
Received 20 October 2023, accepted 14 November 2023, date of publication 20 November 2023,
date of current version 29 November 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3335187

Toward Hardware-Assisted Malware Detection
Utilizing Explainable Machine Learning: A Survey
YEHYA NASSER 1 AND MOHAMAD NASSAR 2, (Member, IEEE)
1Lab-STICC, UMR CNRS 6285, IMT Atlantique School, 29238 Brest, France
2Department of Computer Science, The University of Alabama in Huntsville, Huntsville, AL 35899, USA

Corresponding author: Yehya Nasser (yehya.nasser@imt-atlantique.fr)

This work was supported in part by Direction Générale de L’armement Française and Région Bretagne.

ABSTRACT Hardware joined the battle against malware by introducing secure boot architectures, malware-
aware processors, and trusted platform modules. Hardware performance indicators, power profiles, and
side channel information can be leveraged at run-time via machine learning for continuous monitoring and
protection. The explainability of these machine learning algorithms may play a crucial role in interpreting
their results and avoiding false positives. In this paper, we present an eagle eye on the state of the
art of these components: we examine secure architectures and malware-aware processors, such as those
implemented in the RISC-V Instruction Set Architecture and Reduced Instruction Set Computer (RISC).
We categorize hardware-assisted solutions increased by machine learning for classification. We survey
recently proposed software-assisted and hardware-assisted explainability algorithms in our context. In the
discussion, we suggest that (1) safe architectures that guarantee secure device boot are a must, (2) Side-
channel approaches are challenging to integrate into embedded systems, yet they show promise in terms of
efficiency, (3) malware-aware processors provide valuable features for malware detection software, and (4)
Without explainability, malware detection software is error-prone and can be easily bypassed.

INDEX TERMS Hardware security, embedded systems, malware detection, secure boot, explainability,
machine learning, side channels, IoT.

I. INTRODUCTION
According to a study by Cisco [1], 500 billion electronic
devices are expected to be connected to the Internet by 2030.
The proliferation of the Internet of Things (IoT) has
brought about a significant surge in the deployment of
small, connected embedded devices. However, these devices
are particularly vulnerable to attacks due to their inherent
limitations in computational power, resources, and power
consumption constraints. Consequently, one of the primary
concerns surrounding embedded systems within the IoT
ecosystem is the potential disruption of their functionality
by a malware program [2]. Malicious software or Malware
targets these systems with the intention of modifying their
expected behavior, which can lead to various detrimental
outcomes such as unauthorized data exfiltration, impaired
device functionality, or transforming the device into a

The associate editor coordinating the review of this manuscript and
approving it for publication was Jiafeng Xie.

controlled bot for the attacker’s purposes. Malware includes
harmful software such as viruses, ransomware, miners,
etc. Antivirus software counters malware via signature or
behavior detection. However, it can miss new or unknown
variants, hence the need for regular updates and cautious
online habits. Detection failures can be due to mutated or
evolving malware [3].

Hardware-assisted malware detection, which identifies
malicious software by monitoring the hardware footprints of
its operations, is a method that utilizes dedicated hardware to
obtain an execution profile, thereby likely enhancingmalware
detection [4]. It is also possible to utilize these profiles with
machine learning-based algorithms to recognize patterns in
the execution of the program that may bring information
about a possible malware execution, allowing them to detect
even previously unseen types of malware. Hardware-assisted
malware detection can be implemented within various
hardware platforms, including General-Purpose Processors
(GPPs), Graphics Processing Units (GPUs), and specialized

VOLUME 11, 2023

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 131273

https://orcid.org/0000-0001-8176-8510
https://orcid.org/0000-0001-8857-4436


Y. Nasser, M. Nassar: Toward Hardware-Assisted Malware Detection Utilizing Explainable Machine Learning

FIGURE 1. Points of interest for malware detection and prevention in embedded computer systems.

hardware accelerators. Hardware-assisted malware detection
can enhance performance, diminish false positives, and
bolster security in comparison to software approaches [5].
Moreover, it is expected to be immune to forms of software
manipulation [6].

To this end, cost-effective, energy- and area-saving solu-
tions for hardware-assisted malware detection are needed.
Although this article surveys and discusses several solutions
that use machine learning and hardware capabilities to
detect and mitigate malware execution, we also cover
some solutions that use side-channel information such as
power consumption. Finally, we discuss the explainability of
machine learning models to understand whether these models
are genuinely effective in detectingmalware. The scope of the
discussion is depicted through the points of interest as shown
in Figure 1. The contributions of this paper are summarized
as follows:

• Presenting an overview of hardware-assisted malware
detection using machine learning and explainability.

• Discussing the potential issues and trends in the field
of hardware-assisted malware detection and its future
developments.

The rest of the paper is organized as follows: Section II
serves as a background on the various topics explored in
this paper. In Section III, we present an in-depth overview
of hardware architecture solutions employed for the purpose
of malware detection. Section IV focuses on explainable
machine-learning models for malware detection. Moving
on to Section V, we discuss state-of-the-art solutions, their
categorization, and merits. Finally, Section VI addresses
the challenges and future directions for malware detection,
besides explainability. Section VII concludes the paper.

II. BACKGROUND
A. MALWARE DETECTION AND MITIGATION
The aim of malware can be to retrieve private information,
gain remote access to the machine, or encrypt the user’s
memory for profit. Malware can be hidden in documents
that victims may receive in email attachments or down-
loaded software, and can spread through the exploitation
of vulnerabilities in firmware or applications for embedded
devices. While it is beyond the scope of this paper to
enumerate all types of malware (e.g., botnet, adware) and
their delivery modes, it is essential to note that malware
can have devastating consequences for companies, especially
when dealing with ransomware. According to [7], there
are more than 1.1 billion malware programs in existence.
At the same time, as IoT and industrial IoT applications
continue to increase, the number of malware instances has
increased by 77% in 2022 compared to 2021. The traditional
approach to mitigating malware is to use antivirus software.
This software continuously scans the computer in search
of any malware and quarantines or removes it. Traditional
malware detection techniques can be static, which analyzes
the structure of a program, or dynamic, which analyzes
the behavior at run-time. Malware detection can focus on
signatures of known malware or detecting deviations from
the regular behavior of the system [8]. Other techniques that
can be classified as best practices can also be used to avoid
malware execution. For example, it is highly recommended
to always patch and update software and systems for
vulnerability fixes. Encrypting and isolating memory can
also be a way to prevent malware from disrupting essential
data on the system [9]. In addition, securing networks is
critical; for example, the network administrator may install

131274 VOLUME 11, 2023



Y. Nasser, M. Nassar: Toward Hardware-Assisted Malware Detection Utilizing Explainable Machine Learning

FIGURE 2. Decision tree structure.

firewalls, hardware or software, to prevent malware from
entering the network. They can also segment networks into
small and isolated subnets. Last but not least, virtualization,
thanks to the hardware-assisted virtualization features of
modern processors, allows the user to create isolated virtual
environments that will not compromise the host machine if
infected by malware [10]. Some of these solutions are costly
regarding computer performance and, therefore, unsuitable
for constrained devices such as embedded systems or IoT
devices. Thus, our analysis takes into account the target
platform and applications.

B. MACHINE LEARNING
Machine learning is the field of study that allows computers
to learn a task without being explicitly programmed.Machine
learning can be divided into three categories:

• Supervised Learning: Learning is made using data
consisting of input values and the corresponding outputs.
Such tasks include regression or classification.

• Unsupervised Learning: Learning uses data that consists
only of input values without the corresponding out-
puts. Such tasks include clustering, density estimation,
dimensionality reduction, and visualization.

• Reinforcement learning: Learning a policy composed
of pairs (state, action) based on trails of actions and
rewards.

For example, a decision tree is a sequential decision model
that uses a tree-like structure, as presented in Figure 2.

Decision trees are a commonly used machine learning
method because they are explainable by design. Each tree
node divides the data according to a criterion learned during
training. The user can retrieve the sequence of met conditions
to reach a prediction simply by examining the path from the
root node to the leaf node of the decision.

Neural networks and deep learning aremethods inspired by
biological brains that have proven outstanding performance
for various tasks such as computer vision, voice analysis,
natural language processing, etc. Neural networks comprise
layers of neurons that can be fully connected or share
parameters. A single neuron implements a biased weighted

sum of its inputs followed by a non-linear transform:

y = f

(
N∑
k=1

wkxk + b

)
where:

• y: is the output of the neuron,
• wk : is an input weight,
• xk : is an input feature,
• b: is the bias,
• f : is a non-linear function such as ReLu or Sigmoid.

Neurons can be connected to form complex neural networks
with up to billions of parameters in total. The most recent
neural networks are reported to have a trillion parameters.

C. EXPLAINABILITY
New algorithms consider the explainability of deep neural
networks. Explainability can be defined by the information
used to help the user understand the decision of the neural
network [11]. Formally, an explanation can take several
definitions. For tabular data, the explanation is a set of golden
(feature, value) pairs. For a picture, the explanation is one or
more regions or a set of pixels. For a text, the explanation is a
set of words, groups of words, or sentences. For a signal, it can
be a time frame or a set of clock cycles, as suggested in [12].
In all cases, an explanation is an attempt to highlight the part
of the input data that causes the classifier to return a specific
decision. Other forms of explanation include anchors [13] and
counterfactuals [14].

There are several ways to obtain forms of explainability
from a neural network. We can divide them into three
main categories: black-boxmethods, white-boxmethods, and
explainability by design.

