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ABSTRACT Common block ciphers like AES specified by the NIST or KASUMI (A5/3) of GSM are
extensively utilized by billions of individuals globally to protect their privacy and maintain confidentiality in
daily communications. However, these ciphers lack comprehensive security proofs against the vast majority
of known attacks. Currently, security proofs are limited to differential and linear attacks for both AES and
KASUMI. For instance, the consensus on the security of AES is not based on formal mathematical proofs
but on intensive cryptanalysis over its reduced rounds spanning several decades. In this work, we introduce
new security proofs for AES against another attack method: impossible differential (ID) attacks. We classify
ID attacks as reciprocal and nonreciprocal ID attacks. We show that sharp and generic lower bounds can be
imposed on the data complexities of reciprocal ID attacks on substitution permutation networks. We prove
that the minimum data required for a reciprocal ID attack on AES using a conventional ID characteristic is
266 chosen plaintexts whereas a nonreciprocal ID attack involves at least 288 computational steps. We mount
a nonreciprocal ID attack on 6-round AES for 192-bit and 256-bit keys, which requires only 218 chosen
plaintexts and outperforms the data complexity of any attack. Given its marginal time complexity, this attack
does not pose a substantial threat to the security of AES. However, we have made enhancements to the
integral attack on 6-round AES, thereby surpassing the longstanding record for the most efficient attack
after a period of 23 years.

INDEX TERMS Advanced encryption standard (AES), block cipher, confidentiality, cryptanalysis,
impossible differential attack, integral attack, reciprocal attack, substitution permutation network (SPN).

I. INTRODUCTION
Substitution permutation network (SPN) ciphers constitute a
fundamental category of block ciphers that are widely used
in modern cryptography. The Advanced Encryption Standard
(AES) specified by the National Institute of Standards and
Technology (NIST) [1] is an example of an SPN cipher
that is extensively employed to provide confidentiality in
various cryptographic protocols, such as Transport Layer
Security (TLS), WiFi Protected Access (WPA), and the
Signal protocol utilized in applications like WhatsApp.
In this context, the cryptanalysis of SPN ciphers in generic
settings plays a crucial role in comprehending the security of
commonly utilized ciphers, and in evaluating their resilience
against potential attacks.

The associate editor coordinating the review of this manuscript and

approving it for publication was Pedro R. M. Inácio .

In contrast to the majority of previous research on
cryptanalysis, which has largely focused on specific ciphers,
this study adopts a more abstract and theoretical approach
by examining the data complexity of reciprocal impossible
differential (ID) attacks and the time complexity of non-
reciprocal ID attacks on SPN ciphers in generic settings.
Reciprocal attacks are those that require the same amount
of data complexity to prepare the necessary data for the
attack, regardless of whether the attacker has access to
the encryption oracle or the decryption oracle. To provide
a precise description of reciprocal attacks, we present
Definition 1, and we establish various results regarding the
minimum data requirements for reciprocal ID attacks on
generic SPN ciphers.

The data requirement of an attack can be considered
the most vital and critical complexity among time and
memory complexities. This is due to the fact that data
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collection may not always be feasible, and the attacker has no
control over the throughput of the oracle producing the data.
Conversely, advancements in time and memory complexities
are achievable through the efficient utilization of high-
speed, parallel supercomputer platforms. Therefore, low-
data complexity attacks stand out as particularly noteworthy.
For instance, Bouillaguet et al. explore the possibility of
attacking AES with only one or two plaintext/ciphertext
pairs [2]. Hence, in this work, we investigate the minimum
data requirement of reciprocal ID attacks on AES.

We focus on establishing lower bounds for data and
time complexities related to reciprocal and nonreciprocal ID
attacks on AES respectively. Despite AES being a subject
of extensive research, comprehensive security proofs are
notably lacking for various attack methods. The designers of
AES have provided security proofs against differential and
linear attacks [3]. Subsequent efforts have aimed at refining
and enhancing these security bounds [4]. However, it is
important to emphasize the existing gap in security proofs
against other potential attack methods. We address this gap
specifically in the context of ID attacks in this work.

