curve shaping for obtaining the accurate boundaries
of different HE regions.

The proposedmethod is an extension of themethod in [56].
It contributes the following novel features to the previous
method.
• Five different regions namely the LF, CP, tumor,
ventricles, and RC are segmented using a common
segmentation framework. The segmentation can be
performed irrespective of their grades of echogenicity.

• It automatically detects the region types, and estimates
the thresholds for the segmentation of the desired
regions. Like its predecessors, the proposed method
is topology-independent and results in regular-shaped
boundaries between different echogenic regions.

• It adopts a level-set based framework that is fast,
immune to speckle, and results in an acceptable
accuracy. The previous method was only capable of
separating the HE regions from the BUS images. This
method can automatically segment all three types of
echogenic regions.

B. LEVEL-SET FORMULATION FOR IMAGE SEGMENTATION
The iterative growth of the boundary curve is modeled by
an implicit level-set geometry. It defines the boundary as a
level-set function φ(x, y) = 0, whereas φ(x, y) > 0 and
φ(x, y) < 0 represent the inside and the outside regions
respectively. φ(x, y) is a distance function which defines the
distance of (x, y) from φ = 0. The normal vector n and the
curvature (κ) of the φ = 0 curve can be expressed as,

n =
∇φ

|∇φ|
(1)

and,

κ = ∇.
∇φ

|∇φ|
=

φxxφ
2
y − 2φxφyφxy + φyyφ

2
x(

φ2
x + φ2

y

) 3
2

(2)

Let φ(t, x, y) be the state of the curve at time t , and the
velocity of the curve along the normal direction be v = Fn,
where F is a scalar quantity named as force. φ(t, x, y) is
obtained by the solution of the following partial differential
equation (PDE):

∂φ(t, x, y)
∂t

+ F∇Tφ(t, x, y)n = 0 (3)

Upon substituting (1), we get

φ(t, x, y)
∂t

+ F |∇φ(t, x, y)| = 0 (4)

which explains the temporal evolution of φ.

In the above formulation, the first term states about the
change of φ over time, that describes about the spatial
shift of zero level-set curve. The solution of this PDE in
every iteration is computationally intensive, that restricts
its application in real time. For a constant value of F ,
the zero level-set curve moves uniformly on the normal
direction. However, for image segmentation,F is made image
dependent so that the growth of the curve depends on the
image intensity profile and its shape. Several variations of
level-set-based image segmentation are found in literature,
such as ACWE [17], DRLSE [20], variational B-Spline
Level-Set [18], and the recent works like weighted level-set
evolution (WLSE) [57]. All these approaches are extensively
used for US image segmentation. Solution of the PDE
in (4) in every iteration is computationally expensive due
to energy estimation of the whole image. For reducing
the computational complexity, Bernard et al. [18] estimated
energy in the neighborhood of the evolving curve; thus
it reduces the complexity. For maintaining the numerical
stability in the PDE solution process, small time steps are
chosen.The level-set function and a narrow band surrounding
to the zero-level-set curve must be updated in each iteration.
This concept significantly speeds up the curve evolution
process. Shi and Karl [19] also applied the concept of energy
estimation in the neighborhood but it does not apply the
solution of the PDE. In place of that, it adopts two procedures
for curve movement along the inward or outward directions.

Even after so many efforts, the noise plays a crucial
role for the segmentation by adding ambiguity on the
boundaries. Many times, false edges prematurely stop the
curve evolution and add shape distortion to the boundaries.
To address these limitations, this paper proposes a novel
segmentation algorithm that retains key advantages of the
level-set approach in a practical and highly efficient manner.
It considers a square patch in place of a pixel in traditional
level-set function, which reduces the effect of noise and
computation time. It reduces the computational burden for
estimating the curvature and avoids the complexity for the
solution to the PDE.

C. PATCH-BASED LEVEL-SET CURVE FLOW
In a patch-based approach, the image region�ϵR2 is assumed
to be a grid of patches of size w × w. The movement of
the level-set curve flows over the vertical and the horizontal
direction. There is nomovement of the curve in a region of the
size less thanw×w. For numerical stability, the growth of φ is
limited to 1 unit only. Figure 2 illustrates the proposed level-
set framework. The region bounded by red-colored contour
is the desired region to be segmented. The ROI of the desired
region is marked by a rectangular region R shown by a black
colored boundary. The boundary line made of green dots
represents the φ = 0 curve or C0. φ is a 2D Signum function
which makes the transition at φ = 0 boundary. The region
inside C0 has φ = 1 and φ = −1 outside. C0 is the initial
state of the level-set curve evolution. The detailed method of
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FIGURE 2. Representation of the level-set function φ in patch-based
scenario.

obtaining C0 and its evolution are described in Section (II-B)
and (II-C) respectively.

II. PROPOSED METHOD
The statistical nature of the intensity profile of a segmenting
region is not taken into account by the existing approaches to
level-set-based image segmentation. Anechoic, hypo-echoic,
and HE regions in BUS images have distinct statistical
properties. Hence, a technique that effectively segments an
anechoic region may not work for a HE region. The proposed
approach takes the advantage of local statistics and offers a
strategy that works equally well in all three kinds of regions.
The level-set-based image segmentation framework serves
as the foundation for the proposed work. Its complexity is
avoided by excluding the energy minimization step. This step
is substituted by simple patch-based intensity thresholding in
the proposed methodology. Three main issues are addressed:
• stop curve evolution at the boundary
• avoid boundary ambiguities caused by speckle
• obtain a smooth boundary curve that does not have slope
and curvature discontinuities

As discussed earlier, the spatial curve gradient, whose
magnitude depends on the image intensity profile, determines
the direction of the iterative growth of the initial level-set
curves. The boundaries of speckle-filled images are uneven
and as a result, the movement in the normal direction
causes segmented boundary to become more distorted.
To prevent this, the curve’s length and the area of the bounded
region are added to the energy function as regularization
parameters [17], [19], [20], [57]. The proposed method
does not apply energy optimization, but it applies a contour
smoothing step to find a smooth boundary of the segmenting
regions

FIGURE 3. Proposed level-set framework.

The work-flow of the proposed method is shown in
Figure 3. Averaging of intensity within a square patch
reduces the speckle variance. The proposed method adopts
patch-based thresholding in various steps. At the start of
the segmentation process, the user selects one or more
rectangular regionswithin the region of interest(ROI) denoted
by �R. The selection is made in such a way that �R
contains only one type of echogenic region. The region
type of �R is identified by using a thresholding method as
described in Section II-A. The next step applies a patch-based
thresholding of �R.
The statistical natures of three types of echogenic regions

are different, and therefore, they need different formulations
for the estimation of region specific threshold ranges. The
region �R is divided into non-overlapping square patches.
If the mean intensity of a patch is within Tl and Th,
it is included in the inside region and excluded otherwise.
The formulation of Tl and Th for three different types of
echogenic regions are described in Section II-A1. The first
step of the level-set curve evolution is the estimation of
initial level-set curve φ(0, x, y). This step is described in
Section II-B. Section II-C describes how φ(0, x, y) expands
over time by a patch-based unidirectional level-set curve flow
(ULSCF) step. This step results in a gross segmentation of
the region. However, the boundaries suffer from blockiness
due to patch-based processing. The larger is the size of
the patches, the higher is the blockiness. The bidirectional
level-set curve flow (BLSCF) step adopts a patch-based bi-
directional level-set evolution that increases the proximity of
the resulting boundaries to the actual boundaries as described
in Section II-D. The resulting boundary after BLSCF, suffers
from slope and curvature discontinuities, which is rectified by
a contour correction step which is described in Section II-E.