In black box methods, no properties about the architecture,
the training data, or the neural network weights are used
to extract explainability. Black-box methods can involve
the use of a surrogate explainable model that locally
approximates the function of the ‘‘unexplainable’’ deep
neural network. We can refer to the LIME method (Local
Interpretable Model-agnostic Explanations) [15]. The design
of the surrogate model introduces a fidelity-interpretability
trade-off because a more comprehensible explanation might
be less representative of the deep network. Usually, these
approximate models are designed based on linear models or
decision trees and, more generally, any interpretable design
model [16].

More formally:

ϵ(x) = argmin
g∈G

{L(f , g, πx) + �(g)}

where
• x is the data point at which the model is interpreted,
• ϵ(x) is the surrogate model,
• g ∈ G is a model which belongs to a class of
interpretable models G,

• �(g) is a measure of the capacity of g.

VOLUME 11, 2023 131275



Y. Nasser, M. Nassar: Toward Hardware-Assisted Malware Detection Utilizing Explainable Machine Learning

• f , the overall deep learning model of which we want to
explain one prediction,

• πx is a proximity measure of x that defines locality
around x,

• L is the loss function, measuring how f and g compares
around πx.

For example, the class of interpretable models can be
sparse linear models. Perturbations scan the neighborhood
around the data point of interest.

LEMNA (Local Explanation Method using Non-Linear
Approximations) [17] is a method built as a high-fidelity
explanation method for security applications. It achieves
high fidelity by using non-linear approximations of the
surrogate model (contrary to the LIME method that uses
linear approximations). Using a fused Lasso loss function
also enforces feature dependency for time series features.
A comparison of LIME and LEMNA for two applications:
(1) the identification of function starts in binaries, and (2) the
classification of PDF malware represented as feature vectors
shows that LEMNA outperforms LIME in both applications.

Contrary to black-box methods, all neural network
properties can be used in white-box methods, such as
intermediate-layer activations or gradient values.

The goal of explainability by design is to modify the
properties of the neural network prior to its training, such
as its architecture or cost function, to make the model self-
explainable. For example, some machine learning models,
such as decision trees, are intrinsically explainable.

III. HARDWARE-ASSISTED MALWARE DETECTION
We present four approaches for hardware-assisted malware
detection and prevention: secure boot architectures, on-board
power measurements, on-chip performance indicators, and
off-board side channels.

A. SECURE BOOT: SECURE ARCHITECTURES
Secure boot is a crucial defense mechanism that safeguards
systems against malicious code execution throughout the
boot sequence. Its primary function is to protect the
integrity of a digital system, which is essential to fend off
malicious attacks. The mechanism operates by validating the
authenticity of each boot sequence stage, which encompasses
the BIOS, bootloader, and Operating System (OS). It accom-
plishes this by calculating the hash value of the component
code and juxtaposing it with a trusted signature (unmodified
code). Any discrepancies trigger a halt in the system’s
execution, thereby fortifying it against prospective malware
threats. For example, malware could infiltrate the BIOS
(Basic Input/Output System) or UEFI (Unified Extensible
Firmware Interface), the firmware that initializes the system
before running any software. This level of infection poses
a grave threat, as malware can survive system reboots
and even persist following OS reinstall, thereby attaining
low-level system access to potentially compromise the system
further [18].

Secure boot is a security protocol developed by computer
industry professionals, aiming to ensure a device is launched
using only software approved by the Original Equipment
Manufacturer (OEM). Upon starting, the device’s firmware
verifies the signature of each component involved in the
booting process, such as UEFI firmware drivers, EFI
applications, and the operating system. If these signatures
are authenticated, the device boots and gives control to
the operating system. The OEM can generate secure boot
keys following instructions provided by the firmware man-
ufacturer and store them in the device’s firmware. When
introducing UEFI drivers, it is crucial to ensure that they are
signed and added to the Secure Boot database [19]. When
a system is using secure boot, each piece of boot software
is accompanied by a digital signature. This includes the
bootloader and the operating system. These signatures are
then compared to the keys stored in the firmware. If the
keys match, the system boots up. If not, the system will stop
booting. There are various types of secure boot solutions:

• Recoverable Malware Protection: In this method, the
secure boot process includes the ability to recover from
a detected malware attack [20]. This could mean a reset
to factory settings or a rollback to a previous safe state,
depending on the particular implementation.

• Multilayered Security Features: This refers to the use
of several security measures together to protect the boot
process [21]. This could include bootloaders that verify
each other, multiple checks of firmware signatures,
hardware-based security measures, and more.

• ARM Trust Zone technology is a system-wide approach
to security for a wide array of client and server com-
puting platforms, including handhelds, mobile devices,
tablets, and servers. In ARM architecture, the secure
boot process is used to validate the authenticity of the
code before it is loaded into the environment [22].
During secure boot in ARM Trust Zone, the processor
starts in a safe state, and once the secure boot phase
is finished, the non-secure world is allowed to execute.
This ensures that a known environment has been
established before the less trusted portions of the system
are allowed to boot.

However, it is essential to note that a secure boot is
not a complete security solution in itself. It is a part of a
larger security strategy, and it is only effective at preventing
unauthorized code from running at boot time. Other security
measures are necessary to protect a system during its
operation.

RISC-V (pronounced ‘‘risk-five’’) is an open standard
Instruction Set Architecture (ISA) based on established
RISC principles. Unlike proprietary ISAs such as Intel’s
x86 or ARM, RISC-V is open source, which means it’s
freely available to the public and can be used freely in any
computing device.

The RISC-V ISA has been designed with several key
advantages in mind. These include a smaller and simpler set
of instructions, leading to more efficient CPU design and

131276 VOLUME 11, 2023



Y. Nasser, M. Nassar: Toward Hardware-Assisted Malware Detection Utilizing Explainable Machine Learning

FIGURE 3. Placement of CARE [20].

lower power consumption. It also has appealing features for
security applications, such as support for a wide range of
security models and cryptographic algorithms.

Given its open-source nature, RISC-V provides a great
deal of flexibility and allows custom optimizations not
possible with proprietary ISAs. It enables developers to
design their own extensions or custom instructions, making it
possible to create highly specialized and optimized hardware
implementations.

CARE and ITUS are the secure boot hardware-firmware
solutions implemented in RISC-V that are presented in
the provided context because they both have implemented
secure boot strategies, a critical feature for ensuring system
security. By discussing their implementation in the RISC-
V architecture, the passage emphasizes the suitability of
RISC-V for secure applications. The specific implementa-
tions of secure boot in CARE and ITUS could highlight
the benefits and potential of RISC-V in creating secure
systems. To this end, in this next section, we introduce
two solutions designed using RISC-V, namely, CARE
and ITUS.

1) SECURE BOOT WITH RECOVERY
The Code Authentication and Resilience Engine (CARE)
is a hardware-based secure boot solution designed for the
RISC-V system [20]. Its hardware implementation improves
security compared to software-based solutions. CARE pro-
tects against rootkit malware (malicious programs that gain
unauthorized control over a computer while concealing their
activities) and BIOS and secure boot attacks (attacks that
exploit firmware to run unauthorized code during a system’s
boot process).

It is good to mention here that conventional secure boot
protocols only halt the boot sequence upon detection of an
integrity anomaly, requiring software re-flashing, but here
CARE provides recovery of the system. As shown in Figure 3
CARE is placed between the first stage boot code of the ROM
and the second stage boot code of the flash. CARE relies on a
secure SPI (Serial Peripheral Interface) bus to communicate
with ROM and Flash, and it securely stores data, like signing
keys and device information, in the ROM (with specific
access policies), which is critical for the device’s recovery
and security.

As depicted in Figure 4, CARE has two main components:
the code integrity and authentication (CA) unit and the
resilience engine (RE). When the system is powered up, the
first-stage bootloader initializes the SPI and flash controllers
and applies the memory protection rules. The control is then
passed to the second stage boot code (bootstrap). The flash
code is divided into frames and sent to the CA over the SPI

FIGURE 4. Secure boot with CARE [20].

bus. The frame is composed of a header with the signed
digest of the data frame, the frame number, and the flash
memory location; the rest of the frame is the payload. The
CA has a lightweight cryptographic core (HMAC-SHA256),
the SHA256 module computes the digest of each frame,
and the HMAC-SHA256 uses a derived key to sign it. The
calculated digest is finally compared to the hash in the
header. If malicious code is detected, the resilience engine
is activated.

The Resilience Engine (RE) identifies the frame number
and flash location of the corrupted frame and then locates
the backup in the EEPROM. Subsequently, the RE reflashes
the flash memory with the known good code and locks
unauthorized read-write access to the memory. The CARE
method assumes that the code stored in ROM, typically
written during manufacturing, cannot be easily modified,
assuring against commonmalware attacks that might alter the
boot code.

Finally, CARE is designed to address the security risks
that arise when malware compromises the flash, as it could
also interfere with the ROM reload process, potentially
introducing malicious code during reload. While, theoreti-
cally, the flash can be automatically reloaded from ROM
as the initial step of the secure boot, this approach can
introduce significant operational overhead, especially for
systems with large flash memories or where boot speed is
critical. Moreover, CARE provides additional flexibility and
recovery options that simple reloading may not offer. For
example, CARE can identify and recover from issues at a
granular level (i.e., frame level) without requiring a complete
reload of the entire flash memory, which can be beneficial in
scenarios where quick recovery is essential or where network
conditions might make fetching and reloading the whole
code-base impractical. Furthermore, CARE can mitigate
more advanced threats by providing an additional layer of
security through its Code Integrity and Authentication (CA)
unit and the Resilience Engine (RE). This unit allows CARE
to detect and recover from problems in a controlled and secure
manner, which is impossible with a simple automatic reload
mechanism.