Cryptanalysis techniques on SPN ciphers, particularly
AES, have made significant progress. One example is the
class of impossible differential (ID) attacks which were intro-
duced by Biham et al. [5] and Knudsen [6] independently.
The distinguisher in an ID attack utilizes an input-output
difference of an encryption function that is not generated
by any key. We classify ID attacks on SPN ciphers into
reciprocal and nonreciprocal attacks. Reciprocal ID attacks
are identified as those that can be executed with the same data
complexity in the chosen ciphertext (CC) scenario as in the
chosen plaintext (CP) scenario. It is apparent that almost all
ID attacks on well-known SPN ciphers are reciprocal, and
as yet there is no nonreciprocal ID attack on AES. While it
seems that reciprocal ID attacks are generally more efficient
and faster than nonreciprocal ones, this study reveals that
reciprocal ID attacks on SPN ciphers require a considerable
amount of data.

A. RELATED WORK
The prevalent approach in security of AES often involves
an ad-hoc paradigm, and intensively mounting attacks on
reduced rounds as a heuristic measure. These attacks include
Meet-in-The-Middle (MiTM) attacks (such as those proposed
by Demirci and Selçuk [7], Dunkelman et al. [8], [9], Wang
and Zhu, [10], Derbez et al. [11], Li et al. [12], Gilbert
and Minier [13]), square attacks (such as those proposed by
Ferguson et al. [14]), biclique attacks (such as those proposed
by Bogdanov et al. [15], Tao and Wang [16]), yoyo attacks
(such as those proposed by Saha et al. [17] and Rahman et al.
[18]), truncated boomerang attacks (such as those proposed
by Bariant and Leurent [19]), zero difference attacks (such
as those proposed by Bardeh and Rijmen [20]), algebraic
attacks (such as those proposed by Zhao et al. [21]), mixture
differential attacks (such as those proposed by Grassi [22]),

mixture integral attack (such as those proposed by Grassi and
Schofnegger [23]) and the ID attacks. Even, its key schedule
is cryptanalyzed intensively [9], [24].

Several ID attacks have been proposed for AES, all
of which rely on exploiting the 4-round conventional ID
characteristics as described in [25]. To date, no other
ID characteristics for AES have been identified. In fact,
Sun et al. have demonstrated that AES has no 5-round ID
unless the specifics of the S-Box are disregarded [26].
Wang and Jin [27] have also verified this claim through the
‘‘dependent tree’’ method, although their conclusion is based
on the assumption that all the round keys are independent and
uniformly random. In addition, Boura and Coggia [28] have
demonstrated that no 5-round ID with two active bytes exists
for AES, using MILP solvers.

The distinguishing feature of ID attacks onAES is that they
are all reciprocal and require extensive data. These attacks
rely on an outrageous number of chosen plaintexts to identify
all the incorrect keys in the initial and final rounds. Boura
et al. have introduced bounds on data, time, and memory
complexities for various generic types of block ciphers [29].
However, the bound for data complexity is notably loose.
Several ID attacks on AES have different data requirements,
ranging from 2117.5 CP in [30] to 275.5 CP in [31], and 292 CP
in [32] and [33] when 4-round conventional ID characteristics
are enclosed by initial and final rounds. Remark that the 6-
round attack in [31] has the lowest data requirements among
all the ID attacks on AES.

The category of practical attacks or attacks with low
data on few rounds of AES, has gained popularity in the
cryptanalysis of AES for understanding its security [2], [3],
[14], [17], [34], [35], [36], [37]. The critical lower bound of
the number of rounds for a dramatic jump in the required data
complexity can be considered as six. This is supported by
findings that while there exist attacks on 5-round AES that
require only 8 CP [38], attacks on 6-round AES require at
least 226 CP [34].
The square attack introduced by Daemen et al. on

6-round AES in [39] held the record for more than
two decades, requiring 232 chosen plaintexts. Although
some improved versions of the square attack, such as the
partial sum technique [14] and improved meet-in-the-middle
attacks [10], [11], have better time complexities, their data
complexities could not surpass 232 chosen plaintexts. Bar-
On et al. improved the record to 227.5 chosen plaintexts with
the mixture meet-in-the-middle technique [35]. They further
enhanced their analysis and achieved a data complexity of 226

chosen plaintexts in [34].

