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ABSTRACT Unsafe lane-changing maneuvers contribute to accidents and merging conflicts due to
variations in traffic states and driver behaviors at on-ramp merging areas. Connected and autonomous
vehicle (CAV) technologies promise significant improvements to traffic management systems, including
the possibility of reducing collisions. CAVs provide various driving supports, which are expected to reduce
collisions by exploiting information from surrounding vehicles. This paper proposes a collision avoidance
(CA) model that predicts the occurrence of collision events associated with different vehicle movements
in merging areas. A decision-making system consisting of a threat assessment model is proposed to assess
the risks associated with different movements, and to avoid collisions based on safe lateral and longitudinal
acceleration of the on-ramp vehicle in the merging area. Then, evasive action of the main lane vehicle is
assessed based on its braking response during the merging interaction with the on-ramp vehicle. Finally,
in emergency situations, a vehicle stabilization mechanism is introduced to preserve the vehicle states within
the envelope of danger. The results show that themodel could be used to avoid collisions inmultiple scenarios
and predict the occurrence of collision events associated with different vehicle movements. Moreover,
we demonstrate the effectiveness of the proposed model using the Next Generation Simulation (NGSIM)
I-80 trajectory dataset. The findings show that the proposed model can be useful for avoiding collisions in
real-time scenarios. In summary, the proposed CA model provides a valuable safety management tool.

INDEX TERMS Autonomous vehicles, collision avoidance, on-ramp merging, safety, threat assessment.

I. INTRODUCTION
Advanced driver assistance systems (ADAS) play a key role
in the automotive industry, due to a large number of accidents
caused by driver negligence [1] and human error [2]. The
most recent World Health Organization data reported that
approximately 1.3 million people lost their lives in traffic and
road accidents each year [3].

Connected and Autonomous Vehicles (CAVs) have the
potential to reduce collisions, thereby, improving traffic and
road safety [4]. Autonomous vehicles (AVs) are consid-
ered an essential component of intelligent transportation
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systems (ITS), which consists of various features, such as
advanced decision-making systems [5], [6], recognition mod-
els, and control models [7]. These features can help drivers
to make safe driving decisions. Recently, several works have
examined the safety issues of CAVs under different traffic
conditions, such as signalized intersections [8], [9], highway
corridors [10], [11], roundabouts [8], and using different
traffic networks [12].

Several machine learning techniques, such as support vec-
tor machines (SVMs), hidden Markov models (HMMs), and
artificial neural networks (ANNs) have been proposed in
recent years. These techniques depend on decision-making
logic that enables the developed model for assessing col-
lision risks in urban traffic environments [13], [14], [15].
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In [15], Xiong et al. introduced a chain of road traffic incident
(CRTI) model based on SVM, which has the ability to predict
collisions in complex traffic scenarios. Several methodolo-
gies can be used to improve the detection of collisions,
such as independent component analysis (ICA) [16], vehicle-
to-everything (V2X) technology [17], [18], [19], object
identification-basedmethod [20], andGaussianmixturemod-
els [21]. Some authors have employed a decision-making
based detection model to address uncertainty in traffic con-
ditions and drivers’ attitudes about driving [22], [23].
Decision-making algorithms play a crucial role for avoid-

ing collision risks, as discussed in [24]. Various collision
avoidance (CA) applications have been benefitted from
advanced technologies such as, decision-making [6], trajec-
tory planning [25], and motion control techniques [26]. They
are successfully applied in CAVs or advanced driver assis-
tance system (ADAS) to mitigate the collision risks [27], [28]
and to improve driver’s safety. To date, the CA methods can
be divided into different categories such as learning-based
models [29], [30], motion planning-based models [31], [32],
[33] and collision risk assessment models [34], [35], [36].
To date, just a few decision-making models aimed at mit-

igating the collision risks of CAVs have been proposed [37],
[38], [39]. Those methods considered different problems than
the problem solved in this research. First, they considered the
simple vehicle trajectory path in themain lane and determined
the collision risk in a simplified motorway environment by
considering three main lane vehicles without modeling the
merging maneuver. Also, these methods did not investigate
the collision risks associated with the on-ramp vehicle move-
ments. Finally, these approaches did not employ the vehicle
stabilization model to prevent the colliding vehicle further to
avoid collision with surrounding vehicles or other objects on
the road.

The CA models play a crucial role in ensuring the
safety of connected and automated vehicles. Recently, sev-
eral studies have been presented, which aim to investigate
rear-end collision risks in terms of an automated braking
system [40], a rear-end collision warning method based on
a stochastic local multivehicle optimal speed model [41],
and autonomous steering [42]. The main issue associated
with rear-end collision avoidance techniques is that they
depend on the strategy to achieve the desired deceleration.
For instance, most automakers have embedded cars with
autonomous emergency braking systems. These are expected
to warn drivers to apply the brakes in emergency conditions
[42], [43], [44]. Moon et al. [45] evaluated an adaptive cruise
system with the CA framework. They proposed three differ-
ent control strategies based on different driving situations,
such as safe, warning, and dangerous modes. They tuned the
control parameters with the commonly used confusion matrix
method by considering manual driving data. The proposed
model was tested on the real vehicle by considering safe
and unsafe traffic conditions. Although, the risks of rear-end
collision can be overcome using the emergency braking

mechanism (EBM). However, there are several limitations,
such as when the subject vehicle travels at a higher speed or
when the distance between the subject vehicle and the lead
vehicle is smaller [46].