A. IDENTIFICATION OF REGION-TYPE
For minimal user intervention, automatic identification of
the region type is necessary. Three different types of regions
can be identified by the statistics of the intensity profile of
a region. First, we find a range of the mean intensity
of the region. For ascertaining the range of mean intensities of
different types of regions, one ormultiple rectangular sections
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FIGURE 4. (a) Intensity histogram of the three different echogenic
regions. Colored boxes highlight the intersection between different
histograms. (b) is the enlarged box that highlights the intersection
between the anechoic and the hypo-echoic histograms. (c) is the enlarged
box that highlights the intersection of the HE and the hypo-echoic
histograms.

are marked from the HE, the hypo-echoic, and the anechoic
regions of randomly selected 160 images from the BITE [10]
and the RESECT [58] datasets. The mean intensity (µR) of
the chosen rectangular regions �R is obtained by

µR =
1
|�R|

6
(x,y)∈�R

I (x, y) (5)

where |�R| is the number of pixels in �R.
�R is chosen in such a way that it covers the maximum

possible area of a region. Marking of the rectangular region
is flexible and it is made in such a manner that its average
intensity is close to the actual average intensity of the desired
segment. The µR values for each types are plotted in a
normalized histogram as shown in Figure 4.

We observed that for an 8-bit image, the mean intensity
lies between 0-15 for an anechoic region, between 4-75
for a hypo-echoic region, and between 45-150 for an HE
region. The types of regions are decided by comparing the
average intensity (µR) of the user-defined ROI to the said
ranges of intensities. The intersection points of different
histograms are obtained using the maximum likelihood
principle. Figure 4.(b) highlights the intersection between
anechoic and hypo-echoic regions and it was found that both
the histograms intersect at 8.2. Thus, we set a threshold value
of 8.2 between the anechoic and the hypo-echoic regions,
whereas 45.6 is set between hypo-echoic and HE regions.
Hence, if µR ≤ 8.2, the region can be treated as anechoic.
Similarly, if 8.2 ≤ µR ≤ 45.6, it is hypo-echoic, else it is HE.
The proposed method adopts a patch-based level-set

strategy for the segmentation of the desired region. The
user-selected region �R partially includes the desired region.
The part of �R that consists of the desired region is defined
as the inside region and the rest of the part is termed as the

FIGURE 5. �R is the ROI, marked in red color. In (a), the ROI encompasses
multiple objects. In (b), the ROI is the combination of the two rectangles.

outside region. The segmentation growth of the desired region
starts from the initial level-state-curve. This step divides
�R into multiple square patches of size w × w. Depending
on the region type, two thresholds are estimated based on
the statistical nature of �R. The estimation of Tl and Th is
described in Section II-A1.

1) ESTIMATION OF TH AND TL
Once the region-type is identified, the pixels in �R are
to be associated with the inside or the outside the desired
region. This association is done patch-wise by comparing the
average patch intensity with two thresholds Tl and Th. These
thresholds are used for the patch-wise association of the
pixels to the desired region in a level-set-based formulation.
Ni black proposed a local patch-based threshold scheme
which combines the mean and standard deviation of intensity
of a local patch [56], [59]. Noting that the standard deviation
controls the spread of the data, we formulate the Tl and Th as

Tl = µR − k1σR (6)

Th = µR + k2σR (7)

where σR is the standard deviation of the image in �R and
k1 and k2 are constants. The values of k1 and k2 for different
region types are determined by the trial and error method and
thus, Tl and Th are formulated as follows:

1) Anechoic region

Tl = 0

Th = µR + 0.5σR (8)

2) Hypo-echoic region

Tl = max(0, µR − σR)

Th = min(255, µR + 1.5σR) (9)

3) Hyper-echoic region

Tl = max(0, µR − 0.5σR)

Th = min(255, µR + 1.5σR) (10)

The max and min terms in (9) and (10) are used to limit the
values of Th and Tl within the dynamic range of intensity
0-255 for 8 bit images. Both Tl and Th have an important role
in determining C0 and estimating φ(n, x, y) as described in
Sections II-B and II-C respectively.
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B. ESTIMATION OF INITIAL LEVEL-SET CURVE
Let an input image I be defined on the domain� and�R ⊆ �

be the initial rectangular region of sizeM ×N chosen by the
user. Let �R be divided into non-overlapping square patches
P(i, j) : 1 ≤ i ≤ K and 1 ≤ j ≤ L of size w × w. The
value of w is an integer power of 2 like 4, 8, 16, etc. Large
value of w decreases the computation time but increases the
boundary error. Similarly, the small values of w increases
computation time, and number of sub regions within a region,
but improves the boundary errors. Keeping these in mind,
w = 8 was found optimum for images of both the BITE and
the RESECT datasets. The region �R is extended so that M
and N are integer multiples of the patch size w×w. The mean
intensity of P(i, j) is given by

µ(i, j) =
66(x,y)∈P(i,j)I (x, y)

w2 (11)

µ(i, j) is compared with Tl and Th. If Tl ≤ µ(i, j) ≤ Th,
P(i, j) is considered as inside patch and included in �inside.
Hence, the inside region extracted from �R can be expressed
as,

�inside
=

⋃
∀(i,j):Tl≤µ(i,j)≤Th

P(i, j) (12)

The boundary of the region �inside is the initial level-set
curve C0. We define a level-set function φ(n, x, y) as follows.

φ(n, x, y) =

{
= 1 (x, y) ∈ �inside

= −1 (x, y) ∈ �outside (13)

We define the level-set function as the interface between
φ(n, x, y) = 1 and φ(n, x, y) = −1 regions. In Figure 5, the
gray patches satisfy the threshold condition. The boundary of
this region represents C0 encompasses a part of the desired
segmenting region. For segmenting a region with a complex
shape, multiple rectangles can also be marked. Overlapping
between these rectangles is also allowed during this step. The
number of regions and their sizes play important roles in
overall speed of the segmentation. A large rectangular region
may includemany undesired small regions and corresponding
µ and σ also change compared to the actual value of
the region. It may results into an ineffective segmentation.
On the other hand, choosing multiple rectangles increases
the user intervention. For example, Figure 5.(b) shows two
rectangular regions and the φ map of the region. The same
segmentation can be performed with any one rectangle also.
But it takes more iterations during the level-set curve flow;
thus overall complexity increases.

C. UNIDIRECTIONAL LEVEL-SET CURVE FLOW (ULSCF)
As discussed in Section II-B, all the pixels in a w × w
patch have the same value of φ, and thus are expressed
patch-wise. Let φ(n, i, j) be the level-set function value of
(i, j)th patch at iteration n. The patch P(i, j) is given by
P(i, j) = {(x, y)|(i − 1)w ≤ x ≤ (i + 1)w − 1 and
(j − 1)w ≤ y ≤ (j + 1)w − 1}. In the proposed method,
φ(0, i, j) is obtained by threshold estimation and comparison

method as described in Section II-B. The initial level-set
curve flow starts from φ(0, i, j) and it moves toward the
outward direction from C0. This step is iterative and in
every iteration, the boundarymoves to the outward directions.
Suppose Ck is the boundary at k th iteration. A one patch wide
neighborhood Nk is defined in the outside region of Ck . If a
patch in Nk satisfies the condition Tl ≤ µ(i, j) ≤ Th, its
φ value changes from -1 to +1 and the patch is included in
the inside region. It is similar to the pixel-based flow in [19],
that drives the boundary in the outward direction. Unlike the
method in [19], the flow in this step is allowed to one patch
outward per iteration from Ck . This movement is allowed
to the outward neighbouring patches of Ck . This approach
is faster because of the bigger movement of the boundaries.
Secondly, the pixel-based method is not immune to noise and
produces ambiguous boundaries. Patch-wise averaging has
a smoothing effect and is robust to noise. The flow of the
level-set function values over time can be expressed as