B. OUR CONTRIBUTIONS
We present a set of parameters that can be used to identify
an ID attack, and we investigate the data complexity
of reciprocal ID attacks on SPN ciphers in a generic
setting, using these parameters. Our analysis yields several
theoretical and generic results concerning the minimum data
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TABLE 1. Attacks a 6- round AES with minimal data. Memory is in Byte.
Data is CP. *: We make a minor amendment to rectify the complexity
computation in [14]. See Section VIII.

requirement of such attacks. These results are presented in
Theorem 2, Theorem 4, and Theorem 5. By offering a more
extensive and rigorous comprehension of the minimum data
requirements of reciprocal ID attacks, our results serve to
augment the current understanding of this class of attacks.

Based on the parameters of the ID characteristic, we pro-
pose a generic formula for estimating the minimum data
complexity of a reciprocal ID attack on an SPN cipher
in Theorem 5. This formula is independent of the sieving
method employed in the attack. Specifically, we demonstrate
that a reciprocal ID attack that exploits at least one structure
in the encryption and decryption directions necessitates at
least the cube root of 2n+1/p data by Theorem 3, where
n represents the block length of the SPN cipher and p denotes
the probability that an input/output difference pair leads to
the ID characteristic. To illustrate, we find that the minimum
amount of data required for such an attack is 243 CP for a
128-bit block length.

In order to investigate if there are reciprocal ID attacks that
attain the lower bound established by Theorem 5 with respect
to data complexity, we propose Definition 2. These attacks
are denoted as ‘‘reciprocal ID attacks with optimal data’’.
It is worth noting that the most efficient ID attacks currently
known do not fall under this category. Furthermore, there is
a lack of literature on reported reciprocal ID attacks on AES
with optimal data, leading to an open question regarding the
precision of the lower bound presented in Theorem 5.

We provide comprehensive lower bounds on either data
or time complexities for all types of ID attacks on AES.
We prove that any reciprocal ID attack on AES exploiting
a 4-round conventional ID characteristic and containing
at least one initial and one final round uses at least 266

chosen plaintexts (CP) in Theorem 7. We observe that all
the ID attacks on AES utilize 4 active bytes either in the
first or in the last round yielding only one active byte
after the MC or MC−1 operations. We prove that the data
complexity is bounded by 262 for these attacks in Theorem
8 whatsoever the ID characteristic is. Moreover, we prove
that any nonreciprocal ID attack on AES, which exploits a
conventional ID characteristic, has a time complexity of at
least 288 computational steps in Theorem 9. Consequently,
we introduce security bounds against a different type of attack
for the first time since introducing the security bounds against
differential and linear attacks for AES.

To assess the degree of sharpness of the bounds established
in Theorem 7 and Theorem 2, we conduct a 6-round
reciprocal ID attack with 266 chosen plaintexts. While not the
most effective attack, we present this attack to demonstrate
that it reaches the bound described in Theorem 2 and
represents the first instance of a reciprocal ID attack with
optimal data. This means that it attains the bound in Theorem
5 as well, establishing the sharpness of these theorems.

We have successfully mounted a couple of nonreciprocal
ID attacks on 6-round AES with a record low data
requirement of only 218 CP, to illustrate that ID attacks
do not necessarily require a lot of data. This result is
particularly surprising as ID attacks are known to typically
require significantly larger amounts of data. The theoretical
infrastructures we have developed for the data requirements
of reciprocal ID attacks in this work have enabled us to
establish the frameworks for our nonreciprocal attacks with
minimal data. While our attacks may not be the most optimal
with their marginal time complexities, it is notable for their
remarkable efficiency in terms of data usage. To compensate
it for having a practical application, we improve the integral
attack through the partial sum technique in [14]. Our attack is
the fastest attack on 6-round AES, surpassing the prior record
established over a span of 23 years. A summary of low-data
complexity attacks on 6-round AES is presented in Table 1.
Consequently, we contribute to the theoretical character-

ization of the data requirements of reciprocal ID attacks in
this work. Our other crucial contribution is to provide security
bounds of certain levels for AES against both reciprocal and
nonreciprocal ID attacks by utilizing our generic statements
on SPN ciphers. Moreover, we mount an attack of the
minimum data on 6-round AES-192 and AES-256; and
another attack of the best complexity on 6-round AES.