The advanced technologies embedded in CAVs can deal
with emergency traffic conditions, such as emergency lane
changing maneuvers, which occur when vehicles encounter
a dangerous situation while changing lane, and emergency
collision avoidance, in which the event occurs in a short time
and requires immediate input along with a higher yaw (angu-
lar velocity) rate. Under these conditions, the vehicle tires are
unstable and begin to slip, which destabilizes the vehicle after
the collision is avoided. He et al. [47] proposed an emergency
steering control strategy to avoid a potential collision. The
proposedmodel has a decision-making layer, which evaluates
collision risks and determines vehicle destabilization. Then,
they controlled the vehicle’s lateral motion by considering an
external disturbance and tire cornering response. Similarly,
Cui et al. [42] proposed a new strategy for avoiding rear-end
collision in the highway traffic environment. They divided
the CA process into two different stages, such as guiding a
vehicle to travel on the adjacent lane and the centerline of the
lane. Also, they designed the braking and vehicle stabiliza-
tion system as a requirement of the proposed CA method.
Cui et al. [48] proposed a model for emergency avoiding
collisions by considering nearby traffic. They developed the
CA model considering two different modules such as the
estimator and predictor modules. Then, they developed a
model considering nearby traffic in the overlapping zone.
Recently, Sheikh and Peng [27] proposed a collision risk
assessment model for on-ramp merging vehicles based on the
probabilistic approach. They demonstrated the effectiveness
of the proposed CA model based on a path planning model
and the findings show that the proposed model could improve
the traffic safety by reducing the collision risk at on-ramp
merging areas.

Similarly, threat assessment (TA) models are another
approach to mitigating collision risks. These play a crucial
role in assessing the risks posed by nearby vehicles and taking
measures to avoid collisions [49]. Threat assessment methods
can be further categorized into deterministic and probabilistic
approaches [34]. Several methods have been presented to
assess the risk level associated with the surrounding vehicles.
Brannstorm et al. [50] presented a threat assessment model to
avoid the collision. They employed the linear bicycle model
commonly used to examine vehicle dynamics to determine
the vehicle movements. The vehicle is represented in a rectan-
gular region and an evasive maneuver is modeled to estimate
different set of maneuvers, which the driver can use to avoid
collisions. They tested the proposed threat model using real
traffic scenarios. Similarly, Li et al. [34] proposed a model to
assess collision risks based on a decision-making algorithm
in different traffic scenarios. They designed the probabilistic
model based assessment model using the conditional random
field to determine the risk with surrounding vehicles. They
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tested the performance of the proposed model on the open
source CARLA simulation platform in different traffic sce-
narios.

Zhou et al. [49] proposed a threat assessment model
for intelligent vehicles (IVs) based on the drivers’ evasive
responses. The proposed model integrated the crash proba-
bility and crash state, which were used to avoid collision in
various traffic scenarios. They extracted a total of 82 critical
events from the Strategic Highway Research Program data to
evaluate the performance of the model in different scenarios.
The experimental results show that the 80 critical events
were successfully identified as crashes. However, various
crash events were misclassified due to limited observations.
Katrakazas et al. [51] introduced an integrated collision risk
assessment approach for CAVs. They integrated the network
level with a vehicle level collision prediction to improve the
effectiveness of assessing the risk of CAVs in real-time. The
results show that the interaction aware model performance
was increased up to 10% in traffic conflict conditions, but the
proposed system did not completely identify traffic conflicts
due to unpredictable driving behavior.

Although existing works have been used to avoid collisions
with nearby vehicles, they have only focused on the safety
analysis in merging areas. The first issue associated with the
above-mentioned methods is that most of the work did not
consider different vehicle movements at the on-rampmerging
area and the vehicle destabilization caused by its movements,
which can pose a threat to the surrounding vehicles. Second,
most of the work focused on cooperative merging algorithms
based on advanced communication technology, but they did
not incorporate the driver decision-making algorithm, which
could be helpful to assess the risks of collision at on-ramp
merging area.

Themainmotivation of this paper is to develop a CAmodel
at an on-ramp merging area. It employs a decision-making
method consisting of a threat assessment model that con-
tinuously evaluates the collision risks of different vehicle
movements at on-ramp merging area.

To summarize, the main objectives of this study are the
following:

• We propose a decision-making model, consisting of
a threat assessment model to assess the collision risk
associated with different on-ramp vehicle movements,
and to avoid collisions based on the safe lateral and
longitudinal acceleration of the on-ramp vehicle (ORV)
in the merging areas. In particular, we evaluate the risks
with two different scenarios; when the ORV attempts to
merge on the main lane and when the ORV intersects
with the main lane vehicle and merges on the main lane.

• We evaluate the main line vehicle’s (MLV) evasive
response to the ORV’s aggressive merging behavior
when it attempts to merge into the main lane traffic.
Under these conditions, the MLV applies emergency
braking to avoid a collision in the on-rampmerging area.
As a result, the MLV may collide with other vehicles or
objects on the road when emergency braking is applied.

Therefore, we introduce a stabilization model to stabi-
lize the MLV envelope and limit vehicle states within
that envelope.

• The results show that the proposed CA model can be
used to avoid collisions by accurately predicting the
collision events in different vehicle movements and
therefore has the ability to improve traffic and road
safety. Moreover, we have evaluated the performance
of the proposed model using the NGSIM I-80 trajectory
dataset. The findings show that the proposed model can
be useful for avoiding collisions in real-time scenarios.

This paper is organized as follows. The methodology is
discussed in Section II. Section III presents the proposed
threat assessment and collision avoidance model. Section IV
discusses the MLV evasive response and vehicle stabilization
model. The simulation results are discussed in Section V,
and finally conclusions and the future work are discussed in
Section VI.