VOLUME 11, 2023 131277



Y. Nasser, M. Nassar: Toward Hardware-Assisted Malware Detection Utilizing Explainable Machine Learning

2) BOOT WITH BOOSTED SECURITY FEATURES
Another solution worth studying is ITUS1 [21]. ITUS is
implemented in LowRISC. LowRISC is an open-source SoC
platform built around the open-source RISC-V ISA. ITUS
aims to provide a trusted system through several security
mechanisms, including secure boot, encryption, and authen-
tication of off-chip memory accesses, key management,
and cryptography acceleration. Those security features make
it possible to create enclaves, which are isolated trusted
execution environments used to protect sensitive data and
processes.

ITUS focuses on mitigating attacks that aim to gain
unauthorized access to sensitive data, such as Rowhammer,
Meltdown, or Foreshadow. ITUS is composed of different
blocks:

• Asymmetric cryptography: enables RSA and elliptic
curve algorithms for secure boot, remote attestation,
remote software updates, and digital signatures.

• Symmetric cryptography: ensures data encryption and
integrity during storage and data transmission, and
prevents reverse engineering.

• Physical Unclonable Function (PUF): allows a system-
atic approach to creating a unique device ID during
manufacturing.

• True Random Number Generator (TRNG): is used to
generate ephemeral session keys and seed values for
encryption.

• Root-of-trust (ROT): a Trusted Execution Environment
(TEE) [23] is a hardware clearly defined security
perimeter. We can find three types of TEE: one
that allows running some application modules in an
encrypted enclave, one that runs virtual machines in
encrypted memory, and one that is hardware isolation
for secure computing.

• Chain-of-Trust: divides the system into different levels
that are checked starting from the hardware, then the
bootloader, BIOS/firmware, the OS, and finally the
application layer, to ensure that all these parts can be
trusted.

It is good to mention here that security features can be
implemented with these different blocks to provide a secure
and reliable system. For instance, there is the secure boot,
which checks the integrity of each layer of the boot process by
computing hashes. This process has already been described
with CARE, but we do not have a recovery option here.

Another important security feature is memory protection,
as TEE must communicate with untrusted external storage.
This feature requires a memory protection unit (MPU) to
manage reading and writing to the trusted region. TheMPU is
responsible for preserving the confidentiality and integrity of
the transferred data.With ITUS, this is implemented using the
AES CGM encryption scheme. Other methods for securing
memory include randomization of the address space layout
against overflow and control flow hijacking [24], automatic

1ITUS is a name from Greek mythology, not an abbreviation.

constant time programming against micro-architectural side
channels [25], and oblivious RAM [26].

Last but not least, ITUS is capable of managing keys.
Permanent and device-specific keys can be generated thanks
to PUF, and ephemeral keys can use the TRNG. Public keys
are signed by a certification authority for permanent device-
specific keys, and device keys can sign ephemeral keys if
needed.

In summary, CARE and ITUS implement a secure on-chip
architecturewithoutmachine learning. They efficiently detect
malware and ensure the device is in a trusted state before
using it. However, we have yet to address the detection of
malware at run-time. Also, the performance overhead due
to cryptographic operations in microarchitectural security
management is non-negligible, and achieving security with
minimal performance cost remains an important area for
future work.

3) SECURE BOOT AGAINST ICS MALWARE
Secure boot, a foundational security mechanism, offers a
robust defense against unauthorized execution of malicious
software in Industrial Control Systems (ICS). This ensures
that only software with a recognized cryptographic signature
is executed, enhancing the system’s resistance against
malware intrusions [27], [28].

One of the most sophisticated malware, Stuxnet, discov-
ered in 2010, primarily targeted industrial control systems,
specifically those associated with Siemens’ Supervisory
Control and Data Acquisition (SCADA) systems [29],
[30]. Its propagation methods included the compromise of
USB drives, leading to the execution of malware after its
insertion into a system. By ensuring the integrity of the boot
process, secure boot thwarts such malware from executing its
malicious payload, especially if it attempts to modify boot or
system files.

Another notable incident, the Jeep Hack of 2015, saw
security researchers remotely manipulating a Jeep Chero-
kee’s functionalities by exploiting vulnerabilities in its
entertainment system [31]. While secure boot primarily
safeguards the boot process, the overarching principle of
executing only trusted software can be extended to other
systems. In vehicular contexts, if the critical systems were
isolated and restricted to run only signed, trusted software,
it would significantly reduce the risk of such remote
attacks.

However, while a secure boot offers a formidable line
of defense, it has challenges. Implementing secure boot,
whether in hardware or software, can introduce performance
overheads. This translates to increased area requirements in
hardware, while in software, it can lead to increased power
consumption [32].

As we have seen before, CARE and ITUS present two
solutions built on top of the RISC-V ISA. These techniques
can be compared using a Trusted Platform Module (TPM)
[33]. A TPM is a hardware security device that establishes a

131278 VOLUME 11, 2023



Y. Nasser, M. Nassar: Toward Hardware-Assisted Malware Detection Utilizing Explainable Machine Learning

root of trust for the system. It can handle attestation, perform
cryptographic operations, and thus be used to ensure a secure
boot.

The ARM architecture is widely recognized for its energy
efficiency and is among themost popular for IoT applications.
It incorporates a TPM variant known as the ARMTrust Zone.
This TPM aims to segregate the system’s resources, both
hardware and software, into two distinct domains: the Secure
World (SW) and the Normal World (NW). The ARM Trust
Zone can be used to ensure the integrity of the system at both
boot and run-time [34].

A secure boot is conducted on the SW via a chain of
trust mechanism during the boot process. Subsequently,
the SW ensures a trusted boot for the NW, implementing
measurements of the boot images and remote attestation.
As for run-time, the SW performs periodic measurements of
processes and sends them to attestation servers for integrity
verification against reference values.

Regarding malware prevention, a TPM can also be utilized
to mitigate malware threats. Depending on the application,
the TPM’s cryptographic capabilities and critical information
storage can ensure that the operations performed on a system
originate from the intended users [35].

However, employing a TPM can be costly in terms of
power consumption and cost, making it sometimes unsuitable
for all IoT devices. An alternative solution is measured boot,
a critical security feature that verifies the chain of trust of a
device by measuring each stage of its firmware and software.
This can be deployed, for instance, for the SecureWorld (SW)
boot within the ARM Trust Zone. Although the measured
boot process can be performed using a TPM, an efficient alter-
native is the Device Identifier Composition Engine (DICE)
[36]. The DICE engine is the first component to be started.
It uses a unique device secret, a hardware secret, to ensure
the integrity of the first boot sequence stage. Subsequently,
each stage generates keys to verify the next stage of the boot
sequence.

Each of these solutions carries its benefits and drawbacks.
TPMs are already widely adopted in the industry; how-
ever, they require developing unique security applications,
including secure boot. Additionally, TPMs also bring about
additional power consumption and cost overheads. Owing
to these challenges, the Device Identifier Composition
Engine (DICE) is often used as a standard to ensure a
measured boot of the system, reducing the impact on
energy consumption. However, the DICE engine cannot be
universally implemented, as it requires the manufacturer to
generate protected secrets, such as a unique device secret and
specific certificates.

On the other hand, ITUS and CARE present promising
implementations of secure boot built upon the RISC-V ISA.
They demonstrate minimal impact on system performance
and offer additional security features, such as recovery or
cryptography capabilities. However, it is vital to note that all
these techniques require additional implementation on both
hardware and software layers.

FIGURE 5. Ways of side-channels measurement.

Moving away from these active implementations, we will
explore techniques that utilize existing internal indica-
tors (passive implementations), like hardware performance
counters or on-chip power sensors. We will also discuss
techniques that leverage external power and electromagnetic
field measurements, focusing on proposing a range of passive
solutions.

B. ON-BOARD POWER MEASUREMENTS
On-board power measurement refers to measuring the power
consumption of the device’s motherboard. Power consump-
tion has become a critical metric in various electronic devices
for modern and critical applications [37]. It is possible to
divide the power consumption into two main components:

• Static power: when the circuit is powered but not active,
the consumption is due to transistor size reduction (gate-
oxide current leakage).

• Dynamic power: when the circuit is active, the consump-
tion is due to the switching activity of the transistors.

The dynamic part of the power consumption represents the
activity in the circuit. Attackers can use this information to
find secrets about the system. This is known as power side-
channel attacks. However, this power can leak information
that can be used for malware detection [38].

Recently, most electronic devices have come equipped
with current or power sensors that dynamically measure
power consumption. Such real-time measurements have
become a key metric for assessing the energy efficiency
of these devices. Currently, these measurements can serve
as performance monitors, guiding decisions in the event of
anomalies or potential malware activities.

In the study by [39], two primary techniques for power
consumption measurement are discussed: on-board/on-chip
and external measurements. As depicted in Figure 5, the on-
board / on-chip approach takes advantage of the inherent
power measurement capabilities of the hardware provided
by the manufacturer. This method typically involves current
sensors and voltage regulators. However, the accuracy of
these measurements can be compromised due to inher-
ent hardware noise, limitations in sampling frequency,
and the low bit resolution of internal analog-to-digital
converters.

However, external measurement techniques, which employ
an external shunt resistor and external instrumentation, offer

VOLUME 11, 2023 131279



Y. Nasser, M. Nassar: Toward Hardware-Assisted Malware Detection Utilizing Explainable Machine Learning

improved accuracy and flexibility. This superior perfor-
mance is primarily attributed to the reliance on external
hardware. However, this method may not be suitable for
on-board malware detection because it requires physical
access and proximity to the power consumptionmeasurement
instruments.