C. ORGANIZATION
The paper is structured as follows. In Section II, we provide
a concise overview of SPN ciphers and AES. Subsequently,
we present the framework of our work and investigate the
data complexities of the reciprocal ID attacks on SPN ciphers
in Section III. We establish a lower bound on the data
of the reciprocal ID attacks and a lower bound on the
time complexities of nonreciprocal ID attacks on AES in
Section IV. Our reciprocal ID attack with optimal data and
nonreciprocal ID attack on AES are detailed in Section V
and Section VI, respectively. Section VII outlines our attack
with minimum data. We introduce our improvement of the
integral attack in Section VIII. Finally, we conclude the paper
in Section IX with a conjecture.

II. PRELIMINARIES
We give a brief decryption of SPN (Substitution permutation
network) ciphers and AES (Advanced Encryption Standard)
along with the notation we comply with in this section.

A. SUBSTITUTION PERMUTATION NETWORKS
A substitution permutation network is a block cipher EK :

GF(2)n → GF(2)n. For a fixed k-bit key K , EK is an
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n-bit permutation. Its inverse, DK , is the decryption function
such that DKEK (P) = EKDK (P) = P ∀P ∈ GF(2)n. EK is
supposed to behave like a random permutation to be a secure
cipher.

The round function of an SPN cipher consists of key
addition, an S-box layer, and a linear transformation. The
input is added to the round key. Then, each block is divided
into n/s subblocks of s-bit in an SPN cipher. We call each
subblock a word. Subsequently, S-boxes are executed to n/s
words simultaneously. That is, each S-box is a nonlinear
permutation from GF(2)s into GF(2)s. The last operation
of the round function is the linear transformation. It is a
multiplication by an invertible matrix in the n × n general
linear group over the field GF(2). There is an extra round
key addition at the end of the last round.

B. ADVANCED ENCRYPTION STANDARD
Advanced Encryption Standard (AES), is the most prominent
SPN cipher, as being the FIPS 197 standard [1]. Its block
length is 128-bit. The key lengths are k = 128, 192 or
k = 256 bits, corresponding to r = 10 round, r = 12 round,
or r = 14 round encryptions respectively. We give a brief
description of AES. One can refer to [1] and [3] for detailed
information. It is convenient to demonstrate a round state of
AES by a 4×4matrix. There are four round functions of AES
which are given as follows. These functions are depicted in
Figure 1.

1) SUBBYTES (SB)
It is the layer of S-box operations. s = 8 for AES and we call
a single S-box operation an AES S-box. It substitutes each
byte by another byte according to the look-up table of the
AES S-box bijectively without changing the byte position in
the matrix. There are 16 identical S-boxes.

2) SHIFTROWS (SR)
Rotates the i-th row i− 1 byte to the left for 2 ≤ i ≤ 4.

3) MIXCOLUMNS (MC)
Multiplies each column of the input state by a fixed 4 × 4
MDS matrix.

4) ADDROUNDKEY (ARK)
XORs the output state of the ith round with the i-th subkey.

At first, there is a whitening key addition with the plaintext.
TheMC operation is omitted in the last round. We call single
matrix multiplication of one column as MC also for the sake
of simplicity.
SB−1, SR−1 and MC−1 are inverses of SB, SR and MC

respectively. Let the i-th subkey be RKi and let us denote the
j-th column of RKi by RKi{j} = RK {j + 4i}. Let N = 6 and
N = 8 for the key length to be 192 and 256-bit respectively.

Any column RK {j} of a subkey is computed as

RK {j− N } ⊕ f (RK {j− 1}), if j mod N = 0,

RK {j− 8} ⊕ g(RK {j− 1}), if j mod 8 = 4 and N = 8,

RK {j− N } ⊕ RK {j− 1}, else;

where f and g are functions on columns that consist of S-box,
cyclic shift, and round constant addition operations.