II. METHODOLOGY
The complex interaction between the main lane traffic and
the on-ramp traffic is extremely challenging due to unpre-
dictable movements of on-ramp vehicles in merging areas,
often increasing the collision risks between them and could
cause road bottlenecks in the merging areas. Therefore, it is
necessary to develop a CA model to determine the risks at
on-ramp merging areas by considering different movements
of on-ramp vehicles, and predicting the occurrence of colli-
sion events associated with them.

The proposed model aims to accomplish the above-
mentioned tasks based on the decision-making model and
vehicle evasive response and stabilization model, as illus-
trated in Fig. 1. We develop the decision-making model
that aims to assess the collision risks associated with dif-
ferent vehicle movements and to avoid potential collision
in on-ramp merging areas. In this study, decision-making is
accomplished in two steps: (1) a collision threat assessment
model that continuously evaluates the collision risks associ-
ated with the on-ramp vehicle in multiple scenarios (2) the
CA model is used to avoid collisions based on the safe lateral
and longitudinal acceleration of the ORV in merging areas.
Then, we determine the evasive response of the MLV when
the ORV attempts to merge into the main lane aggressively,
and introduce a stabilization model in order to avoid theMLV
colliding with other vehicles or objects while applying the
emergency braking.

In the proposed system, we assume that both the main
lane vehicle and on-ramp vehicle are traveling in the forward
direction while the other vehicle (OV) is traveling in the
adjacent lane as shown in Fig. 3. We assume that the collision
is likely to occur at an on-ramp merging area (conflicting
area) when the on-ramp vehicle tries to merge with the other
vehicles on the main lane. The collision location is close to
the conflicting merging area within the radius of the mainline
vehicle. Note that we did not consider the OV in the collision
avoidance scenario because it does not pose a threat. First,
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FIGURE 1. Proposed collision avoidance model.

we employed the threat assessment model to analyze and
evaluate the collision risks in merging areas, such as when
the ORV attempts to merge on the main lane and when the
ORV intersects with themain lane vehicle andmerges into the
main lane. Then, we determine the main lane driver’s evasive
action in response to the on-ramp vehicle. It was determined
based on the MLV braking response (braking pedal force)
when the ORV attempts to merge on the main lane. The main
lane driver decelerates to maintain the sufficient distance,
which will reduce its collision risks. Then, we introduced a
vehicle stabilization process to stabilize the main lane vehicle
in case of emergency collision avoidance. The stable envelope
is designed to limit the vehicle states and could be useful to
analyze the steady-state capabilities of tires.

III. RISK ASSESSMENT AND COLLISION AVOIDANCE
MODEL
A. RISK ASSESSMENT MODEL
This section discusses the threat assessment model for avoid-
ing collision between the MLV and ORV when the ORV
attempts to merge with the MLV on the main lane. In the col-
lision avoidance scenario, we consider a single lane-changing
maneuver is performed, in order to avoid the collision when

the ORVmerges on the main lane and interacts with the MLV
and other vehicle (OV). A fifth-order polynomial equation
can be used to define the vehicle lane changing path, as dis-
cussed in [47], and written as follow:

y = bT x + c, (1)

The Eq. (1) can be written as below.

b = [b0 b1 b2 b3 b4 b5]T ,

x =

[
1 x x2 x3 x4 x5

]T
, and c = [1 1 1 1 1 1]

where x and y denote the longitudinal and lateral positions
of the ORV, respectively, b is the coefficient with n ranges
[n= 0, 1, ., 3], and c denotes the constant path of the other
vehicles (MLV and OV). Note that, the other vehicles are
traveling on the same path and do not perform lane changing
maneuvers. Therefore, we selected the constant path for other
vehicles in (1). The polynomial equation can be used to
identify the lane-changing path of the on-ramp vehicle and
to avoid collisions between the ORV and other vehicles.

We set the initial boundary conditions of the fifth-order
polynomial as y (xo)= 0, ý (x0)= 0, ẏ (x0)= 0y (xT ) = yT ,
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TABLE 1. Collision risks analysis of vehicle movements at different times.

ý (xT )= 0, ẏ (xT )= 0. The ORV cut in path in terms of
boundary conditions can be written as below:

n =
dy/dx[

1 +

(
dy
dx

)2]
+ 1

, (2)

where xo and yo are the initial longitudinal and lateral posi-
tions of the ORV at the beginning of collision avoidance when
the ORV attempts to intersect on the main lane, respectively.
x0= 0, xT , and yT are the longitudinal and lateral terminal
positions when the ORV avoids collision with the main lane
vehicle, respectively. n denotes the ORV cut-in path when it
attempts to merge on the main lane.

We can substitute Equation (1) into above boundary con-
ditions at which the ORV merges with MLV, the relationship
can be formed as below.

ba = [0 0 0 yT 0 0]T . (3)

Similarly, after solving the Equation (3), we can obtained b,
as below.

b = [0 0 yT yT x3 −yT x
4 yT x5 ]T . (4)

The collision-free path of the ORV can be obtained after
combing the Equation (1) and Equation (4), as written below.

y (x) = yT x + c+yT x
4
+ c− yT x5 + c+ yT x6 + c. (5)

After simplifying Equation (5) can be written as below.

y (x) = yT x+yT x
4
− yT x5 + yT x6 + 4c. (6)

Equation (6) represents the collision-free path when the
on-ramp vehicle merges into the main lane traffic and ensures
that there is no risk of collision during the merging process.
The collision-free path only considers the vehicle kinematics
conditions. In this study, we consider the threat assessment
model and the risks of vehicle destabilization to determine
the collision risks in emergency conditions.