φ(n+ 1, i, j)

= φ(n, i, j)+ 2H (µ(i, j)− Tl)H (Th − µ(i, j))︸ ︷︷ ︸
forcefunction

∀(i, j) ∈ Nn (14)

where H (.) is the Heavieside function. The change in
the value of φ depends on a force function. The force
function is a Heavieside function which results unity when
a patch satisfies the threshold condition. The level-set curve
flow is comparatively faster at a homogeneous region and
becomes slowwhen approaching the boundary of the level-set
curve [19]. The flow in the proposed method is uniform and
with a larger step size. Figure 6.(a) shows the growth of φ

during this step by cyan color. It takes mostly seven iterations
to reach to the boundary of the desired region. If 2 rectangles
marked by red colored boundaries are considered in the
beginning as shown in Figure 5.(b), the same region can
be covered within one iteration only. It describes about the
flexibility in ROI selection, that can reduce the execution
time. Like other conventional level-set methods, this method
can join multiple growing regions during this step. It can
also split from the initial ROI to multiple regions during
initialization of φ0. These properties make this method
topology-independent.

The evolution of the φ = 0 is continued until there is
no change in the φ. In other words, iteration continues until
6∀(i,j) |φ(n, i, j)− φ(n− 1, i, j)| = 0.

D. BIDIRECTIONAL LEVEL-SET CURVE FLOW (BLSCF)
For obtaining smooth boundaries, other level-set methods
add the curvature to the energy function as a regularization
term [17], [19], [20], [57]. These methods require extra
calculations in every iteration for the estimation of the
curvature of Ck . We obtain curve smoothness in a simple and
fast manner. The ULSCF described in the previous subsection
performs patch-wise segmentation in the selected region and
results in block-like boundaries. Let the stopping criteria be
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FIGURE 6. (a) ULSCF starts from the boundary of the gray region. The cyan
region of φ is grown during ULSCF. (b) During BLSCF, each patch connected
to C0 is divided into 4 equal-sized square sub-patches. If a sub-patch
maintains the prescribed threshold condition is retained/added to
φ = 1 region; otherwise, φ = −1. This modification is shown in blue color.

met after J iterations and it produces a blocky boundary CJ .
To reduce the blockiness of the obtained boundary, both the
inside and the outside patches connected to CJ are needed to
be observed closely on a finer scale. Figure 6.(a) shows the
graphical representation of φ(J , i, j) after the ULSCF for a
patch size ofw×w. Here the gray patches represent the initial
inside region. Before starting the level-set curve flow, both
white and cyan patches remain in the outside region. Out of
those patches, the cyan patches are within the desired region
which is needed to be labeled as inside, and the white patches
are needed to be labeled as outside patches.

In this step, CJ obtained in the ULSCF step is reinitialized
asC0, which is an approximate shape to the desired boundary.
The neighbourhood of C0 is also redefined as N0, which is
the union of both inside and outside patches connected to C0.
Unlike the ULSCF, both inward and outward movement is
allowed in this step. It is an iterative process for of log2(w)
iterations. In each iteration, the value of w is made half of the
value of it in the previous iteration. Therefore, after log2(w)
iterations w = 1, which turns into pixel-based processing.
The following steps are performed in each iteration
1: while w > 1 do
2: set k=0
3: Determine the bidirectional neighborhood Nk of
Ck . Ck is the union of the 8-connected patches of size
w× w. First, all patches having a transition of φ from -1
to +1 or vice versa and sharing at least one side with Ck ,
are identified. For each of these patches, the bidirectional
neighborhoods are included in Nk .

4: Divide each w × w patch P(i, j) in Nk that are
connected to Ck into four sub-patches of size w

2 ×
w
2 .

Assign each sub-patch with the φ value of the w × w
patch. Update the values of φ(k, i, j) as follows

5: Set w = w
2

6: Compute µ(i, j) using (11)
7: if φ(k, i, j) = 1 then
8:

φ(k, i, j) = φ(k, i, j)

− 2 [1− H (µ(i, j)− Tl)H (Th − µ(i, j))]

FIGURE 7. (a) Shows a 8 × 8 boundary patch after ULSCF. The connected
blue-coloured pixels show the one-pixel wide actual boundary. A gray
sub-patch indicates that there is no boundary pixel within it. (b) shows
the top right 4 × 4 sub-patch does not main threshold condition and
turned gray. (c) shows the resulting boundary with a patch size of 2 × 2,
and (d) the final boundary is obtained after boundary correction with
patch size 1 × 1.

9: else φ(k+1, i, j) = φ(k, i, j)+2H (µ(i, j)−Tl)H (Th−
µ(i, j))

10: end if
11: k ← k + 1
12: end while
Figure 6.(b) shows the modification to the existing

boundary patches shown by blue colors. All the blue-colored
patches satisfy the threshold conditions and are included
in the inside region. Similarly, if a sub-patch does not satisfy
the threshold condition, φ(k, i, j) becomes −1.

The boundary generated by the ULSCF was w × w,
which indicated poor resolution at the boundary. The actual
boundary remains hidden within this patch of w× w. During
BLSCF, the patch size reduces in a dyadic scale that ensures
converging to the actual boundary within log2(w) iterations.
It is illustrated graphically in Figure 7.
Figure 7.(a) represents an 8 × 8 (w = 8) patch connected

to C0 that resulted after the ULSCF. Initially, the whole
patch represents a boundary patch. Its actual boundary is
somewhere within thin patch. Assume the curve made by the
connected blue-colored pixels represent the actual boundary
as shown in Figure 7.(a)-(d). In the first iteration, the 8 ×
8 patch is divided into four 4× 4 patches. If any 4× 4 patch
does not satisfy the threshold condition, it is marked gray as
shown in Figure 7.(b). This step is repeated for the patch size
of 2 × 2, and corresponding result is shown in Figure 7.(c).
Figure 7.(d) is the last step with w = 1.
It is observed that after log2(8) = 3 iterations, the boundary

matches exactly with the actual boundary. The improvement
of the boundary shape can also be seen on an ultrasound
breast tumor image shown in Figure 8. Figure 8.(a) shows
a breast tumor, and Figure 8.(b) shows the ground truth
boundary as provided in the database [37]. Figure 8.(c) shows
the boundary after the ULSCF. In Figure 8.(d-g), boundaries
are reproduced for w = 8, 4, 2 and 1 respectively. These
results clearly show that this step increases smoothness of the
boundary with decreasing in w.

E. CONTOUR SMOOTHING
BLSCF increases the accuracy of the segmented region by
adopting a logarithmically controlled patch size. The φ values
of the inside and outside regions are 1 and −1 respectively.
We define a boundary contour as a one-pixel-wide curve
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along the inside region. Both ULSCF and BLSCF adopt
patch-based averaging of intensity that reduces the effect of
speckle. The patch size is gradually reduced during BLSCF,
and thus the effect of speckle can be seen in the boundary of
the segmented region. It suffers from irregularity in shapes
due to slope and curvature discontinuities. The smoothness
of the boundary is an important requirement satisfied by
other level-set based segmentation methods like AC and
ACWE. These methods use the length and the curvature of
the level-set curve as the regularization terms in the energy
function, which ensures the smoothness of the boundary.
In this work, a cubic -B spline based contour correction
approach was applied, which was earlier used in our earlier
work [56]. This step approximates the noisy boundary curve
to a regular shaped B-spline curve. It requires 2 threshold
parameters which were kept same like our earlier work. The
detailed description of this step can be found in [56].