In [38], the authors hypothesize that a malware execution
produces enough changes in power usage to be able to detect
its presence. To do so, they collected power profile data from
a machine running in a clean state: only the OS, Internet
Explorer (I.E.,) running, and Regedit running. The machine
is then infected with a particular malware, and the power pro-
files of the machine running with the malware, the machine
running Internet Explorer with the malware, and the machine
running Regedit with the malware are collected. Therefore,
six power profiles (three clean, three with the malware) are
collected for each malware sample. Five malware samples
are tested, all rootkits: Alureon, Pihar, Sirefef, Xpaj, and
MaxRootkit.

Two approaches are tested for the data analysis:

• An unsupervised approach using ensemble voting of
one-class anomaly detectors.

• A supervised approach using kernel-based Support
Vector Machine (SVM).

The first approach uses several single-feature anomaly
detectors that vote for the presence or absence of an anomaly.
A value that deviates more than one standard deviation
from the mean is flagged as an anomaly. The standard
deviations and means are calculated from the training
observations. This method reveals that the overall classifier
achieves 100% True Detection Rate (TDR), with a lower
False Detection Rate (FDR) than the supervised classifiers.
The benchmark comprises 15 malicious power profiles
(5 rootkits x 3 profiles) and 5 benign power profiles. Only
one benign instance was detected as malicious (FDR= 1/16).
The supervised approach shows a nearly perfect TDR and
17 − 18% FDR.

The results confirm that rootkits alter power consumption
and that those alterations can be detected. However, the
results are obtained in an isolated test environment. Further
work is required to test the robustness of this solution
by adding noise and using different applications running
concurrently. However, power profiling is a promising way
to detect malware.

Other studies show how side channels can detect malware
[40], [41], even in the presence of obfuscating techniques.
A Convolution Neural Network (CNN) model trained with
an electromagnetic trace is shown to have good accuracy.
The same approach can be used with power trace analysis.
Although the proposed techniques provide good results, they
require external hardware and physical proximity. They are
expensive in space, power, and cost, making them unsuitable
in constrained environments and less likely to be widely
developed.

C. ON-CHIP PERFORMANCE INDICATORS
On-chip performance indicators consist of all sensors and per-
formance counters implemented inside the microprocessor.
On-chip information can be power or performance indicators.
Hardware indicators, such as hardware performance counters
(HPC), can be used to detect malware execution on chips.
Nowadays, software developers can rely on HPC to monitor
the run-time performances of their programs on the target
device. HPC are special purpose registers built into the
Performance Monitoring Unit (PMU) of modern processors,
which stores information about hardware events such as
cache misses for data and instructions, branch prediction,
load and store instruction, etc. [42]. HPC can be used for
on-chip malware detection [43] because of the changes in
the system’s run-time behavior due to the malware execution.
The authors in [44] have collected HPC data produced by
malware and benign programs to train a set of classifiers
to detect malware. This experiment has been carried out
to detect Android malware and Linux rootkits. The study
concludes that HPC can detect malware with relatively good
accuracy. This study collects data through a Linux kernel
module, which interrupts the execution every N cycle to
retrieve information from the HPC. These methods slow
down the system’s performance and imply software-based
security. That is why hardware implementation of such
security features is preferred.

Malware Aware Processors (MAP), as presented in [45]
and [46], provide real-time malware detection on the
chip; they are implemented on hardware by using simple
classifiers. MAP is presented as a first line of defense so that
when malware is detected, heavier software can be triggered
for malware detection and remediation. MAP uses low-level
information that can be gathered and processed in hardware
as:

• Features related to architectural events: use HPC to
capture the number of memory reads, memory writes,
unaligned memory accesses, immediate branches, and
taken branches. The value of the features is collected for
every 10,000 committed instructions. The collection of
these features is called ARCH.

• Features related to memory addresses: measure the
distance between the current load/store instruction
memory address and the first load/store operation in the
group of 10,000 instructions. The goal is to obtain a
memory access pattern. Here, two collections are done:
MEM1 is the frequency of memory address distance
histogram, and MEM2 is the memory address distance
histogram mix.

• Features related to instruction: look at the opcode and
the instruction categories to get the frequency of usage
of certain instruction categories or instruction opcodes.
Four collections are done here, INS1 is the frequency
of instruction categories, INS2 is the frequency of
opcodes with the most significant difference, INS3 is

131280 VOLUME 11, 2023



Y. Nasser, M. Nassar: Toward Hardware-Assisted Malware Detection Utilizing Explainable Machine Learning

TABLE 1. Comparison of different feature sets [46].

the existence of categories, and INS4 is the existence of
opcodes.

To know if malware is present with architectural events
in each period, a list of opcodes showing the most signif-
icant difference in frequency between malware and regular
programs has been established for instructions. In [47],
a statistical analysis has been performed on the instructions
used by the malware. For example, a botnet will show an
increase in the frequency of the usage of the mov instruction
and a decrease in the frequency of the use of the push
instruction.

Two classification algorithms have been developed for
MAP: a Logistic Regression (LR) algorithm that linearly
separates regular programs from malware. The other model
is a Neural Network (NN) made with perceptrons that
approximate a classification function when trained. The
results with True positive (TP) and false positive (FP) are
presented in Table 1.

By combining all these features, a good enough detection
can be achieved. However, it may increase the complexity of
theMAP implementation significantly. In real-time detection,
the problem should be considered as a time series analysis,
where the time series is the successive decisions of the
classifier. An Exponentially Weighted Moving Average is
proposed to give more weight to recent inputs in [45].

Regarding the results, the processor has been implemented
on FPGA using the INS2 feature with an LR prediction
unit, as it is the most lightweight implementation in terms
of complexity and impact on core power and area. This
implementation shows an online detection accuracy of 100%
with 16% false positives. Due to common false positives,
MAP should be considered as a first line of defense that will
trigger more resource-expensive solutions when a potential
threat is discovered. While it is accurate to state that
MAP offers effective lightweight malware detection on-chip,
its usage necessitates the incorporation of an additional
detector, possibly with boosted capabilities, to validate
MAP’s decisions due to the prevalence of false positives.

D. OFF-BOARD SIDE CHANNELS
Some techniques can help detect malware execution at
runtime through off-board measurements. Off-board mea-
surements consist of physical measurements performed
from outside the main circuit board. In [40], the objective
is to analyze the electromagnetic emanation of a device
running software and to detect and classify malware.
Here, the assumption that malware changes the device’s

behavior regarding electromagnetic emanation has already
been proven.

The experiment used a Raspberry Pi 2B as the target
device. This device is configured so that each malware
execution will find valid files and will target them as it
would normally. The malware dataset under test consists
of DDoS malware: Mirai and Bashlite (a C&C server
is present in the test environment to send commands to
the infected machine), ransomware: Gonnarcy and kernel
rootkits: Keysniffer, maK_It.

Electromagnetic emanations are acquired through an
oscilloscope connected to an H-Field probe with an amplifier.
In total, 3000 traces for each of the 30 malware binaries and
10,000 traces of benign activities are collected, making a
dataset of 100,000 labeled traces.

For classification, neural networks are implemented
because of their pattern recognition capabilities. Two archi-
tectures are compared: a Multi-Layer Perceptron (MLP)
and a CNN. Other architectures, such as SVM or Naive
Bayes, have also been tested but rejected due to their
lack of robustness in more complex scenarios. The MLP
takes flattened spectrogram bandwidths as input. The CNN
comprises three blocks, each with one or two convolution
layers followed by a max pooling layer. Here are the
results:

• Type classification: Samples are categorized into four
types: rootkit, ransomware, DDoS, and benign. All
models show impressive performance in this category,
achieving more accuracy than 98%. The CNN model
stands out with the highest accuracy of 99.82%.

• Family classification: Samples are differentiated among
various malware families in addition to the benign class.
The results remain commendable, with an accuracy
exceeding 97%. Once again, the CNN model achieves
the highest accuracy at 99.61%.

• Novelty classification: Given the prevalence of varia-
tions of known malware in real-world scenarios, the
models are evaluated against variations of the families
being tested. These variations were not part of the
training dataset. Despite this challenge, all models
maintain a commendable accuracy of more than 92%.
The CNN model shines with an accuracy of 99.38%.

• Virtualization and packer identification: The goal here is
to determine whether the malware binary is shielded by
virtualization or packing. This is achieved by comparing
malware traces with traces of its protected variant,
resulting in two distinct two-class detection challenges.
The CNN model continues to lead with an accuracy of
95.83% for virtualization and 94.96% for packing.

• Obfuscation classification: In the final test, models are
evaluated on their ability to classify seven obfuscation
techniques: opaque predicates, bogus control flow,
control flowflattening (either with O-LLVMor Tigress),
instruction substitution, virtualization, and packing. The
CNN model remains the front-runner, with an accuracy
of 82.70%.

VOLUME 11, 2023 131281



Y. Nasser, M. Nassar: Toward Hardware-Assisted Malware Detection Utilizing Explainable Machine Learning

These results demonstrate that malware can be classified
based on the electromagnetic emanations from the device
under test, even when obfuscation techniques are employed
to conceal the malware or when variations of known malware
are introduced. The primary limitation of this method is
the need for external devices equipped with probes and
the substantial resources required to operate CNN or MLP.
In particular, this solution may be more suitable for cloud and
edge computing systems than embedded IoT and industrial
IoT systems.

In the literature, notable efforts employ AI to detect
malware based on processor information [44], [46] and
side channels [38], [40]. Yet, a discernible gap exists: the
elucidation of the underlying decision-making processes of
these techniques still needs to be addressed.

This omission is particularly salient in the context of
embedded IoT systems. While the efficacy of an AI model in
detecting threats is undeniably valuable, the interpretability
of its decisions is of equal, if not greater, importance. This
brings us to the forefront of explainable AI (XAI).