C. NOTATION
The symbols P, C , and K denote a plaintext, ciphertext, and
main key, respectively, in the context of AES (Advanced
Encryption Standard). The notation 1X represents the
difference between a pair of elements X , where 1P and 1C
refer to the plaintext and ciphertext differences, respectively.
To specify both the output of an AES function and
the round number for an arbitrary output, subscripts are
employed. Specifically, SBi and MCi indicate the output of
the data in the i-th round of the SubBytes and MixColumns
operations, respectively. Likewise, 1SBi and 1MCi refer
to the output difference of a pair of data in the i-th round
of the SubBytes and MixColumns operations, respectively.
Equivalent notations are employed for the inverse operations,
SB−1

i , MC−1
i , 1SB−1

i , and 1MC−1
i . If it is necessary to

specify a particular input or output of these functions, the
standard notationMCi(X ), SBi(X ), orMC

−1
i (X ) is used.

The bytes of a state are denoted by [·] notation. Specifi-
cally, X [i1, i2, . . . , ir ] denotes the (i1 +1), (i2 +1), . . . , (ir +

1)-th bytes of the state X . For example, 1SB−1
4 [0, 2] denotes

the first and third bytes of an input difference for the SB
operation in the fourth round. The index numbers of words
in the 4× 4 matrix are arranged as depicted in Figure 2. This
matrix arranges words with indices 0, 1, 2, 3 in the first row;
words with indices 4, 5, 6, 7 in the second row; words with
indices 8, 9, 10, 11 in the third row; and words with indices
12, 13, 14, 15 in the last row.

III. RECIPROCAL ID ATTACKS ON SPN CIPHERS
Any attack on a block cipher EK is an algorithm whose input
is a particular set of plaintext/ciphertext pairs. The output is
the secret key. In general, EK is used as an oracle to produce
the data that the attack makes use of. Alternatively, it is
possible to produce the data through DK . Yet, the number
of calls generally changes. We introduce Definition 1 for a
reciprocal attack if the attack has the same data complexity
when it is mounted on DK as when it is mounted on EK .
Definition 1: Let the data required in a non-adaptive

attack algorithmA on a block cipher be produced by either αe
calls of the encryption oracle EK or αd calls of the decryption
oracle DK . If O(αe) = O(αd ) thenA is said to be a reciprocal
attack, where O is the big-O notation. Otherwise, it is a
nonreciprocal attack.
KP (known plaintext) attacks are clearly reciprocal.

Because the same amount of data necessary for a known
plaintext attack can be collected through the decryption
oracle. Some of the CP (Chosen Plaintext) attacks are
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FIGURE 1. AES round functions.

FIGURE 2. Word indices in a state.

reciprocal. We show that ID attacks need not be reciprocal
even though any ID characteristic is valid for the decryption
function. To the best of our knowledge, all the prominent
ID attacks on AES in the literature are reciprocal attacks.
Therefore, these attacks can be mounted as CC (Chosen
Ciphertext) attacks with the same complexities.

The literature shows that the most efficient and fastest ID
attacks are reciprocal ID attacks. However, we prove that
reciprocal ID attacks require too much data. We introduce a
lower bound for the data complexity of reciprocal ID attacks
on SPN ciphers. For this, we use the following notation.

• ki/kf : # of independent key bits in the initial/final rounds
involved in producing the input/output differences of the
ID characteristic respectively.

• ni/nf : # of active input/output words in the plain-
text/ciphertext differences respectively.

• Pi/Pf : The probability that a subkey in the initial/final
rounds produces the input/output difference of the ID
characteristic for a given input/output pair respectively.

• Du: The average number of pairs used in the attack.
• Ui/Uf : # of structures in plaintexts/ciphertexts
respectively.