III. RESULTS AND DISCUSSION
The proposed method is developed for the segmentation of
all three types of echogenic regions of BUS images from the
BITE and the RESECT datasets. In BUS images, HE and ane-
choic regions are clinically important and the segmentation
of these regions is rigorously evaluated for various level-set
based methods including the proposed method. In this work,
two anechoic regions, namely ventricles and RC and three
HE regions LF, CP, tumors were attempted for segmentation.
To the best of our knowledge, no annotated dataset is
available for BUS image segmentation. Our experiment has
been carried out over 1000 different BUS images containing
anatomical regions like LF, CP, RC, ventricles, and tumors.
The results were subjectively verified by the radiologist
and the proposed method is found to be efficient in
segmenting all the said regions. In all cases, the proposed
method resulted closer to the ground truth and took less
time to complete all steps compared to other level-set based
methods. Both the BITE and the RESECT datasets contain
pre-operative and intra-operative 3D US image stacks for
brain tumor patients. With the coordination of the radiolo-
gists, we have selectively chosen frames of pBUS and iBUS
images from those image stacks where the desired regions are
available. For the quantitative evaluation, we prepared a total
of 192 and 72 different ground truth BUS image sections from
the BITE [10] and the RESECT [58] datasets respectively.
Images were prepared using an open-source MATLAB tool
imageAnnotationBOT [60] in coordination with the third
author who is an expert radiologist with an experience of over
15 years in this field. Images with better visibility of regions
were chosen for preparing the ground truth images.

For performance comparison, six different level-set based
approaches, namely GAC [14], ACWE [17], DRLSE [20],
the method of Shi-Karl [19], WLSE [57] and the method
by Liu et al. [61] were chosen. For generating the output
of brain image segmentation with GAC, ACWE and the
DRLSE, an open-source software CREASEG [62] developed
on MATLAB was used. The implementation of the methods

TABLE 1. Quality metrics for region-based segmentation.

by Liu et al. [61] and WLSE [57] were done by the
authors and used as the state-of-the-art methods for US
image segmentation. The results have been presented both
graphically and parametrically in terms of region-based
quality metrics accuracy, precision, Dice and the edge based
metrics asymmetric squared contour distance (ASCD), and
the root mean squared contour distance (RMSCD) [63].

Let SR, SGT respectively be the resulting segmentation and
ground truth and |.| signifies their number of pixels within a
region. The formulation of the above performance metrics is
shown in Table 1.
ASCD andRMSCDmeasure the dissimilarity between two

closed contours. Let ER and EGT respectively be the closed
boundaries of SR and SGT . The ASCD between SR and SGT
can be expressed as

ASCD(SR, SGT )

=
1

|ER| + |EGT |

×

 ∑
eRϵER

dE (eR,EGT )+
∑

eGT ϵEGT

dE (eGT ,ER)

 (15)

where |EGT | defines the length of the contour EGT .
dE (eGT ,ER) is the shortest Euclidean distance between a
point eGT and ER is expressed as,

dE (eGT ,ER) = mineRϵER ∥eGT − eR∥2

. dE (eR,EGT ) is defined similarly.
The RMSCD between SR and SGT can be expressed as,

RMSCD(SR, SGT )

=

√
1

|ER| + |EGT |

×

√√√√√
 ∑
eRϵER

d2E (eR,EGT )+
∑

eGT ϵEGT

d2E (eGT ,ER)

 (16)

The results for the five different regions LF, CP, tumor,
ventricles, and RC, are shown in Table 2, Table 3, Table 4,,
Table 5, and table 6 respectively. Table 2 shows that for
the LF segmentation, the proposed method outperforms
almost all other methods. The lower the value of ASCD
and RMSCD, the better is the performance. The proposed
method produced a mean ASCD of 11.177 pixels which was
those for the second best results of 11.803 pixels obtained
by Liu et al.. Similarly the mean precision, accuracy, and
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FIGURE 8. (a) Original image with initial boundary selected by the user (b) Ground truth labeled boundary provided in the dataset.(c) Resulting
boundaries after unidirectional curve flow (d) Resulting boundary after boundary correction with w = 8 (e) Resulting boundary after boundary
correction with w = 4 (f) Resulting boundary after boundary correction with w = 2 (g) Resulting boundary after boundary correction with w = 1
(h) Final contour after B-spline curve smoothing.

TABLE 2. Performance comparison of different methods for the segmentation of LF.

TABLE 3. Comparison of the different methods for segmentation of CP.

Dice values resulted by the proposedmethod are 0.496, 0.708,
0.649 which are better than all other methods.

Table 3 shows that the proposed method segments CP
better than the other methods and results the mean precision,
accuracy, Dice, ASCD and RMSCD of 0.717, 0.709, 0.765,
5.937 and 9.685 pixels respectively. The second best method
ACWE results the corresponding values as 0.653, 0.789,
0.783, 8.428 and 14.492 respectively. For a few images,
ACWE performed better compared to the proposed method.
The proximity of these boundaries with the ground truth is
shown by the ASCD and RMSCD values.

The proposed method also resulted better segmentation of
the tumor regions as shown in Table 4. It produced the mean
ASCD and RMSCD of 9.166 and 13.152 pixels where as,
the second best performing method ACWE resulted those

parameters as 13.166 and 19.152 pixels respectively. It was
found that the accuracy of 0.847, produced by ACWE was
slightly higher than the accuracy of 0.813 as produced by the
proposed method.

The proposedmethod is equally efficient in the segmenting
the anechoic regions like ventricles and RC as shown in
Tables 5 and 6 respectively. It is seen that the accuracy of
the proposed method for ventricle segmentation is 0.608 and
that for the RC is 0.670. Similarly, the ASCD andRMSCD for
the ventricle segmentation resulted in 8.681 and 14.263 pixels
respectively against the corresponding second-best perfor-
mance 8.925 and 17.513 of ACWE. Similar results can
be observed in Table 6 where the best mean ASCD and
RMSCD obtained by the proposed method were 5.568 and
11.930 pixels where as the second best method ACWE
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TABLE 4. Comparison of the different methods for the segmentation of the brain tumor.

TABLE 5. Comparison of different methods for the segmentation of the ventricles.

TABLE 6. Comparison of different methods for the segmentation of the RC.

resulted in 8.125 and 18.533 pixels respectively. Among the
region-based metrics, the Dice appears more reliable than
the other metrics, and its values match the visually observed
assessment. Compared to the region-based metrics, the edge
metrics ASCD and RMSCD capture the dissimilarity and
compare the segments more accurately. The tables show that
the proposed method perform better for all cases in terms of
ASCD and RMSCD.

It outperforms other level-set based methods. The visual
performance of the proposed algorithm in segmenting LF, CP,
tumor, ventricle, and RC is shown in Figure 9, Figure 10,
Figure 11, Figure 12, and Figure 13 respectively. In each
of these figures (a) shows the targeted section along with
the initial rectangular regions marked red, (b) shows the
ground truth, (c) - (g) are the outputs of all the competing
methods, and (h) shows the segmented boundary resulted by
the proposed method. The results demonstrate the superior
performance of the proposed method.

The proposed method was applied for the segmentation
of anechoic and hypo-echoic regions of breast ultrasound
images. The images were collected from the Thammasat
university (TU) dataset [37]. Among the three databases of
US images, the TU database that contains 300 segmented
boundaries of breast tumors. The breast tumor region in
the US images is either hypo-echoic or anechoic. The

segmentation performance can be visually compared in
Figure 14-16. For almost all the images, the proposed method
outperformed other methods and resulted in boundaries
closer to the ground truths. GAC can not track the boundaries
of the tumors. ACWE also performs well for both HE and
anechoic regions but fails for some hypo-echoic regions and
regions without strong boundaries.