XAI aims to demystify the intricate mechanisms of AI
models, making them transparent and interpretable. Within
the ambit of malware detection in embedded IoT, XAI can
illuminate the specific attributes or patterns a model deems
indicative of malicious activity. Such insights foster greater
confidence in AI-driven solutions and equip cybersecurity
researchers with nuanced understandings, paving the way
for more robust and informed defense strategies. As we
continue this discourse, the imperative of weaving XAI into
our malware detection paradigms for embedded IoT becomes
increasingly evident.

IV. EXPLAINABLE MACHINE LEARNING MODELS FOR
MALWARE DETECTION
We divide the work on explainable machine learning for
malware detection into two categories: software-assisted and
hardware-assisted.

A. SOFTWARE-ASSISTED XAI FOR MALWARE DETECTION
MalConv [48] is a popular neural network designed for
static analysis. It can be trained to analyze the bytes of
a file to determine if it contains malware or goodware.
This architecture is effective for detecting sequence patterns
thanks to embedding and convolution layers, as shown
in Figure 6. MalConv was tested for multi-class malware
classification in [49].

The explainability of MalConv has been addressed in [50].
One of the methods used was decision boundary analysis.
In a data space, that is, a space with enough dimensions to
represent the possible combinations of the inputs, a decision
boundary is a separation between data classes. In [50], the
decision boundary is characterized by interpolating classified
samples to find the moment of crossing from one class
to another. This analysis is applied to the EmberMalConv
network, which shares the same architecture as the Mal-
conv network [48]. The results show that the crossing is

FIGURE 6. Malconv model for multi-class malware.

FIGURE 7. Decision Boundary Analysis (Smooth transitions indicate a
uniform contribution of file contents. Abrupt transitions indicate a clear
signature).

almost linear to the file modification, similar to the curve
labeled ‘‘uniform contribution’’ in Figure 7. This linearity
is considered a good sign of the robustness of the classifier,
since no one-byte or few-byte abrupt changes can flip the
decision. Furthermore, this method is considered a black-box
method since it only requires access to the network’s input
and prediction (output layer).

The authors also used gradient analysis as an explainability
technique, considered a white-box technique. During the
training of a neural network, the weights at different layers
are optimized using back-propagation. Back-propagation is
merely an implementation of the chain rule for computing the
gradient of the loss function. The loss function is specifically
designed to align the network with the goal of the learning
task.

By sorting the computed gradient magnitudes with respect
to a test point, we can retrieve the most relevant features at
intermediate stages and the input layer. The more the gradient
value of a feature is important, the more it is relevant to the
prediction.

This analysis was performed on the EmberMalConv
network in [50] and the Malconv network in [51]. Both
studies analyze variants of gradient-based techniques. They
aim to find the parts of the file that the network mainly uses
to determine maliciousness.

In the case of [50], the gradient analysis shows that there
are definite spikes in the first blockwhich contains the header,
but also in other blocks in the input files. In [51], the gradient

131282 VOLUME 11, 2023



Y. Nasser, M. Nassar: Toward Hardware-Assisted Malware Detection Utilizing Explainable Machine Learning

analysis reaches a similar conclusion: the network tends to
learn to discriminate between benign and malware samples
based on the characteristics found in the file header. However,
the actual maliciousness can be placed in executable files’
data and text sections. Therefore, explainability gives us an
idea of what the network has learned and how much we
can trust it for real applications. If we ignore explainability,
it is not unlikely that attackers can leverage it. For example,
gradient analysis was used to design new adversarial attacks
specifically tailored to a target network, as shown in [51].

FireEye [52] uses a similar deep learning network
with embedding and convolution layers. For explainability,
it extracts the weights of the activations in the network’s
first convolutional layer and uses them as low-level features.
SHAP explainability produces a list of the most important
low-level features. These features are then connected to their
original semantics through parsing and disassembling the
binary to arrive at human-understandable features.

In parallel, the reverse engineering of the file produces a
list of interesting indicators of maliciousness called Areas
of Interest (AOI). Finally, the authors examine the overlap
between the ‘‘manual’’ reverse engineering results and
the explainability of low-level features and provide expert
analysis insights.

Increasingly, large language models are used for mal-
ware. For instance, IATelligence2 brings information from
GPT3 [53] to provide details about parts of the examined
file. More specifically, GPT3 is used to analyze the Import
Address Table of a Windows executable file and to determine
if there are potential related MITRE ATT&CK3 techniques
that can be used against these APIs. It would be interesting to
see if the LLM can be integrated into explainability pipelines
for malware detection.

B. HARDWARE-ASSISTED XAI FOR MALWARE DETECTION
A few works on hardware-assisted malware detection using
time series consider explainability. More efforts should be
made in this area.

Pan et al. [12] propose a Recurring Neural Network model
(RNN) for malware detection using embedded trace buffers
(ETB) and HPC. Although their classifier is based on a
multidimensional input signal, their explainability algorithm
is unidimensional. To explain an input signal w:

• Take the signal measurement at subsequent clock cycles
of length d : w1,w2, . . . ,wd .

• Perturb the measurement vector in n different ways to
obtain n neighbor points.

• Obtain the output values by running the perturbations n
through the RNN network.

• The perturbations and their outputs form a mini-dataset,
which is used to train a linear regression model. The
linear model mimics the RNN in the vicinity of the input
signal w.

2https://github.com/fr0gger/IATelligence
3https://attack.mitre.org

• The linear model coefficients represent the weights
with which the clock cycles contribute to the output
value of the RNN. For example, the output value is
the probability of a malware prediction. Therefore, the
clock cycles with the highest weights are considered the
explanation for the malicious behavior. By fetching the
instructions executed at these cycles, a better idea of the
program functionality is obtained as an explanation.

This method suffers from numerical issues since the subse-
quent clock cycles are strongly correlated, which leads to
a numerically ill-conditioned problem. The authors address
these issues by regularizing the regression model coefficients
and limiting the number of perturbations. Another drawback
of this method is that it tries to capture a linear regression
model for a time series that can be rather long. While RNN
is known to handle very long sequences, linear regression
models are usually bad at this same task. The paper does
not mention the typical length of the sequences used in
experimentation. More importantly, the explanation is uni-
dimensional, so we cannot capture the interaction between
parallel signals.
LEMNA [17] uses a similar approach for explaining

the detection of the start of a function in binary reverse
engineering. The signal here is the sequence of bytes run
through an RNN. Each byte is labeled as the start of a function
or not. The LEMNA proposed explanation is different in two
aspects:

• It is based on a mixture regression model.
• Its regularization penalizes the disparity between sub-
sequent coefficients. It better captures the correlation
between contiguous elements in the sequence.

The two methods deserve a comparative evaluation for
tasks: malware classification and start-of-function detection;
however, a method that captures multidimensional signals
where an explanation may span different signals at different
timestamps is still missing. Scalability to very long sequences
is another challenge. Questions of how many perturbation
points are required and what is an efficient method to sample
these perturbations need to be sufficiently investigated.

V. DISCUSSION
In this section, we compare the different techniques presented
in the article in terms ofmetrics for evaluatingmalware detec-
tion. Our survey reveals that hardware-based techniques show
great accuracy, with low performance overhead compared
to other solutions such as TPMs. These techniques are well
suited for IoT and embedded devices.

Analyzing the current literature on detecting embedded
malware, we have determined that ITUS [21] and CARE [20]
effectively ensure the device’s trustworthiness before usage.
Additionally, CARE offers a recovery mechanism to avoid
re-flashing the device in case of compromise. However, ITUS
has more security modules, enabling the implementation of a
Trusted Execution Environment (TEE) and enclaves.

VOLUME 11, 2023 131283



Y. Nasser, M. Nassar: Toward Hardware-Assisted Malware Detection Utilizing Explainable Machine Learning

Other solutions require external hardware to exploit side
channels to detect malware. These solutions show excellent
results with near-perfect accuracy in malware detection and
can even classify them even if obfuscating methods are
in use [40]. These techniques have excellent efficiency;
however, they require costly materials in terms of area, power
consumption, and cost, making them difficult to implement.

In parallel, malware-aware processors [45], [46] are
discussed. These solutions present efficient and lightweight
on-chip malware detection at run-time and when the device
is online. However, this solution can be considered a first line
of defense, as it relies on precise and noise-free hardware
performance counters on the chip. To this end, it is possible
to summarize the related work in Table 2. For this purpose,
we define the following features for each approach as follows:

• Secure Boot: It implements secure boot.
• Detection at run-time: It detects malware at run-time.
• Byte analysis: It uses the binary file to detect malware.
• Recovery: It recovers from a malware infection.
• AI-based: It uses artificial intelligence techniques for
malware detection.

• Hardware-based: It uses hardware components for
malware detection.

• Malware classification: It can classify the malware
types.

• External device required: It requires an additional
system for malware detection.

In the context of IoT, malware detection using side
channels takes work. This is due to the fact that the
implementation cost is very high per single device. To this
end, it is possible to use side channels data for malware
detection using external instrumentation to check a specific
IoT node at run-time. This solution is unsuitable for numerous
IoT devices in a network, such as thousands of nodes.

MAP (Malware Aware Processor) is very promising for
mitigating malware execution. Indeed, MAP aims to include
additional hardware counters that feed performance data to
detector models to help them decide whether malware is
executed. This solution is scalable and portable, as it can be
implemented on different architectures such as RISC-V, x86,
and many others. Moreover, this solution is lightweight and
easy to implement; thus, it is suitable for low-cost and power-
limited IoT devices.