A. TYPICAL ID ATTACK
A typical ID attack on an n-bit SPN cipher is a successful
ID attack (faster than exhaustive search) that exploits one
truncated ID characteristic in the middle rounds. Some few
rounds are added in the beginningwhichwe call initial rounds
and some few rounds are added at the end we call final
rounds. Then, the attack searches for all the necessary subkey
bits in the initial and final rounds in order to check if a
given plaintext pair produces the input difference of the ID
characteristic and its corresponding ciphertext pair produces

the output difference of the ID characteristic as truncated
differences. We call these subkey bits the involved bits.
We assume these bits are independent. If some of them can
be computed bymeans of the key schedule, we skip searching
for them. We use enough data to sieve all the involved subkey
bits in a typical ID attack. We adopt the big-O notation for
data complexities in our statements but we ignore the use of
the notation O(·) for the sake of simplicity.
Shakiba et al. introduce the definition of an ideal ID attack

in terms of its complexity in [41]. They categorize an ID
attack as an ideal ID attack if the dominant part of its time
complexity is the number of memory accesses for sieving
out the stored subkeys that are involved in producing the
input/output differences of the ID characteristic. We also
assume a typical ID attack is ideal.

Let an ID attack make use of the pairs (1P, 1C) where
specific ni words of 1P and nf words of 1C are active.
That is, we have nonzero differences only on these words.
A structure for the inputs is a set of plaintexts whose ni words
take all the values and other words are constant. Similarly,
a structure for the outputs is a set of ciphertexts whose nf
words take all the values and other words are constant. There
are around 2sni−1(2sni − 1) pairs in a structure of plaintexts.
But we assume there are 22sni−1 pairs for ni > 1. This
does not change the complexities in big-O notation. Similarly,
we assume a structure for ciphertexts contains 22snf −1 pairs.
For a CP attack, we construct Ui structures and check the

ciphertext pair 1C of each plaintext pair 1P in a structure if
1C has exactly nf active words only on the specific positions.
Then, this (1P, 1C) is used in the attack. If a subkey guess
leads to the ID characteristic in the middle rounds from
(1P, 1C), this subkey is eliminated.
A typical ID attack has the following parameters in CP

scenario:

(Ui,Du, ni, nf , ki, kf ,Pi,Pf ).

The parameters of this attack will be

(Uf ,Du, ni, nf , ki, kf ,Pi,Pf )

in CC scenario. Let us note that we do not consider
multiple ID attacks or an ID attack exploiting multiple ID
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characteristics simultaneously in a typical ID attack. A trivial
lower bound for the time complexity is max{2sni , 2snf }.

The numbers of structures are integers in general in
practice. But, we do not impose Ui or Uj to be integers. If the
number of structures is not an integer, then not all of the
elements in one of the structures are used. Let Ui = qi + ϵi
with 0 ≤ ϵi < 1, qi ∈ Z, qi ≥ 0, and Uf = qf + ϵf with
0 ≤ ϵf < 1, qf ∈ Z, qf ≥ 0.
Remark 1: We assume O((qi + ϵi)2sni ) ̸= O(qi2sni ) and

O((qf + ϵf )2snf ) ̸= O(qf 2snf ) for nonzero ϵi and nonzero ϵf
throughout the paper. Therefore, we simply assume ϵi = ϵf =

0 for qi ≥ 4 and qf ≥ 4.
We need Du pairs to eliminate all the wrong subkeys

involved in either a CP attack or a CC attack. However, the
number of calls of the oracle to get Du pairs may change.
We assume that enough number of pairs are used to eliminate
all the wrong subkeys. We also assume that each subkey
candidate (Ki,Kf ) from the initial subkey Ki and the final
subkey Kf is eliminated by the probability of PiPf through an
input/output pair and hence it survives with the probability of
(1−PiPf )Du in allDu pairs. Therefore, the minimum number
of pairs in order to eliminate all the subkeys is

Du ≥
ki + kf

log2(e)PiPf

for a typical ID attack on an SPN cipher with parameters
(Ui,Du, ni, nf , ki, kf ,Pi,Pf ) where e is the Euler’s number.
The elimination process may utilize several techniques

such as guess and determine methods, hash tables, and early
abort techniques to enhance the time complexity as proposed
in [33] and [42]. However, we study the reciprocal ID attacks
in a generic setting. So, it is not possible to introduce
statements about time complexities since they depend on the
attack algorithms. Therefore, we do not consider time or
memory complexities. But, we can introduce the trivial lower
bound as 2ki+kf memory accesses to eliminate all the wrong
keys. In this work, we focus on data complexities.
Proposition 1: Let a typical ID attack on an SPN cipher

have the number of the structures, Ui = qi + ϵi and Uf =

qf + ϵf . Then, this ID attack is reciprocal if and only if

2sni (ϵ2i − ϵi) = 2snf (ϵ2f − ϵf ).