Recently DL and ML are becoming popular for image
segmentation. ML-based approaches require large datasets
for training. To the best of our knowledge, there is no
annotated dataset for the segmentation various regions of
the BUS images. Nitsch et al. [24] performed a ML-based
work for classification of the BUS images using training with
a limited dataset. They [24] implemented a random forest
based BUS image segmentation method on the RESECT
dataset, which is capable of training with less number of
images. This paper focused on the segmentation of HE
regions like falx Cerebri and tentorium cerebelli as a pre-work
for the registration of intra-operative US to the pre-operative
MR images. US image slices are prepossessed with two
stick filters as described in [64]. The stick filters strengthen
and sustain the line-type structures and perform smoothing
of the homogeneous regions by reducing speckle. After
stick filtering, the entire image is divided into simple linear
iterative clustering (SLIC) superpixels as described in [65].
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FIGURE 9. (a) Original image with initial boundary selected by the user (b) manually segmented ground truth LF prepared in cooperation with
radiologist. Resulting boundaries obtained by GAC is shown in (c), by ACWE is shown in (d), by the method of Shi et al. in (e), by the method of
Liu et al. in (f), by WLSE in (g), and the result obtained by the proposed method is shown in (h).

FIGURE 10. (a) Original BUS image with initial boundary selected by the user (b) manually segmented ground truth CP prepared in cooperation with
radiologist. Resulting boundaries obtained by GAC is shown in (c), by ACWE is shown in (d), by the method of Shi et al. in (e), by the method of
Liu et al. in (f), by WLSE in (g), and the result obtained by the proposed method is shown in (h).

Initially each superpixel is classified by a trained random
forest classifier which assigns each normalized super-pixel
(λi) between 0 and 1 for belonging to a particular class
or not. For obtaining the segmented regions, super-pixels
are concatenated based on their scores. Superpixels having
λ ≥ 0.59, are included in the segmented region. After
this step, these neighboring superpixels of the side region
having rank values 0.45 ≤ λi ≤ 0.59 are added
to the segmented region. Similarly, an additional step is
followed where the neighboring superpixels having 0.45 >

λi ≥ 0.3 are also included to the inside region. Figure 17
compares the performance of the random forest basedmethod
and the proposed method. The initial rectangular region
marked by the user is shown as dotted boundaries in

sub-figures (a1-a3). Figure 17.(b1-b3) show a maroon
coloured center region which resulted from the first threshold
comparison. Similarly, after the second threshold compar-
ison, the orange colored super-pixels get added to the
segmented region. In the third threshold comparison step, the
green super-pixels are added and the combined region repre-
sents the final results. In Figure 17 (c1-c3), the green coloured
boundaries represent the ground truth. The red coloured
boundaries are the results produced by the proposed method
and the blue colored boundaries are the output of the random
forest method. During the implementation of the method by
Nitsch et al., we have considered five classes (LF, CP,
tumor, ventricle, and RC). A total of 192 image sections
were chosen and out of these, 166 images were used for
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FIGURE 11. (a) Original BUS image with initial boundary selected by the user (b) manually segmented ground truth tumor prepared in
cooperation with radiologist. Resulting boundaries obtained by GAC is shown in (c), by ACWE is shown in (d), by the method of Shi et al. in (e),
by the method of Liu et al. in (f), by WLSE in (g), and the result obtained by the proposed method is shown in (h).

FIGURE 12. (a) Original BUS image with initial boundary selected by the user (b) manually segmented ground truth ventricles prepared in
cooperation with radiologist. Resulting boundaries obtained by GAC is shown in (c), by ACWE is shown in (d), by the method of Shi et al.
in (e), by the method of Liu et al. in (f), by WLSE in (g) and the result obtained by the proposed method is shown in (h).

FIGURE 13. (a) Original BUS image with initial boundary selected by the user (b) manually segmented ground truth ventricles prepared in
cooperation with radiologist. Resulting boundaries obtained by GAC is shown in (c), by ACWE is shown in (d), by the method of Shi et al.
in (e), by the method of Liu et al. in (f), by WLSE in (g) and the result obtained by the proposed method is shown in (h).
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FIGURE 14. (a) Original BUS image with initial boundary selected by the user (b) Ground truth labeled boundary provided in the dataset. Resulting
boundaries obtained by GAC is shown in (c), result by ACWE is shown in (d), result by the method of Shi et al. is shown in (e), result by the method of
Liu et al. is shown in (f), by WLSE in (g) and the result obtained by the proposed method is shown in (h).

FIGURE 15. (a) Original brest US image with initial boundary selected by the user, (b) Ground truth labeled boundary provided in the dataset. Resulting
boundaries obtained by GAC is shown in (c), by ACWE is shown in (d), by the method of Shi et al. is shown in (e), by the method of Liu et al. is shown in
(f), by WLSE in (g) and by the proposed method is shown in (h).

FIGURE 16. (a) Original image with initial boundary selected by the user (b) Ground truth labeled boundary provided in the dataset. Resulting
boundaries obtained by GAC is shown in (c), by ACWE is shown in (d), by the method of Shi.et al. is shown in (e), by the method of Liu et al. is shown in
(f), by WLSE in (g) and by the proposed method is shown in (h).
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FIGURE 17. (a1-a4) and corresponding row represent the original BUS image section of LF, CP ventricles and RC respectively
and their results. The dotted red coloured boundaries in (a1-a4) represent the initial region marked by the user. The maroon
coloured regions in (b1-b4) are the group of superpixels having (λi ≥ 0.59). Similarly the orange coloured superpixels are
neighbouring to the maroon region and have 0.59 > λi ≥ 0.45. The green coloured superpixels are neighbouring to the
combined maroon and orange region resulted after the second thresholding and have 0.45 ≥ λi > 0.3. The green coloured
boundaries in the figures (c1-c4) are the ground truths of the Figure (a1-a4) respectively. The red coloured boundaries are
results of the proposed methods and the blue coloured boundaries are resulted by the method of Nitsch et al.

training and 26 images were kept for testing. The training
and testing images are a rectangular areas in the ROI in
the database images. The quantitative evaluation for the
method by Nitsch et al. was done only on 26 images whereas
for other methods, a total of 168 images were used for
evaluations. Quantitative evaluation for all different regions

are shown in Tables 2- 6. Figure 17 show that the performance
of the proposed method is comparatively better, because
it produces boundaries close to the actual boundaries but
in most cases. The results produced by the random forest
method may get improved if the number of training images is
increased.
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FIGURE 18. Mean execution time of various methods.

Apart from the better segmentation performance, the
proposed method is computationally faster compared to the
other methods. The methods such as GAC [14], ACWE [17],
DRLSE [20], and WLSE [57] estimate and minimize of the
energy function which is computationally expensive. The
ML-based method of Nitsch et al. [24] requires partitioning
the image into superpixels, which is computationally expen-
sive. In addition to that, various rule-based concatenation
of the superpixels requires additional computations. For
comparing the speed of the convergence of the said algo-
rithms, experiments were conducted in the same computer
loaded with MATLAB, and having a ninth-generation Intel
Core-i5 processor (2.40 GHz) and 16 GB DDR4 RAM.
We recorded the times it takes for the various steps of the
proposed methods and the time taken by other algorithms
with the best possible parameter setups. The comparative
results shown in Figure 18 show that the proposed method
takes average time of 0.48 sec which is about 20-50 times
faster than other methods. The bar diagrams in FIGURE 18
show the average time of segmentation of all 192 image
sections used for the parametric study. The time taken by
the method of Nitsch et al. is only due to the classification
and rule-based concatenation of the superpixels. From this
comparative study, it is evident that the proposed method is
faster compared to other methods and has the potential for
being used as an assisting tool to the neurosurgeon during
brain surgery.

Though the proposed work performs better compared to
the other approaches, it has a few limitations which are listed
below.