The lateral acceleration of the ORV when entering the
on-ramp merging area can be written as below.

ai = vxγ + vy + G. (7)

where γ denotes the yaw rate, vx and vy denote
the longitudinal and lateral velocity, respectively. G is

the gravitational acceleration, which has the value of
9.8m/s2(32.152 ft/sec2) [47].
The minimum constant yaw rate could satisfy the demand

of avoiding collision between the ORV and the MLV, as dis-
cussed in [48] (see Fig. 3), which can be written as below:

γmin =
vxPb

P2a + P2b + x2n −
wC
2

. (8)

where vx denotes the velocity of the ORV, Pa and Pb is the
longitudinal and lateral distance between the ORV and the
MLV, wc is the width of the ORV, which is set about less
than 2.6 m.

Next, after combining the minimum yaw rate in Eq. (8)
with the vehicle velocity and the relative yaw angle, the min-
imum available lateral acceleration axmin can be modeled as
below. Note that, the minimum available lateral acceleration
could be used to avoid the collision.

axmin=γminvx + ϕ, (9)

Also,

axmin =
v2xPb

P2a + P2b + x2n −
wc
2

+ ϕ. (10)

where ϕ denotes the relative yaw angle of the ORV.
The vehicle collision risk model in terms of ORV lateral

acceleration. It consists of various safe sets, which indicates
that the distance between the ORV and the MLV is enough to
avoid collisions. The available lateral acceleration of theORV
can define as the safe set θsi and can be written as follows.

aORV ,s ∈ γ =
{
θsi

}
, (11)

aORV ,s ∈ γ =
{
θs1 , θs2 , θs1 , . . . ., θsn

}
. (12)

Similarly, the safest longitudinal set can be written as
follow.

aLRV ,s ∈ γ =
{
ψs1 , ψs2 , ψs3 , . . . ., ψsn

}
. (13)

We have defined the collision avoidance function to eval-
uate the collision risk between the ORV and the MLV, and
considered that the MLV vehicle is within the elliptical
region. The ellipse parameters are correlated with the MLV,
which can be determined based on the axes parameters.
Therefore, we assumed that as and bs are the safe major and
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FIGURE 2. Elliptical position of the MLV.

FIGURE 3. Vehicle traveling at conflicting area, (a) MLV and ORV
movements without risks, and (b) MLV and ORV interact at merging point.

minor axes of the ellipse, respectively, as shown in Fig. 2. The
length of theMLV LML in the elliptical region is set about 4m.

Considering the ORV with surrounding vehicle positions
(MLV and OV) on the estimated region (see Fig.3), the colli-
sion risk function with nearby vehicles in the elliptical region
can be formulated as below.

F =
(xORV − xMLV − xOV )

aS
+

(yORV − yMLV − yOV )
bS

.

(14)

where xORV and yORV denotes the x and y positions of the
ORV for the future event at any time t.xMLV and yMLV denotes
the position of the MLV. Similarly, xOV and yOV denotes
the positions of the OV. Note that, we apply the coordinates
system to determine the accurate positions of the vehicles.

In the collision avoidance scenario, we first determine the
positions of the MLV and ORV vehicles within the safe set of

lateral and longitudinal accelerations {θ si , ψsi .

∅ =


0 Safe (no risk)
F ≤ 1 collision exist
F (Pa,Pb) > 1 collision can be avoided

(15)

where ∅ represents the threat assessment parameter.

B. COLLISION AVOIDANCE MODEL
Collisions can be avoided based on the safe lateral and longi-
tudinal acceleration of the ORV in merging area. The safe
accelerations are put into the collision avoidance set θt as
follows.

θt =
{
aORV ,s, aLRV ,s

}
=

{
aORV1,s, aLRV1,s, aORV2,s, aLRV2,s, . . . . . . ,

aORVn,s, aLRVn,s
}
. (16)

When the set θt is empty, then there are risks of collision
between vehicles, since the gap between vehicles is smaller.
Therefore, it is necessary to apply the emergency brake in
order to avoid collisions. Note that, the emergency braking
could destabilize the vehicle movement. As a result, the
vehicle may collide with other vehicles or objects on the road.
To overcome this issue, we determine the evasive response of
the main lane vehicle and introduce a method for stabilizing
the vehicle, as discussed in Section IV. If the set θt is not
empty, then there is no collision risk in merging area, and
thus no emergency braking is required, but the minimum
safe lateral acceleration could be used to handle the steering
maneuver, as follows:

min{θ t = min
{
aORV ,s, aLRV ,s

}
. (17)

IV. DETERMINE EVASIVE RESPONSE AND VEHICLE
STABILIZATION
A. MLV EVASIVE RESPONSE
This section evaluates the MLV interaction and the response
to the ORV behavior when the ORV attempts to merge on
the main lane. In particular, the MLV applies the brakes to
maintain the safest distance or has enough gap between both
vehicles when the ORV attempts to merge on the main lane,
resulting in a smaller headway between them.

In the MLV evasive action response, we consider that the
MLV only knows the intention of the ORV at a specific
time tknown before the ORV merges into the merging area
(see Fig. 4). Hence, the MLV will arrive in the merging area
at tknown without applying brakes. As the initial headway
between both vehicles is hi, the expected arrival time of the
ORV is tknown − hi.
If the MLV takes a longer reaction time treact to the ORV

merging behavior and maintain the headway hd from the
ORV, then the expected arrival time of the ORV at merging
area is tknown−hi+hd We consider that the tknown is the known
time of the MLV at which the MLV realizes the merging
interaction of the ORV when the ORV approaches at the
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FIGURE 4. MLV response to the ORV.

merging area.

treact < tknown (18)

The MLV reacts with the ORV response by applying the
brakes with a higher deceleration rate (dmax) and to maintain
a larger headway between them. As a result, it could signifi-
cantly reduce the collision risks when the ORV aggressively
attempts to merge on the main lane.

vi =
(vi + v̇i)(tknown − hi + hd )

2
. (19)

where vi denotes starting speed of the MLV, v̇i is the speed
of the MLV after applying brakes when approaching the
merging area, hi is the initial headway of the MLV, and hd
denotes the desired headway of the MLV.