Proof: A typical ID attack is reciprocal if and only if its
data complexities are equal in both CP and CC scenarios
by Definition 1. We use all the elements in qi structures.
So, we have qi22sni−1 pairs of the plaintexts. On the other
hand, we use ϵi2sni plaintexts of the last structure. So, we can
produce ϵ2i 2

2sni−1 pairs from this structure. Together we have

qi22sni−1
+ ϵ2i 2

2sni−1

pairs. We check if their ciphertext pairs have exactly nf active
words in the specific positions. So, the number of pairs used
in the attack is

qi22sni−1
+ ϵ2i 2

2sni−1

2n−snf
(1)

which is also equal to

qf 22snf −1
+ ϵ2f 2

2snf −1

2n−sni
(2)

since the same data pairs are used in both CP and CC
scenarios. Organizing Equation 1 and Equation 2, we have

qi2sni + ϵ2i 2
sni = qf 2snf + ϵ2f 2

snf . (3)

On the other hand, the data complexity is qi2sni + ϵi2sni in
CP scenario and qf 2snf + ϵf 2snf in CC scenario. We need
them to be equal for the attack to be reciprocal. Substituting
qi2sni − qf 2snf with ϵf 2snf − ϵi2sni in Equation 3, we obtain

−ϵi2sni + ϵ2i 2
sni = −ϵf 2snf + ϵ2f 2

snf

which simply gives the equality

2sni (ϵ2i − ϵi) = 2snf (ϵ2f − ϵf ).

Conversely if 2sni (ϵ2i − ϵi) = 2snf (ϵ2f − ϵf ) then 2sniϵ2i −

2snf ϵ2f = 2sniϵi − 2snf ϵf . Then, substituting in Equation 3,
we have

qi2sni + ϵi2sni = qf 2snf + ϵf 2snf (4)

which means that data complexities are equal in both CP and
CC scenarios. Note that Equation 3 is always valid in any ID
attack. □
Corollary 1: In a typical reciprocal ID attack, ϵi = 0 if

and only if ϵf = 0.
Proof: If an ID attack with the numbers of structures

Ui = qi + ϵi in the encryption direction and Uf = qf + ϵf
is reciprocal, then we have 2sni (ϵ2i − ϵi) = 2snf (ϵ2f − ϵf )
by Proposition 1. If ϵi = 0 then 2snf (ϵ2f − ϵf ) = 0.
2snf ̸= 0 and hence ϵf = 0 since it cannot be 1. Similarly
ϵf = 0 H⇒ ϵi = 0. □
Corollary 2 below can be considered as a useful character-

ization of reciprocal ID attacks which can be used in practice
to identify that the ID attacks on SPN ciphers in the literature
are mostly reciprocal attacks.
Corollary 2: If both Ui and Uf are integers in a typical ID

attack then the attack is reciprocal.
Proof: Let the numbers of structures of a typical ID attack

be integers in both CP and CC scenarios. Then ϵi = ϵf = 0.
Hence, we have 2sni (ϵ2i − ϵi) = 2snf (ϵ2f − ϵf ). This simply
implies that the attack is reciprocal by Proposition 1. □