1) When multiple regions are connected in a BUS image
due to any artifact of similar intensity profile, they

can not be separated, and manual segmentation is
required.

2) Sometimes the coefficients of µR and σR in Equations
(8), (9), and (10) are needed to be varied because
of surrounding image regions, but in most cases,
it provides good results.

3) During ground truth preparation, boundaries of the
different regions were verified by one radiologist only.
The involvement of a neurosurgeon in this work will be
more appropriate.

This work could not be compared with any DL-based
segmentation methods because of the non-availability of
sufficient data. It can be done in the near future as an
extension of this article.

IV. CONCLUSION
The paper introduced a patch-based level-set curve evolution
method which efficiently segments various regions in US
images based on their echogenicity. Depending on the type
of region to be segmented, an upper and a lower thresholds
are estimated from the initial rectangular region chosen by
the user. The segmentation method combines a patch-based
unidirectional curve flow followed by a bi-directional
boundary correction. The unidirectional level-set step grossly
segments the desired region and produces approximate and
blocky boundaries. The bidirectional level-set curve flow
continues for limited number of iterations and it works only
on the boundary region with patch sizes reducing at a dyadic
scale in every iteration. This step starts with a patch size
of 8 and until patch size reduces to 1. Further smoothness
of the boundary is obtained by a curvature controlled cubic
B-spline interpolation method. Results have been compared
with other level-set based methods and a super-pixel based
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random forest classifier. Graphical and quantitative results
show that the proposed method outperforms other level-set
based methods and the random-forest classifier. This is
fast compared to other methods because of its patch-based
processing and boundaries do not suffer from slope and
curvature discontinuities. This method can be used as an
assistive tool for BUS image segmentation prior to BUS
image registration.

REFERENCES
[1] V. Rajinikanth, N. Dey, R. Kumar, J. Panneerselvam, and N. S. M. Raja,

‘‘Fetal head periphery extraction from ultrasound image using Jaya
algorithm and Chan-Vese segmentation,’’ Procedia Comput. Sci., vol. 152,
pp. 66–73, 2019.

[2] J. Yu, Y. Wang, P. Chen, and Y. Shen, ‘‘Fetal abdominal contour extraction
and measurement in ultrasound images,’’ Ultrasound Med. Biol., vol. 34,
no. 2, pp. 169–182, Feb. 2008.

[3] R. M. Rad, P. Saeedi, J. Au, and J. Havelock, ‘‘Trophectoderm
segmentation in human embryo images via inceptioned U-Net,’’ Med.
Image Anal., vol. 62, May 2020, Art. no. 101612.

[4] S. Ghose, A. Oliver, J. Mitra, R. Martí, X. Lladó, J. Freixenet, D. Sidibé,
J. C. Vilanova, J. Comet, and F. Meriaudeau, ‘‘A supervised learning
framework of statistical shape and probability priors for automatic prostate
segmentation in ultrasound images,’’ Med. Image Anal., vol. 17, no. 6,
pp. 587–600, Aug. 2013.

[5] H. R. Torres, S. Queirós, P. Morais, B. Oliveira, J. C. Fonseca, and
J. L. Vilaça, ‘‘Kidney segmentation in ultrasound, magnetic resonance and
computed tomography images: A systematic review,’’ Comput. Methods
Programs Biomed., vol. 157, pp. 49–67, Apr. 2018.

[6] D. Mishra, S. Chaudhury, M. Sarkar, and A. S. Soin, ‘‘Ultrasound image
segmentation: A deeply supervised network with attention to boundaries,’’
IEEE Trans. Biomed. Eng., vol. 66, no. 6, pp. 1637–1648, Jun. 2019.

[7] L. Ma, H. Kiyomatsu, K. Nakagawa, J. Wang, E. Kobayashi, and I.
Sakuma, ‘‘Accurate vessel segmentation in ultrasound images using a
local-phase-based snake,’’ Biomed. Signal Process. Control, vol. 43,
pp. 236–243, May 2018.

[8] X. Liu, D. Zhang, J. Yao, and J. Tang, ‘‘Transformer and convolu-
tional based dual branch network for retinal vessel segmentation in
OCTA images,’’ Biomed. Signal Process. Control, vol. 83, May 2023,
Art. no. 104604.

[9] L. Mercier, R. F. Del Maestro, K. Petrecca, A. Kochanowska, S. Drouin,
C. X. B. Yan, A. L. Janke, S. J.-S. Chen, and D. L. Collins, ‘‘New prototype
neuronavigation system based on preoperative imaging and intraoperative
freehand ultrasound: System description and validation,’’ Int. J. Comput.
Assist. Radiol. Surgery, vol. 6, no. 4, pp. 507–522, Jul. 2011.

[10] L. Mercier, R. F. Del Maestro, K. Petrecca, D. Araujo, C. Haegelen, and
D. L. Collins, ‘‘Online database of clinical MR and ultrasound images of
brain tumors,’’Med. Phys., vol. 39, no. 6, pp. 3253–3261, Jun. 2012.

[11] R. C. Gonzalez and R. E.Woods,Digital Image Processing. London, U.K.:
Pearson Education, 2002.

[12] G.Xiao,M. Brady, J. A. Noble, andY. Zhang, ‘‘Segmentation of ultrasound
B-mode images with intensity inhomogeneity correction,’’ IEEE Trans.
Med. Imag., vol. 21, no. 1, pp. 48–57, 2002.

[13] Y.-L. Huang and D.-R. Chen, ‘‘Watershed segmentation for breast tumor
in 2-D sonography,’’ Ultrasound Med. Biol., vol. 30, no. 5, pp. 625–632,
May 2004.

[14] V. Caselles, R. Kimmel, and G. Sapiro, ‘‘Geodesic active contours,’’ Int.
J. Comput. Vis., vol. 22, no. 1, pp. 61–79, 1997.

[15] A. Faisal, S.-C. Ng, andK.W. Lai, ‘‘Multiple active contours using scalable
local regional information on expandable kernel,’’ in Proc. IEEE Conf.
Biomed. Eng. Sci. (IECBES), Dec. 2014, pp. 541–544.

[16] A. Faisal, S.-C. Ng, S.-L. Goh, J. George, E. Supriyanto, and K. W. Lai,
‘‘Multiple LREK active contours for knee meniscus ultrasound image
segmentation,’’ IEEE Trans. Med. Imag., vol. 34, no. 10, pp. 2162–2171,
Oct. 2015.

[17] T. F. Chan and L. A. Vese, ‘‘Active contours without edges,’’ IEEE Trans.
Image Process., vol. 10, no. 2, pp. 266–277, Oct. 2001.

[18] O. Bernard, D. Friboulet, P. Thevenaz, andM. Unser, ‘‘Variational B-spline
level-set: A linear filtering approach for fast deformable model evolution,’’
IEEE Trans. Image Process., vol. 18, no. 6, pp. 1179–1191, Jun. 2009.

[19] Y. Shi and W. C. Karl, ‘‘A real-time algorithm for the approximation of
level-set-based curve evolution,’’ IEEE Trans. Image Process., vol. 17,
no. 5, pp. 645–656, May 2008.

[20] C. Li, C. Xu, C. Gui, and M. D. Fox, ‘‘Distance regularized level set
evolution and its application to image segmentation,’’ IEEE Trans. Image
Process., vol. 19, no. 12, pp. 3243–3254, Dec. 2010.

[21] C. Keatmanee, U. Chaumrattanakul, K. Kotani, and S. S. Makhanov,
‘‘Initialization of active contours for segmentation of breast cancer via
fusion of ultrasound, Doppler, and elasticity images,’’Ultrasonics, vol. 94,
pp. 438–453, Apr. 2019.