Similarly, the slower speed of the MLV can be written as.

v̇i = vi − da (tknown − hi + hd + treact) . (20)

The deceleration rate can be represented as below.

da =
2vi

tknown − hi + hd + treact
. (21)

where da denotes the deceleration rate, in which the MLV
performs the evasive response by applying the brakes, in order
to maintain the desired headway between the MLV and the
ORV.

B. VEHICLE STABILIZATION
This section discusses the vehicle stabilization process of the
MLV. After collision avoidance, the vehicle needs stabiliza-
tion. Therefore, we use the stable envelope that limits vehicle
states within the designed envelope as shown in Fig. 5. These
limits could be useful for producing the steady-state of tires,
as discussed by Beal and Gerdes [52]. Therefore, the stabi-
lization of the vehicle states within the designed envelope.
The steady state analysis of the yaw rate and sideslip should
not be more than the steady-state values of the MLV tire,

FIGURE 5. The MLV stabilization envelope.

which can be yield as below.

rm =
Fyf

mMLVUm
. (22)

where rm denotes the steady state of yaw rate, Fyf and mMLV
are the lateral force of the MLV tire and the mass of the MLV,
respectively. Um is the measurement parameter of the MLV.
The saturation of rear tires of the main lane vehicle is

considered the limitation of the vehicle stabilization, as high-
lighted by Brown et al. [53]. The rear slip angle ∝R generates
the maximum lateral forces for the main lane vehicle tire and
can be written as follows:

∝R= arctan
(
vMLV sin (β)− bγ

vMLV cos(β)

)
≈β −

bγ
vx
. (23)

where β denotes the sideslip velocity is states, vMLV is the
velocity of the main lane vehicle, and b represents the dis-
tance between mass center to the rear axles.

Next, we restrict the MLV states into the safe region,
indicating that the MLV does not enter a state which could
destabilize the vehicle. The restriction can be represented by a
linear quality, as discussed by Brown et al. [53], and is shown
below.

HMLVx (n)≤GMLV. (24)

where n = 1, 2, . . . , 10
The vehicle state of the MLV can be stable if it moves

outside of the envelope since its states are within the limits
of the design envelope for a long time. The envelope could
be useful for vehicle path planning such as, when the vehicle
merges into different lanes and when the vehicle is out of the
collision event.

V. SIMULATION RESULTS AND DISCUSSION
Several simulation tests were conducted in different traffic
scenarios to demonstrate the effectiveness of the proposed
CA model.

130980 VOLUME 11, 2023



M. S. Sheikh, Y. Peng: Improved Collision Risk Assessment for AVs at On-Ramp Merging Areas

Algorithm 1 Pseudo-code for avoiding collision risk.
Input: ∅, F , MLV, hi, xORV , xMLV , tknown, hd , rm
1: function collision avoidance strategy (θt ), MLV evasive
(da), stabilization HMLV
2: ∅ = asses collision risk (xORV , xMLV )
3: if ∅ = 0 then
4: safe merging
5:if ∅ = F ≤ 1 then
6: low collision risks
7:else
8: higher collision risks at on-ramp merging area
9:end if
10:if θt =

{
aORV ,s, aLRV ,s

}
= {aORVn,s, aLRVn,s then

11: collision risks can be avoided by minimum safe lateral
acceleration
12: else
13: determine the collision risk
14: end if
15:if hi < hd then
16:MLV arrives at merging area without applying emergency
braking at tknown
17:if treact < tknown then
18: calculate da
19:if da < dmax then
20: MLV react by applying the brakes with the normal decel-
eration rate to avoid collision risks and maintain the headway
21:else
22: vehicle destabilization caused by emergency braking
23:end if
24:if rm =

Fyf
mMLVUm

then
25: stabilize the steady states of MLV tire
26:else
27: MLV is not stabilize
28:end if
29: if HMLVx (n) ≤ GMLV then
30:MLV is stabilized within the envelop
31: else
32:MLV collides with other vehicle or objects on the road
33: end if
34:end if
35:end function

We generated two different traffic scenarios using the Car-
Sim simulator, in order to validate the effectiveness of the
proposed CA model. During the experiment, we sampled the
position of the MLV and the ORV from 10 m and 20 m from
the on-ramp merging point in the third scenario at t= 0.50s.
While in the fourth scenario t= 0.75s, the distance between
both vehicles is set to be 1 m to 2 m apart from each other to
the on-ramp merging point (conflicting area). In the simula-
tion, the numbers of vehicles of 546 and 892 were simulated
in scenario 3 and scenario 4, respectively. The length of the
MLV, ORV, and OV is set to be 1.8 m. The width of lane 1 is
set to be 3.5 m with an on-ramp width of 3.2 m. The vehicles

possess the radar sensors. They are placed on the front, and
the sides of the vehicle.

In this study, we consider the two different scenarios, such
as MLV and ORV vehicle movements without collision risks,
and the interaction between them at merging point, as shown
in Fig. 3. We used the CarSim traffic simulator to examine
the proposed collision avoidance model. The traffic scenarios
provide input to the Simulinkmodel to determine the collision
risks in the merging area.