Hardware-based malware detection and prevention has the
potential to improve computer security by identifying and
mitigating threats at a lower level within the hardware. How-
ever, this approach also presents several challenges. One of
the primary challenges is that hardwaremust be designedwith
security in mind, which requires significant resources and
expertise. Furthermore, hardware-assisted malware detection
and prevention has limitations. For example, with HPC,
in particular, when several programs are executed [54],
it becomes difficult to track the behavior of individual
programs.

Furthermore, an HPC malware detector can affect the
overall system performance [20], [21]. For example, using

the MAP solution [45], this can lead to an increase of up
to 13.12% in area, 5.23% in power consumption, and a loss
of 2.28% in terms of maximum operating frequency, and
this only by simply using a basic neural network model.
Finding simplermodels and better implementations is crucial,
as the trade-off between security and performance must be
considered during the design phase. An alternative security
model based on logistic regression is proposed [45]. In this
work, the implementation of the model has an impact of
an increase of 0.28% in terms of logic cells, an increase
of 0.08% in power usage and a loss of 1.93% in terms
of operating frequency. Implementing an efficient hardware
malware detector has consequences on the performance of the
system in terms of power, frequency, and area. The trade-off
between security and performance has to be considered
directly at design time. More sophisticated models, such as
neural networks, may significantly impact devices and may
not be suitable for certain IoT applications where power
consumption and area are critical.

In parallel, we propose a set of dimensions to comparemal-
ware detection techniques. These dimensions are summarized
as follows:

• Detection accuracy: This is arguably the most critical
metric. It quantifies the ability of a detection system to
identify malware samples correctly. The metrics under
this category include True Positive Rate (TPR), which
represents the proportion of actual malware samples
that are correctly identified. False Positive Rate (FPR)
denotes the proportion of benign samples mistakenly
identified as malware. A high FPR can be detrimental,
leading to unnecessary interventions or disruptions. The
Receiver Operating Characteristic (ROC) curve is a
graphical representation that illustrates the performance
of a binary classifier system as its discrimination
threshold is varied. It is a plot of the TPR against
the FPR.

• Performance Overhead: This metric measures the
impact of the malware detection technique on overall
system performance. It is typically measured in terms
of CPU cycles or time. A detection system with high
performance overhead might not be feasible for real-
time applications.

• Scalability: As the name suggests, this metric assesses
the ability of the detection system to handle large-scale
malware detection tasks. Factors like system resource
requirements, limitations of detection rates at scale,
and detection speed play a crucial role in determining
scalability.

• Robustness: A robust malware detection system should
be resilient against adversaries’ evasion and obfuscation
techniques. This metric evaluates the system’s ability
to detect zero-day exploits and its resilience to various
attacks.

The table 3 provides an overview of state-of-the-art
hardware-assisted malware detection techniques. Various

131284 VOLUME 11, 2023



Y. Nasser, M. Nassar: Toward Hardware-Assisted Malware Detection Utilizing Explainable Machine Learning

TABLE 2. Categorization of discussed related work.

techniques exhibit distinct strengths and limitations. For
instance, CARE and ITUS stand out for their high detection
accuracy during boot time. However, they are accompa-
nied by moderate performance overhead, and their limited
scalability and robustness suggest potential constraints in
their applicability, particularly in large-scale deployments
or scenarios plagued by sophisticated attacks. On the other
hand, techniques rooted in the electromagnetic field and
power consumption patterns showcase exemplary detection
accuracy at run-time. Their low performance overhead
positions them as prime candidates for real-time applications,
and their notable robustness underscores their resilience
against advanced evasion stratagems.MAP andHPCs present
a balanced profile with moderate detection accuracy at
run-time and a performance overhead that ranges from
moderate to low, hinting at their efficacy in more controlled
environments. TPM emerges as a robust technique, offering
high boot-time detection accuracy, albeit at the cost of a high-
performance overhead. However, its impressive scalability
and robustness metrics herald its potential for expansive
deployments. Similarly, DICE mirrors TPM in its boot-time
detection, boasts a low performance overhead. While its
scalability is laudable, the absence of specified robustness
metrics necessitates further exploration. Lastly, LEMNA dis-
tinguishes itself with its run-time detection ability. Although
its performance overhead remains unspecified, its moderate
scalability hints at its suitability for medium- to large-scale
operational environments.

In conclusion, the landscape of hardware-assisted malware
detection is diverse, with each technique having strengths and
limitations. The choice of technique largely depends on the
specific requirements of the deployment scenario, such as
real-time constraints, scale, and the sophistication of potential
threats. As malware continues to evolve, it is imperative for
detection techniques to adapt and innovate, ensuring safer
digital systems.

VI. CHALLENGES AND OPPORTUNITIES
Besides explainability, we discuss future directions of
malware detection for modern processors, their challenges,
and opportunities.

A. ADVERSARIAL TRAINING
As malware tactics evolve and adapt, traditional hardware-
based solutions may become less effective and require
continuous investment in hardware design and updates. The
issue of malware, particularly ransomware, has become
highly profitable. In this report [55], various types of
ransomware are presented, each with its implementation
strategy depending on the intended target and the method of
spreading. This has created an actual arms race between mal-
ware authors and security providers. Initially, malware detec-
tors scanned executables for known malicious instructions,
but malware authors encrypted their payload in response.
As detectors began looking for decryption codes, malware
authors responded by randomly changing their payload using
different compilation strategies [44]. Today, detectors rely
on observing the behavior of execution, and, as a result,
malware authors are focusing on obfuscation techniques to
conceal the presence of their malware. Binary manipulation
is effective in evading state-of-the-art detection engines.
Four state-of-the-art malware detection models, together with
five industry-standard malware detection engines, have been
analyzed in [56] to find that these models are susceptible to
various binary manipulation-based threats, including binary
padding and section injection attacks. The authors propose
to reduce the attack surface by uncovering the sensitivity of
volatile features within the detection engines and exhibiting
their exploitability. A graph-based malware detection scheme
is proposed to eliminate volatile information. For these rea-
sons, adversarial training for raw-binary malware classifiers
is gaining traction [57].

B. ZERO-TRUST ARCHITECTURES
These architectures [58] assume that no system component
is trusted by default. Verifying every action, communication,
and access request helps prevent lateral movements of
malware.

C. SUPPLY CHAIN SECURITY
Moreover, securing the supply chain from software develop-
ment to hardware manufacturing mitigates the presence of

VOLUME 11, 2023 131285



Y. Nasser, M. Nassar: Toward Hardware-Assisted Malware Detection Utilizing Explainable Machine Learning

TABLE 3. Comparison of merits of state of the art hardware assisted malware detection.

backdoors and vulnerabilities. Such techniques include code
signing, secure boot processes, and firmware analysis [59].

D. HARDWARE-ASSISTED DETECTION
Although there are challenges, hardware-assisted malware
detection and prevention presents substantial opportunities.
By detecting malware at a deeper hardware level, these
solutions can provide an extra layer of protection against
both known and unknown threats. Moreover, hardware-based
solutions can isolate different components of a system,
making it harder for malware to propagate. Furthermore,
hardware-assisted solutions can address some limitations
of software-based approaches, including the inability to
detect certain types of malware. Simple machine learning
algorithms, such as logistic regression, in addition to
malware-aware processors have been shown to have good
accuracy with silicon small areas and low-power [46].

E. COLLABORATIVE SW/HW SOLUTIONS
Future work may focus on collaborative SW/HW mal-
ware detection, such as those presented in [5]. When
working together, software and hardware components can
offer a more comprehensive view of the system, allowing
real-time identification and response to threats. Collaborative
SW/HW malware detection provides a significant advantage
in defending against sophisticated and targeted malware
attacks. Such attacks frequently exploit vulnerabilities in both
software and hardware components. Therefore, combining
both software and hardware detection techniques can offer
a more robust defense to identify and mitigate threats.
In addition, collaborative SW/HWmalware detection has the
advantage of making more efficient use of system resources.
By offloading some malware detection and prevention tasks
to the hardware, the software can concentrate on other
essential security tasks, thereby minimizing the performance
overhead of software-based security solutions. The adaptabil-
ity of SW/HWmalware detection to address emerging threats
is a significant advantage in such a fast-moving field.

F. OPERATING SYSTEM-INDEPENDENT DETECTION
Integrating OS information is undoubtedly beneficial when
the device is running one. But if a model was trained on
devices with no OS and is then used on a device with an

OS, the results may be erroneous, as the model may consider
the running OS to be malware. State-of-the-art hardware-
assisted detection reveals that models are trained on specific
operating systems, such as Windows [60] or Android [61],
[62]. Current run-time detection models are architecture and
operating system dependent, making it difficult to develop
generic malware detectors. Therefore, one main challenge is
developing operating system-independent malware detectors.
For instance, HPC-based solutions can work with different
operating systems. For example, the authors in [54] propose
to use HPCs and the operating system for static (load time)
and dynamic (runtime) integrity checking of programs. For
an interesting take on the challenges, pitfalls, and perils of
using HPC for security, we refer the reader to [63].

VII. CONCLUSION
Integrating hardware in the battle against malware represents
a significant step forward, offering a robust layer of defense
that complements software-based solutions. Secure boot
architectures, malware-aware processors, and the utilization
of hardware performance indicators underscore the potential
of this integration. However, as we navigate the complexities
of these approaches, particularly in the realm of embedded
systems, the challenges, and opportunities become evident.
While secure architectures form the bedrock of device
protection, the potential of side-channel techniques, despite
their integration challenges, should be considered.

This paper has presented various state-of-the-art tech-
niques for detecting embedded malware and described the
use of explainable machine learning methods. Side channels
and passive methods are promising for dynamic analysis, and
Malconv-like solutions are effective for static analysis.