[22] H.-M. Wu and H. H.-S. Lu, ‘‘Iterative sliced inverse regression for
segmentation of ultrasound and MR images,’’ Pattern Recognit., vol. 40,
no. 12, pp. 3492–3502, Dec. 2007.

[23] Y. Zhan and D. Shen, ‘‘Deformable segmentation of 3-D ultrasound
prostate images using statistical texture matching method,’’ IEEE Trans.
Med. Imag., vol. 25, no. 3, pp. 256–272, Mar. 2006.

[24] J. Nitsch, J. Klein, P. Dammann, K. Wrede, O. Gembruch, J. H. Moltz,
H. Meine, U. Sure, R. Kikinis, and D. Miller, ‘‘Automatic and efficient
MRI-US segmentations for improving intraoperative image fusion in
image-guided neurosurgery,’’ NeuroImage, Clin., vol. 22, Oct. 2019,
Art. no. 101766.

[25] W.-X. Liao, P. He, J. Hao, X.-Y. Wang, R.-L. Yang, D. An, and L.-G. Cui,
‘‘Automatic identification of breast ultrasound image based on supervised
block-based region segmentation algorithm and features combination
migration deep learning model,’’ IEEE J. Biomed. Health Informat.,
vol. 24, no. 4, pp. 984–993, Apr. 2020.

[26] H. Li, J. Fang, S. Liu, X. Liang, X. Yang, Z. Mai, M. T. Van, T. Wang, Z.
Chen, and D. Ni, ‘‘CR-unet: A composite network for ovary and follicle
segmentation in ultrasound images,’’ IEEE J. Biomed. Health Informat.,
vol. 24, no. 4, pp. 974–983, Apr. 2020.

[27] M. Alkhatib, A. Hafiane, P. Vieyres, and A. Delbos, ‘‘Deep visual nerve
tracking in ultrasound images,’’ Computerized Med. Imag. Graph., vol. 76,
Sep. 2019, Art. no. 101639.

[28] L. Han, Y. Huang, H. Dou, S.Wang, S. Ahamad, H. Luo, Q. Liu, J. Fan, and
J. Zhang, ‘‘Semi-supervised segmentation of lesion from breast ultrasound
images with attentional generative adversarial network,’’Comput. Methods
Programs Biomed., vol. 189, Jun. 2020, Art. no. 105275.

[29] A. Vakanski, M. Xian, and P. E. Freer, ‘‘Attention-enriched deep learning
model for breast tumor segmentation in ultrasound images,’’ Ultrasound
Med. Biol., vol. 46, no. 10, pp. 2819–2833, Oct. 2020.

[30] Y. Xu, Y. Wang, J. Yuan, Q. Cheng, X. Wang, and P. L. Carson, ‘‘Medical
breast ultrasound image segmentation by machine learning,’’ Ultrasonics,
vol. 91, pp. 1–9, Jan. 2019.

[31] J. Yang, M. Faraji, and A. Basu, ‘‘Robust segmentation of arterial walls
in intravascular ultrasound images using dual path U-Net,’’ Ultrasonics,
vol. 96, pp. 24–33, Jul. 2019.

[32] M. D.M. Vila, B. Remeseiro, M. Grau, R. Elosua, À. Betriu, E. Fernandez-
Giraldez, and L. Igual, ‘‘Semantic segmentationwithDenseNets for carotid
artery ultrasound plaque segmentation and CIMT estimation,’’ Artif. Intell.
Med., vol. 103, Mar. 2020, Art. no. 101784.

[33] L. Canalini, J. Klein, D. Miller, and R. Kikinis, ‘‘Segmentation-based
registration of ultrasound volumes for glioma resection in image-guided
neurosurgery,’’ Int. J. Comput. Assist. Radiol. Surgery, vol. 14, no. 10,
pp. 1697–1713, Oct. 2019.

[34] S. Ji, Z. Wu, A. Hartov, D. W. Roberts, and K. D. Paulsen, ‘‘Mutual-
information-based image to patient re-registration using intraoperative
ultrasound in image-guided neurosurgery,’’ Med. Phys., vol. 35, no. 10,
pp. 4612–4624, Oct. 2008.

[35] X. Fan, D. W. Roberts, J. D. Olson, S. Ji, T. J. Schaewe, D. A. Simon,
and K. D. Paulsen, ‘‘Image updating for brain shift compensation during
resection,’’ Operative Neurosurgery, vol. 14, no. 4, pp. 402–411, 2018.

[36] O. Zvitia, A. Mayer, R. Shadmi, S. Miron, and H. K. Greenspan, ‘‘Co-
registration of white matter tractographies by adaptive-mean-shift and
Gaussian mixture modeling,’’ IEEE Trans. Med. Imag., vol. 29, no. 1,
pp. 132–145, Jan. 2010.

[37] A. Boezaart and B. Ihnatsenka, ‘‘Ultrasound: Basic understanding and
learning the language,’’ Int. J. Shoulder Surgery, vol. 4, no. 3, p. 55, 2010.

[38] S. Osher and J. A. Sethian, ‘‘Fronts propagating with curvature-dependent
speed: Algorithms based on hamilton-jacobi formulations,’’ J. Comput.
Phys., vol. 79, no. 1, pp. 12–49, Nov. 1988.

[39] J. A. Sethian, Level Set Methods and Fast Marching Methods, vol. 98.
Cambridge, U.K.: Cambridge Univ. Press, 1999.

VOLUME 11, 2023 131913



H. Chel et al.: Fast Level-Set Curve-Flow Formulation by Logarithmic Step-Size Control

[40] Y. Wang, H. Dou, X. Hu, L. Zhu, X. Yang, M. Xu, J. Qin, P.-A. Heng,
T. Wang, and D. Ni, ‘‘Deep attentive features for prostate segmentation
in 3D transrectal ultrasound,’’ IEEE Trans. Med. Imag., vol. 38, no. 12,
pp. 2768–2778, Dec. 2019.

[41] D. Karimi, Q. Zeng, P. Mathur, A. Avinash, S. Mahdavi, I. Spadinger,
P. Abolmaesumi, and S. E. Salcudean, ‘‘Accurate and robust deep learning-
based segmentation of the prostate clinical target volume in ultrasound
images,’’Med. Image Anal., vol. 57, pp. 186–196, Oct. 2019.

[42] S. Zhou, H. Wu, J. Gong, T. Le, H. Wu, Q. Chen, and Z. Xu,
‘‘Mark-guided segmentation of ultrasonic thyroid nodules using deep
learning,’’ in Proc. 2nd Int. Symp. Image Comput. Digit. Med., Oct. 2018,
pp. 21–26.

[43] F. Zhu, Z. Gao, C. Zhao, Z. Zhu, J. Tang, Y. Liu, S. Tang, C. Jiang, X. Li,
M. Zhao, and W. Zhou, ‘‘Semantic segmentation using deep learning to
extract total extraocular muscles and optic nerve from orbital computed
tomography images,’’ Optik, vol. 244, Oct. 2021, Art. no. 167551.

[44] S. Yin, Q. Peng, H. Li, Z. Zhang, X. You, K. Fischer, S. L.
Furth, G. E. Tasian, and Y. Fan, ‘‘Automatic kidney segmentation in
ultrasound images using subsequent boundary distance regression and
pixelwise classification networks,’’ Med. Image Anal., vol. 60, Feb. 2020,
Art. no. 101602.

[45] S. Yin, Q. Peng, H. Li, Z. Zhang, X. You, K. Fischer, S. L. Furth,
Y. Fan, and G. E. Tasian, ‘‘Multi-instance deep learning of ultrasound
imaging data for pattern classification of congenital abnormalities of the
kidney and urinary tract in children,’’ Urology, vol. 142, pp. 183–189,
Aug. 2020.