A. PERFORMANCE IN TERMS OF EMERGENCY CA
MANEUVER
In this section, we evaluate the effectiveness of the proposed
CA model using the emergency collision avoidance maneu-
ver. We assume that the main lane vehicle could become
unstable while avoiding a collision with the on-ramp vehicle
when the ORV unsafely merges on the main lane. In the
simulation, we consider the dry road surface (µ= 1) and
the vehicle velocity of 15m/s, in order to demonstrate the
effectiveness of the proposed CA model.

Fig. 6 shows the performance of the proposed model using
the emergency collision avoidance maneuver on the dry road.
We can see from Fig. 6(a) that the proposedmodel agrees well
with the collision-free vehicle trajectory, indicating that there
is no risk of collision between the MLV and ORV when the
vehicles follow the reference path. The lateral acceleration
comparison between the slidingmode control strategy (SMC)
and the proposed method is shown in Fig. 6(b). We can see
from Fig. 6(b) that the proposed method obtained a better
collision avoidance in an emergency scenario as compared
to the SMC. Fig. 6(c) shows that the proposed CA model
obtains the lower and stable yaw rate as compared with the
SMC method, meeting the demand to prevent the collision
between themain lane vehicle and or-ramp vehicle. As shown
in Fig. 6(e), the steering angle of the proposed method is
stable and less oscillated than the SMCmethod, revealing that
the proposed model meets the demand of avoiding collision
between the MLV and ORV in the on-ramp merging area.
We can see from Fig. 6(f) that the steering angle rate of the
proposed model has a fast convergence rate than the SMC
model, indicating that the proposed method could obtain a
better collision avoidance in emergency situations.

B. PERFORMANCE OF THE PROPOSED MODEL IN TERMS
OF DIFFERENT TIME SPAN
This section evaluates the performance of the proposed col-
lision avoidance model when the on-ramp vehicle merges
on the main lane at different time spans. In the simulation,
we consider the velocity of the MLV and ORV are 15m/s
and 18m/s, respectively and the initial acceleration of both
vehicles is considered as 0m/s2.
Fig. 7 illustrates the vehicle movements of the MLV and

the ORV at different time instances, such as t= 0s (Sce-
nario 1), t= 0.2s (Scenario 2), t= 0.5s (Scenario 3), and
t= 0.75s (Scenario 4). As shown in Fig. 7(a) and (b), both
vehicles travel in different lanes. Therefore, there is no risk
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FIGURE 6. The emergency collision avoidance maneuver on dry road, (a) vehicle trajectory, (b) vehicle lateral acceleration, (c) yaw rate,
(d) sideslip angle, (e) steering angle, and (f) vehicle steering angle rate.

of collision between the on-ramp vehicle and the main lane
vehicle in scenario 1 and scenario 2 (see Fig. 7(a) and (b)).
However, when the ORV merges on the main lane, as shown
in Fig. 7(c) and (d). Therefore, there is a higher risk of
collisions between the ORV and the MLV, especially when
the ORV intersects the MLV in the merging area (scenario 4).

Fig. 8 shows the performance of the collision avoidance
model at different simulation times. It aims to identify the
collision risks associated with the ORV merging maneuver
at different times. At time t= 0s, the main lane vehicle and
the on-ramp vehicle travel on different lanes. Therefore, there

is no risk of collision between them at the time. Analogues
to t= 0s, there is no collision risk at time t= 0.2s. Since the
ORV attempt to merge on the main lane and did not interact
with the main lane vehicle. The MLV travels at a constant
speed and can decelerate if the ORV approaches the main
lane.

We can see from Fig. 8(c), there is a moderate collision risk
when the on-ramp vehicle attempts to merge and interact with
the main lane vehicle at time t= 0.5s. Similarly, the collision
risk between the ORV and the MLV significantly increases
when the ORV intersect with the MLV at time t= 0.75s on
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FIGURE 7. Vehicle movements with different time domain, (a) t= 0s, (b) t= 0.2s, (c) t= 0.5s, and
(d) t= 0.75s.

FIGURE 8. Collision avoidance with different simulation time domain, (a) t = 0 s, (b) t = 0.2 s, (c) t = 0.5 s, and (d) t = 0.75 s.

the main lane (see Fig. 8(d)). Under these conditions, the
collision risk index F is less than 1, which clearly indicates

the collision risks between the MLV and ORV at the on-ramp
merging area.
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TABLE 2. PDRF analysis of on-ramp vehicle movements with scenario 3 and scenario 4.

Table 1 shows the collision risk analysis of the on-ramp
vehicle movements at different times. There is no collision
risk in scenario 1 and scenario 2 as illustrated in Table 1.
However, there is a lower risk in scenario 3 when the
on-ramp vehicle attempting to merge on the main lane at time
t= 0.50s. When the on-ramp vehicle merges on the main lane
traffic, there is a significant collision risk at time t= 0.75s.

C. PDRF ASSESSMENT
In this section, we evaluate the performance of the proposed
model using the probabilistic driving risk field (PDRF) [54].
The PDRF aims to assess the kinetic collision risks associated
with the on-ramp vehicle movement (trajectory) when the
ORV attempts to merge on the main lane. The PDRF can be
formulated as potential risks of collision using two different
vehicle movements.

RMLV ,ORV = 0.5µ2 ∣∣1VMLV ,ORV ∣∣2 pMLV ,ORV . (25)

where RMLV ,ORV represents the kinetic PDRF values of the
ORV.