In addition, we have explored various approaches to
explainability, including gradient analysis, model surrogates,
and decision boundary analysis. Explainability enables a
better understanding of what a model has learned, helping a
human analyst filter false positives and deter evasion tactics.

In future work on this topic, we aim to implement
hardware side-channel methods and support them with
a vertical explainability layer to connect predictions and
patterns. This interdisciplinary research requires a collabo-
rative effort among researchers from hardware security and
AI experts.

131286 VOLUME 11, 2023



Y. Nasser, M. Nassar: Toward Hardware-Assisted Malware Detection Utilizing Explainable Machine Learning

REFERENCES
[1] Cisco. (2019). Internet of Things at-a-Glance. [Online]. Available:

https://www.cisco.com/c/en/us/products/collateral/se/internet-of-
things/at-a-glance-c45-731471.pdf

[2] Md. M. Hossain, M. Fotouhi, and R. Hasan, ‘‘Towards an analysis of
security issues, challenges, and open problems in the Internet of Things,’’
in Proc. IEEE World Congr. Services, Jun. 2015, pp. 21–28.

[3] R. L. Castro, C. Schmitt, and G. Dreo, ‘‘AIMED: Evolving malware with
genetic programming to evade detection,’’ in Proc. 18th IEEE Int. Conf.
Trust, Secur. Privacy Comput. Commun./13th IEEE Int. Conf. Big Data
Sci. Eng., Aug. 2019, pp. 240–247.

[4] Z. Pan, J. Sheldon, C. Sudusinghe, S. Charles, and P. Mishra, ‘‘Hardware-
assisted malware detection using machine learning,’’ in Proc. Design,
Autom. Test Eur. Conf. Exhib. (DATE), Feb. 2021, pp. 1775–1780.

[5] M. Botacin, M. Z. Alves, D. Oliveira, and A. Grégio, ‘‘HEAVEN:
A hardware-enhanced AntiVirus ENgine to accelerate real-time, signature-
based malware detection,’’ Expert Syst. Appl., vol. 201, Sep. 2022,
Art. no. 117083.

[6] L. Zhou and Y. Makris, ‘‘Hardware-assisted rootkit detection via on-line
statistical fingerprinting of process execution,’’ in Proc. Design, Autom.
Test Eur. Conf. Exhib. (DATE), Mar. 2018, pp. 1580–1585.

[7] Sonicwall Cyber Threat Report, SonicWall Inc., San Jose, CA, USA, 2022.
[8] Ö. A. Aslan and R. Samet, ‘‘A comprehensive review onmalware detection

approaches,’’ IEEE Access, vol. 8, pp. 6249–6271, 2020.
[9] P. Mell, K. Kent, and J. Nusbaum, ‘‘Guide to malware incident prevention

and handling,’’ U.S. Dept. Commerce, Technol. Admin., Nat. Inst.
Standards Technol. (NIST), Gaithersburg, MD, USA, Tech. Rep. 800-
83, 2005. [Online]. Available: https://www.nist.gov/publications/guide-
malware-incident-prevention-and-handling

[10] L. R. Bays, R. R. Oliveira, M. P. Barcellos, L. P. Gaspary, and
E. R. M. Madeira, ‘‘Virtual network security: Threats, countermeasures,
and challenges,’’ J. Internet Services Appl., vol. 6, no. 1, pp. 1–19,
Dec. 2015.

[11] G. Ras, N. Xie, M. Van Gerven, and D. Doran, ‘‘Explainable deep learning:
A field guide for the uninitiated,’’ J. Artif. Intell. Res., vol. 73, pp. 329–397,
Jan. 2022.

[12] Z. Pan, J. Sheldon, and P. Mishra, ‘‘Hardware-assisted malware detection
using explainable machine learning,’’ in Proc. IEEE 38th Int. Conf.
Comput. Design (ICCD), Oct. 2020, pp. 663–666.

[13] M. T. Ribeiro, S. Singh, and C. Guestrin, ‘‘Anchors: High-precision model-
agnostic explanations,’’ in Proc. AAAI Conf. Artif. Intell., vol. 32, 2018,
pp. 1–20.

[14] M. T. Keane and B. Smyth, ‘‘Good counterfactuals and where to find them:
A case-based technique for generating counterfactuals for explainable AI
(XAI),’’ in Case-Based Reasoning Research and Development. Cham,
Switzerland: Springer, 2020, pp. 163–178.

[15] M. T. Ribeiro, S. Singh, and C. Guestrin, ‘‘‘Why should I trust you?’:
Explaining the predictions of any classifier,’’ in Proc. 22nd ACM SIGKDD
Int. Conf. Knowl. Discovery Data Mining, Aug. 2016, pp. 1135–1144.

[16] J. E. Zini, M. Mansour, and M. Awad, ‘‘CEnt: An entropy-based model-
agnostic explainability framework to contrast classifiers’ decisions,’’ 2023,
arXiv:2301.07941.

[17] W. Guo, D. Mu, J. Xu, P. Su, G.Wang, and X. Xing, ‘‘LEMNA: Explaining
deep learning based security applications,’’ in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur., Oct. 2018, pp. 364–379.

[18] J. Butterworth, C. Kallenberg, X. Kovah, and A. Herzog, ‘‘BIOS
chronomancy: Fixing the core root of trust for measurement,’’ in Proc.
ACM SIGSACConf. Comput. Commun. Secur., NewYork, NY, USA, 2013,
pp. 25–36.

[19] Microsoft. (2023). Secure Boot. Accessed: Jul. 20, 2023. [Online]. Avail-
able: https://learn.microsoft.com/en-us/windows-hardware/design/device-
experiences/oem-secure-boot

[20] A. Dave, N. Banerjee, and C. Patel, ‘‘CARE: Lightweight attack resilient
secure boot architecture with onboard recovery for RISC-V based SOC,’’
in Proc. 22nd Int. Symp. Quality Electron. Design (ISQED), Apr. 2021,
pp. 516–521.

[21] V. B. Y. Kumar, A. Chattopadhyay, J. Haj-Yahya, and A. Mendelson,
‘‘ITUS: A secure RISC-V system-on-chip,’’ in Proc. 32nd IEEE Int. Syst.-
Chip Conf. (SOCC), Sep. 2019, pp. 418–423.

[22] R. Coombs, ‘‘Securing the future of authentication with ARM TrustZone-
based trusted execution environment and fast identity online (FIDO),’’
ARM, White Paper, 2015.

[23] A Technical Analysis of Confidential Computing V1.1, Confidential
Computing Consortium, San Francisco, CA, USA, 2021.

[24] M. T. Aga and T. Austin, ‘‘Smokestack: Thwarting DOP attacks with
runtime stack layout randomization,’’ in Proc. IEEE/ACM Int. Symp. Code
Gener. Optim. (CGO), Feb. 2019, pp. 26–36.

[25] P. Borrello, D. C. D’Elia, L. Querzoni, and C. Giuffrida, ‘‘Constantine:
Automatic side-channel resistance using efficient control and data flow
linearization,’’ in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
New York, NY, USA, Nov. 2021, pp. 715–733.

[26] Z. Chang, D. Xie, and F. Li, ‘‘Oblivious RAM: A dissection and
experimental evaluation,’’ Proc. VLDB Endowment, vol. 9, no. 12,
pp. 1113–1124, Aug. 2016.

[27] X. Li, Y. Wen, M. H. Huang, and Q. Liu, ‘‘An overview of bootkit
attacking approaches,’’ in Proc. 7th Int. Conf. Mobile Ad-Hoc Sensor
Netw., Dec. 2011, pp. 428–431.

[28] J. Hendricks and L. van Doorn, ‘‘Secure bootstrap is not enough: Shoring
up the trusted computing base,’’ in Proc. 11th Workshop ACM SIGOPS
Eur. Workshop, Sep. 2004, p. 11.

[29] T. M. Chen and S. Abu-Nimeh, ‘‘Lessons from Stuxnet,’’ Computer,
vol. 44, no. 4, pp. 91–93, Apr. 2011.

[30] S. Collins and S. McCombie, ‘‘Stuxnet: The emergence of a new cyber
weapon and its implications,’’ J. Policing, Intell. Counter Terrorism, vol. 7,
no. 1, pp. 80–91, Apr. 2012.

[31] M. S. Haghighi, F. Farivar, A. Jolfaei, A. B. Asl, and W. Zhou, ‘‘Cyber
attacks via consumer electronics: Studying the threat of covert malware in
smart and autonomous vehicles,’’ IEEE Trans. Consum. Electron., early
access, Aug. 2, 2023, doi: 10.1109/TCE.2023.3297965.

[32] C. Profentzas, M. Günes, Y. Nikolakopoulos, O. Landsiedel, and
M. Almgren, ‘‘Performance of secure boot in embedded systems,’’ in
Proc. 15th Int. Conf. Distrib. Comput. Sensor Syst. (DCOSS), May 2019,
pp. 198–204.

[33] Trusted Platform Module (TPM) Summary, Trusted Comput. Group
Admin., Beaverton, OR, USA, 2008.

[34] Z. Ling, H. Yan, X. Shao, J. Luo, Y. Xu, B. Pearson, and X. Fu, ‘‘Secure
boot, trusted boot and remote attestation for ARM TrustZone-based IoT
nodes,’’ J. Syst. Archit., vol. 119, Oct. 2021, Art. no. 102240.

[35] M. Sidheeq, A. Dehghantanha, and G. Kananparan, ‘‘Utilizing trusted
platform module to mitigate BotNet attacks,’’ in Proc. Int. Conf. Comput.
Appl. Ind. Electron., Dec. 2010, pp. 245–249.