[46] S. Moradi, M. G. Oghli, A. Alizadehasl, I. Shiri, N. Oveisi, M. Oveisi,
M. Maleki, and J. Dhooge, ‘‘MFP-unet: A novel deep learning based
approach for left ventricle segmentation in echocardiography,’’ Phys.
Medica, vol. 67, pp. 58–69, Nov. 2019.

[47] Y. Hu, B. Xia, M. Mao, Z. Jin, J. Du, L. Guo, A. F. Frangi,
B. Lei, and T. Wang, ‘‘AIDAN: An attention-guided dual-path network
for pediatric echocardiography segmentation,’’ IEEE Access, vol. 8,
pp. 29176–29187, 2020.

[48] Q. Meng, M. Sinclair, V. Zimmer, B. Hou, M. Rajchl, N. Toussaint,
O. Oktay, J. Schlemper, A. Gomez, J. Housden, J. Matthew, D. Rueckert,
J. A. Schnabel, and B. Kainz, ‘‘Weakly supervised estimation of shadow
confidence maps in fetal ultrasound imaging,’’ IEEE Trans. Med. Imag.,
vol. 38, no. 12, pp. 2755–2767, Dec. 2019.

[49] R. Qu, G. Xu, C. Ding, W. Jia, and M. Sun, ‘‘Deep learning-based
methodology for recognition of fetal brain standard scan planes in 2D
ultrasound images,’’ IEEE Access, vol. 8, pp. 44443–44451, 2020.

[50] L. Xu, M. Liu, Z. Shen, H. Wang, X. Liu, X. Wang, S. Wang, T. Li,
S. Yu, M. Hou, J. Guo, J. Zhang, and Y. He, ‘‘DW-net: A cascaded
convolutional neural network for apical four-chamber view segmentation
in fetal echocardiography,’’ Computerized Med. Imag. Graph., vol. 80,
Mar. 2020, Art. no. 101690.

[51] N. Mu, Z. Lyu, M. Rezaeitaleshmahalleh, J. Tang, and J. Jiang, ‘‘An
attention residual u-net with differential preprocessing and geometric post-
processing: Learning how to segment vasculature including intracranial
aneurysms,’’Med. Image Anal., vol. 84, Feb. 2023, Art. no. 102697.

[52] O. Ronneberger, P. Fischer, and T. Brox, ‘‘U-net: Convolutional networks
for biomedical image segmentation,’’ in Proc. Int. Conf. Med. Image
Comput. Comput.-Assist. Intervent. Cham, Switzerland: Springer, 2015,
pp. 234–241.

[53] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, ‘‘Aggregated residual
transformations for deep neural networks,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 1492–1500.

[54] D. Mahapatra, ‘‘Semi-supervised learning and graph cuts for consen-
sus based medical image segmentation,’’ Pattern Recognit., vol. 63,
pp. 700–709, Mar. 2017.

[55] Z. Feng, D. Nie, L. Wang, and D. Shen, ‘‘Semi-supervised learning
for pelvic MR image segmentation based on multi-task residual fully
convolutional networks,’’ in Proc. IEEE 15th Int. Symp. Biomed. Imag.
(ISBI ), Apr. 2018, pp. 885–888.

[56] H. Chel, P. K. Bora, and K. K. Ramchiary, ‘‘A fast technique for hyper-
echoic region separation from brain ultrasound images using patch based
thresholding and cubic B-spline based contour smoothing,’’ Ultrasonics,
vol. 111, Mar. 2021, Art. no. 106304.

[57] A. Khadidos, V. Sanchez, and C.-T. Li, ‘‘Weighted level set evolution
based on local edge features formedical image segmentation,’’ IEEETrans.
Image Process., vol. 26, no. 4, pp. 1979–1991, Apr. 2017.

[58] Y. Xiao, M. Fortin, G. Unsgård, H. Rivaz, and I. Reinertsen, ‘‘REtro-
Spective evaluation of cerebral tumors (RESECT): A clinical database
of pre-operative MRI and intra-operative ultrasound in low-grade glioma
surgeries,’’Med. Phys., vol. 44, no. 7, pp. 3875–3882, Jul. 2017.

[59] W. Niblack, An Introduction to Digital Image Processing. Denmark,
Europe: Strandberg Publishing Company, 1985.

[60] M. Cicconet. Imageannotationbot. [Online]. Available:
https://www.mathworks.com/matlabcentral/fileexchange/64719-
imageannotationbot

[61] B. Liu, H. D. Cheng, J. Huang, J. Tian, X. Tang, and J. Liu,
‘‘Probability density difference-based active contour for ultrasound image
segmentation,’’Pattern Recognit., vol. 43, no. 6, pp. 2028–2042, Jun. 2010.

[62] T. Dietenbeck, M. Alessandrini, D. Friboulet, and O. Bernard, ‘‘Creaseg:
A free software for the evaluation of image segmentation algorithms
based on level-set,’’ in Proc. IEEE Int. Conf. Image Process., Sep. 2010,
pp. 665–668.

[63] S. Rueda et al., ‘‘Evaluation and comparison of current fetal ultrasound
image segmentation methods for biometric measurements: A grand
challenge,’’ IEEE Trans. Med. Imag., vol. 33, no. 4, pp. 797–813,
Apr. 2014.

[64] J. Nitsch, J. Klein, D. Miller, U. Sure, and H. K. Hahn, ‘‘Automatic
segmentation of the cerebral falx and adjacent gyri in 2D ultrasound
images,’’ in Bildverarbeitung für Die Medizin. Cham, Switzerland:
Springer, 2015, pp. 287–292.

[65] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk, ‘‘SLIC
superpixels compared to state-of-the-art superpixel methods,’’ IEEE Trans.
Pattern Anal. Mach. Intell., vol. 34, no. 11, pp. 2274–2282, Nov. 2012.

HARADHAN CHEL (Member, IEEE) received
the M.Tech. degree in communication engineering
from the National Institute of Technology Durga-
pur, India, in 2009. He is currently pursuing the
Ph.D. degree with the Department of Electronics
and Electrical Engineering, Indian Institute of
Technology Guwahati, India. He joined Bharat
Sanchar Nigam Ltd., India, as an Executive Engi-
neer, in 2009. Later he shifted into the academic
field and joined the Central Institute of Technology

Kokrajhar, as an Assistant Professor, in 2012. His research interests include
image processing, brain ultrasound image processing, and deep learning for
images.

PRABIN KUMAR BORA received the B.Eng.
degree in electrical engineering from the Assam
Engineering College, Guwahati, India, in 1981,
and the M.Eng. and Ph.D. degrees in electrical
engineering from the Indian Institute of Science,
Bengaluru, in 1988 and 1993, respectively. He was
a Faculty Member with the Assam Engineering
College, the Jorhat Engineering College, Jorhat,
India, and Gauhati University, Guwahati. He is
currently a Professor with the Department of

Electronics and Electrical Engineering, Indian Institute of Technology
Guwahati, India. His research interests include the application of signal
processing and ML techniques for images, videos, communication signals,
and biomedical signals.

KANDARPA KUMAR RAMCHIARY (Member,
IEEE) received the M.B.B.S. degree from the
Guwahati Medical College, India, in 1994, and the
M.D. degree in radio diagnosis from Dibrugarh
University, Assam, India, in 1999. He was a Senior
Lecturer with the Regional Institute of Paramed-
ical and Nursing sciences (RIPANS) under the
North-East Council, from 1999 to 2006. He has
been a Senior Radiologist with the City Clinic and
Research Centre, Kokrajhar, Assam, India, since

2006. His research interest includes clinical radiology.

131914 VOLUME 11, 2023