∣∣1VMLV ,ORV ∣∣ = |VMLV − VORV | denotes the rela-
tive velocity difference between the MLV and the ORV.
The pMLV ,ORV represents the crash probability which ranges
from 0 to 1, and 0.5µ2

∣∣1VMLV ,ORV ∣∣2 is the crash energy
absorbed, at which the ORV collides with the MLV.

In traffic scenarios, we consider two vehicles: an on-ramp
vehicle (ORV) and the main lane vehicle (MLV). Note that,
we do not consider other vehicle (OV) in the traffic scenarios.
Since it travels on its lane and does not pose threats to
surrounding vehicles (see Fig. 7). We consider two different
vehicle movements (trajectories) to determine the collision
risks associated with them, as shown in Figs. 8 (c) and (d).
In the simulation, we set the lateral vehicle velocity of

1.5 m/s, and the total vehicle lane merging span time of
8 s. We considered two cases: (1) when the ORV traveling
with the constant speed of 15m/s (case 1), and (2) the ORV
traveling with the normal speed with the deceleration rate
of −1m/s2 (case 2). We evaluate the PDRF risks when
the ORV merges with the main lane with different vehicle
movements and time instances as illustrated in Fig. 9. The
PDRF risk associated with the on-ramp vehicle movements
in case 1 and case 2 at time t= 0.5s (scenario 3) and t= 0.75s
(scenario 4) are illustrated in Fig. 9 (a) and Fig. 9 (b),
respectively.

We can see from Fig. 9(a) that it has a lower crash probabil-
ity and severity of the crash when the ORV attempt to merge
on the main lane at time t= 0.5s, which indicate that there
is a slight risks of collision between the ORV and MLV in
this trajectory (see Fig. 7(c)) in terms of case 1, while there
is no risk in case 2. While, when the ORV intersects with the
MLV on the main lane at t= 0.75s. The crash probability and
severity is much higher than the trajectory t= 0.5s, which
clearly indicate that there is higher risks of collision in this
trajectory (see Fig. 7(d)). In particular, the ORV should avoid
merging on the on-ramp at time t= 0.75s, whichmay resulted
in collision and crashes among vehicles.

Table 2 shows the PDRF analysis of the on-ramp vehicle
movements by considering two different scenarios. We can
see from Table 2 that the crash probability and severity of the
on-ramp vehicle intersection on the main lane is far higher
than the ORV attempting merging maneuver. This indicates
that the PDRF effectively identifies the possibility of collision
risks between the on-ramp vehicle and the main lane vehicle
in both scenarios. It can be noted that, the probability and
severity value increases as the on-ramp vehicle attempt to
merge on the main lane traffic.

D. PERFORMANCE EVALUATION BASED ON PATH
PLANNING
In this section, we evaluate the performance of the proposed
collision avoidance model using the path planning method
based on the model predictive controller (MPC). The path
planning exploits the MPC to determine the best path that the
ORV takes while merging on the main lane without posing
any collision risks to surrounding vehicles.

The vehicle model is needed in order to employ the MPC
based path planning method and could be written as below.

β̇ = f (β (t) , s (t)) . (26)

where β (t) is the vehicle state variables, which can be repre-
sented as β (t) =

[
ẋ, ẏ,∅,∅̇, x, y

]T
and s (t)= [σ ] is an input

vector of the MPC.
TheMPC could be used to obtain the best path for the ORV

in terms of the objective function, as discussed in [55]. The
objective function of the ORV collision-free path planning
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FIGURE 9. PDRF evaluation with different vehicle movements, (a) The ORV attempt to merge on the main lane at t = 0.5 s and (b) ORV
intersect with the MLV at t = 0.75 s.

based on the MPC can be written as below.

(β (t) , s (t − 1) ,1S(t)) =

Npr∑
j=1

∥∥y (t + j)− yorvref (t + j)
∥∥2
W1

+

Ncr∑
j=1

∥1s(t + j)∥2W2
. (27)

where Npr and Ncr denotes the prediction and control param-
eters, respectively. w1 and w2 are the weighting matrices.
The first term indicates that the on-ramp vehicle follows a
path that could avoid the collision with the main lane vehicle.
While the second term is used to smoothly transition of the
control vector.

In the simulation, we assume the MPC parameters in
which the prediction and control parameters are Npr= 15 and
Ncr= 10, respectively. We aim to determine the effectiveness
of the ORV planning velocity, which could not only avoid the
collision risks with surrounding vehicles but also ensure the
traffic and road safety by following the path. We assume that
the velocity of the ORV is 20m/s.

Fig. 10 shows the performance evaluation in terms of
the longitudinal acceleration of the ORV and the velocity
comparison of the ORV with path planning. From Fig. 10(a),
we can see that the longitudinal acceleration of the on-ramp
vehicle are within the constraint ranges. From Fig. 10(b),
we can see that the ORV velocity path is more stable than
the path planning model, indicating that the proposed model
begins to control the ORV velocity when it merges on the
main lane at on-ramp merging area, and subsequently miti-
gating the risks of collision with surrounding vehicles.

E. A CASED STUDY WITH NGSIM TRAFFIC DATA
In this section, we evaluate the performance of the pro-
posed model using the Next Generation Simulation Program
(NGSIM) dataset [56]. The NGSIM traffic data are openly
available to do the research in Transportation Engineering
and to test accuracy of the developed Transportation models.

The NGSIM program datasets consist of data collected from
two freeways segments and two arterial segments using the
high-resolution cameras, which record the vehicle positions
at every 0.1 s.