[36] Z. Tao, A. Rastogi, N. Gupta, K. Vaswani, and A. V. Thakur, ‘‘DICE:
A formally verified implementation of DICEmeasured boot,’’ inProc. 30th
USENIX Secur. Symp., Aug. 2021, pp. 1091–1107.

[37] Y. Nasser, C. Sau, J.-C. Prévotet, T. Fanni, F. Palumbo, M. Hélard, and
L. Raffo, ‘‘NeuPow: A CADmethodology for high-level power estimation
based on machine learning,’’ ACM Trans. Design Autom. Electron. Syst.,
vol. 25, no. 5, pp. 1–29, Aug. 2020.

[38] R. Bridges, J. Hernández Jiménez, J. Nichols, K. Goseva-Popstojanova,
and S. Prowell, ‘‘Towards malware detection via CPU power consumption:
Data collection design and analytics,’’ in Proc. 17th IEEE Int. Conf. Trust,
Secur. Privacy Comput. Commun./12th IEEE Int. Conf. Big Data Sci. Eng.,
Aug. 2018, pp. 1680–1684.

[39] Y. Nasser, J. Lorandel, J.-C. Prévotet, and M. Hélard, ‘‘RTL to transistor
level power modeling and estimation techniques for FPGA and ASIC:
A survey,’’ IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 40, no. 3, pp. 479–493, Mar. 2021.

[40] D.-P. Pham, D. Marion, M. Mastio, and A. Heuser, ‘‘Obfuscation
revealed: Leveraging electromagnetic signals for obfuscated malware
classification,’’ in Proc. Annu. Comput. Secur. Appl. Conf., Dec. 2021,
pp. 706–719.

[41] H. A. Khan, N. Sehatbakhsh, L. N. Nguyen, M. Prvulovic, and A. Zajić,
‘‘Malware detection in embedded systems using neural network model for
electromagnetic side-channel signals,’’ J. Hardw. Syst. Secur., vol. 3, no. 4,
pp. 305–318, Dec. 2019.

[42] J. Dongarra, K. London, S. Moore, P. Mucci, D. Terpstra, H. You, and
M. Zhou, ‘‘Experiences and lessons learned with a portable interface to
hardware performance counters,’’ in Proc. Int. Parallel Distrib. Process.
Symp., 2003, p. 6, doi: 10.1109/IPDPS.2003.1213517.

[43] A. Tang, S. Sethumadhavan, and S. J. Stolfo, ‘‘Unsupervised anomaly-
based malware detection using hardware features,’’ in Research in Attacks,
Intrusions and Defenses, A. Stavrou, H. Bos, and G. Portokalidis, Ed.
Cham, Switzerland: Springer, 2014, pp. 109–129.

[44] J. Demme, M. Maycock, J. Schmitz, A. Tang, A. Waksman,
S. Sethumadhavan, and S. Stolfo, ‘‘On the feasibility of online malware
detection with performance counters,’’ ACM SIGARCH Comput. Archit.
News, vol. 41, no. 3, pp. 559–570, Jun. 2013.

VOLUME 11, 2023 131287

http://dx.doi.org/10.1109/TCE.2023.3297965
http://dx.doi.org/10.1109/IPDPS.2003.1213517


Y. Nasser, M. Nassar: Toward Hardware-Assisted Malware Detection Utilizing Explainable Machine Learning

[45] M. Ozsoy, K. N. Khasawneh, C. Donovick, I. Gorelik, N. Abu-Ghazaleh,
and D. Ponomarev, ‘‘Hardware-based malware detection using
low-level architectural features,’’ IEEE Trans. Comput., vol. 65, no. 11,
pp. 3332–3344, Nov. 2016.

[46] M. Ozsoy, C. Donovick, I. Gorelik, N. Abu-Ghazaleh, and D. Ponomarev,
‘‘Malware-aware processors: A framework for efficient online malware
detection,’’ in Proc. IEEE 21st Int. Symp. High Perform. Comput. Archit.
(HPCA), Feb. 2015, pp. 651–661.

[47] D. Bilar, ‘‘Opcodes as predictor for malware,’’ Int. J. Electron. Secur. Digit.
Forensics, vol. 1, no. 2, p. 156, 2007.

[48] E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, and
C. K. Nicholas, ‘‘Malware detection by eating a whole exe,’’ in Proc.
Workshops 32nd AAAI Conf. Artif. Intell., Oct. 2017.

[49] M. A. Kadri, M. Nassar, and H. Safa, ‘‘Transfer learning for malware
multi-classification,’’ in Proc. 23rd Int. Database Appl. Eng. Symp., 2019,
pp. 1–7.

[50] S. Bose, T. Barao, and X. Liu, ‘‘Explaining AI for malware detection:
Analysis of mechanisms of MalConv,’’ in Proc. Int. Joint Conf. Neural
Netw. (IJCNN), Jul. 2020, pp. 1–8.

[51] L. Demetrio, B. Biggio, G. Lagorio, F. Roli, and A. Armando, ‘‘Explaining
vulnerabilities of deep learning to adversarial malware binaries,’’ 2019,
arXiv:1901.03583.

[52] S. E. Coull and C. Gardner, ‘‘Activation analysis of a byte-based deep
neural network for malware classification,’’ in Proc. IEEE Secur. Privacy
Workshops (SPW), May 2019, pp. 21–27.

[53] T. B. Brown et al., ‘‘Language models are few-shot learners,’’ in Proc. Adv.
Neural Inf. Process. Syst., vol. 33, May 2020, pp. 1877–1901.

[54] C. Malone, M. Zahran, and R. Karri, ‘‘Are hardware performance counters
a cost effective way for integrity checking of programs,’’ in Proc. 6th ACM
Workshop Scalable Trusted Comput., Oct. 2011, pp. 71–76.

[55] État de laMenace Rançongiciel, ANSSI, Boulevard de La Tour-Maubourg,
Paris, France, 2021.

[56] A. Abusnaina, Y. Wang, S. Arora, K. Wang, M. Christodorescu, and
D. Mohaisen, ‘‘Burning the adversarial bridges: Robust windows malware
detection against binary-level mutations,’’ 2023, arXiv:2310.03285.

[57] K. Lucas, S. Pai, W. Lin, L. Bauer, M. K. Reiter, and M. Sharif,
‘‘Adversarial training for raw-binary malware classifiers,’’ in Proc. 32nd
USENIX Secur. Symp., 2023, pp. 1163–1180.

[58] N. F. Syed, S. W. Shah, A. Shaghaghi, A. Anwar, Z. Baig, and R. Doss,
‘‘Zero trust architecture (ZTA): A comprehensive survey,’’ IEEE Access,
vol. 10, pp. 57143–57179, 2022.

[59] V. Hassija, V. Chamola, V. Gupta, S. Jain, and N. Guizani, ‘‘A survey
on supply chain security: Application areas, security threats, and solution
architectures,’’ IEEE Internet Things J., vol. 8, no. 8, pp. 6222–6246,
Apr. 2021.

[60] D. Gibert, C. Mateu, and J. Planes, ‘‘The rise of machine learning
for detection and classification of malware: Research developments,
trends and challenges,’’ J. Netw. Comput. Appl., vol. 153, Mar. 2020,
Art. no. 102526.

[61] B. Amos, H. Turner, and J. White, ‘‘Applying machine learning classifiers
to dynamic Android malware detection at scale,’’ in Proc. 9th Int. Wireless
Commun. Mobile Comput. Conf. (IWCMC), Jul. 2013, pp. 1666–1671.

[62] K. Liu, S. Xu, G. Xu, M. Zhang, D. Sun, and H. Liu, ‘‘A review of Android
malware detection approaches based on machine learning,’’ IEEE Access,
vol. 8, pp. 124579–124607, 2020.

[63] S. Das, J. Werner, M. Antonakakis, M. Polychronakis, and F. Monrose,
‘‘SoK: The challenges, pitfalls, and perils of using hardware performance
counters for security,’’ inProc. IEEE Symp. Secur. Privacy (SP), May 2019,
pp. 20–38.

YEHYA NASSER received the master’s degree
from Lebanese International University, Lebanon,
now known as Beirut International University,
in 2016, and the Ph.D. (European and French)
degree from INSA Rennes, France, in 2019.
He is currently a Researcher in hardware digital
design and low-power secure embedded systems,
boasting more than ten years of experience and a
pronounced emphasis on hardware security. He is
also an Associate Professor with the Engineering

and Research Center, IMT Atlantique School, France. Prior to his tenure
with IMT Atlantique School, he enriched his expertise during his research
and development role with NOKIA, France. His academic roots trace
back to Lebanese International University, Lebanon, now known as Beirut
International University. Beyond the academic realm, he has left a significant
mark on the industry. He was a Research and Development Engineer with
NOKIA, from 2019 to 2021. His research interests include the domains of
low-power, secure hardware, and embedded systems.

MOHAMAD NASSAR (Member, IEEE) received
the master’s degree (D.E.A.) in computer science
and the Ph.D. degree from Nancy University
(currently the University of Lorraine), France,
in 2005 and 2009, respectively. He is currently
a tenure-track Assistant Professor in computer
science with The University of Alabama in
Huntsville. He was an Assistant Professor in
computer science and cybersecurity with the
University of New Haven (UNewHaven) (2021–

2023). Before that, he was an Assistant Professor in computer science with
the AmericanUniversity of Beirut (AUB) (2016–2021). Before joiningAUB,
he completed a postdoctoral research stay with the Department of Computer
Science and Engineering, Qatar University. He was an Expert Research
Engineer with INRIA, Nancy, France (2009–2010) and Ericsson, Ireland
(2011). He has published more than 40 peer-reviewed conference and journal
articles. His research interests include cybersecurity and machine learning.

131288 VOLUME 11, 2023