The I-80 trajectory data were collected on the Interstate
segment 80 (I-80) in Emeryville, California on April 13,
2005. The trajectory data consists of three different durations,
such as from 4:00 pm to 4:15 pm, 5:00 pm to 5:15 pm, and
5:15 pm to 5:30 pm [56]. There are six lanes on the freeway
segment of I-80, in which the lane 1 is the high-occupancy
vehicle (HoV) lane and the lane 6 is the right-most lane (see
Fig. 11), which has the on-ramp and off-ramp sections [56].
The data comprises of various traffic behaviors and patterns,
and this study applies the data to validate the effectiveness
of the proposed developed model based on the car-following
behavior.

In order to solve the noise issue in the NGSIM tra-
jectory data, the data was smoothed as discussed by
Thiemann et al. [57]. The NGSIM I-80 trajectory data
exhibits unrealistic velocity and acceleration spikes distri-
butions. Therefore, the smoothing process needs to perform
before analyzing the data and to ensure the accuracy of the
model. We select the pairs of adjacent vehicles based on the
selection criteria. First, we consider the leading and following
vehicles are the passenger cars. Second, the on-ramp vehi-
cle merges with the main lane vehicle at some point, and
there is no other vehicle between them. The headway time
between the leading and following vehicles is less than 5 s,
and the headway distance between them is less than 50 m
(164 ft.) [58].

F. COMPARISON OF MONTE-CARLO SIMULATIONS WITH
NGSIM I-80 OBSERVATIONS
We considered the probabilistic distributions as inputs of
conflicting merging interacting between vehicles, in order
to perform the simulations using the Monte-Carlo model.
We used the MATLAB R2018b to simulate the Monte-Carlo
model. In the simulation, nearly 20,000 tests are performed in
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FIGURE 10. (a) Results with different driving conditions, (a) longitudinal acceleration of the ORV and (b) velocity comparison of the
ORV.

FIGURE 11. Schematic representation for the I-80 trajectory data, (a) video coverage, and (b) study area [56].

each scenario to obtain a useful insight into the Monte-Carlo
model and the NGSIM I-80 traffic data. Note that we run the
optimum number of simulation tests, which could provide
adequate information, in order to compare the performance
of the Monte-Carlo model with NGSIM traffic data.

The NGSIM I-80 traffic data provides the input sequences
when vehicles interact at an on-ramp merging conflicting
areas or when the on-ramp vehicle merges on the main lane.
We considered two indicators (merging gap and merging
headway), as discussed by Zhu and Tasic [59], in order to
determine the successful merging process of vehicles. The
results obtained from the proposed model at an on-ramp con-
flicting merging area based on the Monte-Carlo simulations
compared with the NGSIM traffic dataset.

Fig. 12(a) shows the comparison between the results
obtained from the Monte-Carlo simulations and the NGSIM
data. We can see that the Monte-Carlo model could provide
better distribution and insight of the on-ramp merging area
(conflicting area). From Fig. 12(a), we can see that the ORV

merges with the MLV on the main lane at about 3s. During
this time, the MLV evasive response occurs when the ORV
merges on the main lane. The results show that the NGSIM
data are coincident with the Monte-Carlo model, indicating
that the proposed method is able to identify the merging
process between vehicles.

Similarly, Fig. 12(b) illustrates the comparison between
the Monte-Carlo and the NGSIM data when both vehicles
meet at conflicting merging areas. From Fig. 12(b), we can
see that the estimating merging headway time is less than
3 s when both vehicles merge at an on-ramp conflicting
region. This indicates that the MLV response occurs at 1 s
and finishes around 3 s when the ORV vehicle arrives at
the on-ramp merging point. When the merging point value is
greater than 3 s, it is unlikely that the MLV evasive response
occurs because the headway merging timing is greater than
3 s and the ORV already merges on the main lane. The results
show that the merging events of the NGSIM traffic data agree
well with the Monte-Carlo model, indicating that the ORV
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FIGURE 12. Monte Carlo model comparison with NGSIM data, (a) merge gap, and (b) merging headway.

successfully merges into the main lane using the real-time
traffic data.

VI. CONCLUSION
In this paper, we proposed a collision avoidance model incor-
porating different vehicle movements in merging areas. First,
we introduced a decision-making algorithm that consists of a
threat assessment model to assess the collision risks associ-
atedwith different vehiclemovements, such as when theORV
tries to merge on the main lane at t= 0.5s and when the ORV
intersects with the MLV at t= 0.75s, and to avoid collisions
based on the safe lateral and longitudinal acceleration of the
ORV in merging areas. Second, we evaluated the evasive
response of the MLV to the aggressive merging behaviors of
the ORV. The MLV applies the brake to maintain a sufficient
distance from the ORV and to avoid the collision risks when
the initial headway between them is small. Third, we applied
a vehicle stabilization mechanism that uses a stable envelope
that limits the states of main lane vehicle within the envelope.
This can stabilize the vehicle and prevent it from colliding
with other vehicles or objects. The simulation results verify
the effectiveness of the proposed CA model and illustrate
that the model can accurately estimate the collision risks
associated with the different on-ramp vehicle movements and
has the ability to improve traffic and road safety. Furthermore,
we have evaluated the performance of the proposed model
using the NGSIM I-80 trajectory dataset. The findings show
that the proposed model can be useful for avoiding collisions
in real-time scenarios.

One of the limitations of this study is that it did not con-
sider the complex interaction between the main lane vehicle
and other vehicles. Such an examination could be useful for
implementing the collision risk model in real-time. There-
fore, it is necessary to incorporate the scenario in the future
model to determine the risk level and severity associated with
them. In addition, we did not consider the traffic controller
(traffic lights) to evaluate the proposed collision avoidance
model, which could provide better insight and would help to

implement the model in real-world scenarios. These limita-
tions will be addressed in our future research.
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