It is crucial to note that any attack with Ui ≥ 4 and Uf ≥ 4
is reciprocal by Corollary 2. For example, the numbers of
structures used in all the well-known ID attacks on AES are
much higher than 4 and are all integers [30], [31], [32], [33],
[42], [43], [44], [45], [46], [47], [48]. So, all the known ID
attacks on AES are reciprocal by Corollary 2.We observe that
the reciprocal attacks achieve good performance in terms of
time complexity. However, they require a lot of data. We can
give lower bounds for the data complexities of such attacks
through our statements in Section IV.
The following theorem characterizes the reciprocal attacks

when the numbers of structures are not integers.
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Theorem 1: Let a typical ID attack have Ui = qi + ϵi and
Uf = qf + ϵf with ϵi ̸= 0 and ϵf ̸= 0. Then, the attack is
reciprocal if and only if ni = nf , qi = qf , and ϵi = ϵf .
Proof: If we have ni = nf and ϵi = ϵf then it is clear

that 2sni (ϵ2i − ϵi) = 2snf (ϵ2f − ϵf ) and hence the attack is
reciprocal by Proposition 1. On the other hand, assume that
the attack is reciprocal. If ni = nf then qi+ϵi = qf +ϵf since
2sni (qi + ϵi) = 2snf (qf + ϵf ). This implies that qi = qf and
ϵi = ϵf . Because qi and qf are integers and 0 ≤ ϵi < 1,
0 ≤ ϵf < 1. Assume on the contrary that ni ̸= nf . Let
ni < nf . If qi ̸= 0. We have qi + ϵi = 2s(nf −ni)(qf + ϵf ) and
qi + ϵ2i = 2s(nf −ni)(qf + ϵ2f ). But there is no nonzero solution
for ϵf for these two equations since both ϵf ≈ qi2s(ni−nf )−qf
and ϵ2f ≈ qi2s(ni−nf ) − qf . If qi = 0 then qf must be zero.
Otherwise ϵi > 1. When qf = 0 also, we have no nonzero
solutions of ϵf and ϵi again since 2s(nf −ni) ̸= 1. In summary,
if ni ̸= nf then the attack cannot be reciprocal for nonzero ϵi
and ϵf . □

We construct our lower bounds for the data complexities
of typical ID attacks in general in Theorem 2. We introduce
a precise lower bound for the data complexities of reciprocal
ID attacks.
Theorem 2: A typical reciprocal ID attack on an SPN

cipher with its parameters (Ui,Uf ,Du, ni, nf , ki, kf ,Pi,Pf )
requires at least(

2n+1(ki + kf )
log2(e)PiPf

)1/3 ( U3
i U

3
f

(qi + ϵ2i )(qf + ϵ2f )

)1/6

chosen plaintexts (or, equally, chosen ciphertexts) whereUi =

qi+ϵi and Uf = qf +ϵf ; 0 ≤ ϵi < 1; 0 ≤ ϵf < 1, qi, qf ∈ Z,
qi ≥ 0, qf ≥ 0.
Proof: The data complexity isUi2sni which isUf 2snf at the

same time since the attack is reciprocal. We have

Du = (qi + ϵ2i )2
2sni−1+snf −n ≥

ki + kf
log2(e)PiPf

.

Taking the logarithm,

2sni + snf ≥ log2

(
ki + kf

log2(e)PiPf

)
+ n+ 1 − log2(qi + ϵ2i )

(5)

and similarly for the CC scenario

2snf + sni ≥ log2

(
ki + kf

log2(e)PiPf

)
+ n+ 1 − log2(qf + ϵ2f ).

(6)

Summing Inequality 5 and Inequality 6 and then dividing
by 3, we obtain a lower bound for snf + sni:

log2

(
ki + kf

log2(e)PiPf

)2/3

+
2(n+ 1)

3
−

log2(qi+ϵ2i )(qf +ϵ2f )

3
.

(7)

On the other hand, we have Ui2sni = Uf 2snf since the attack
is reciprocal and hence

sni − snf = log2(Uf ) − log2(Ui). (8)

Adding Inequality 7 to Equation 8 and dividing by 2, we get
a lower bound for sni:

log2

(
ki + kf

log2(e)PiPf

)1/3

+
n+ 1
3

+
log2(Uf ) − log2(Ui)

2

−
log2(qi + ϵ2i ) + log2(qf + ϵ2f )

6
. (9)

Therefore, the logarithm of the data complexity is bounded
by

log2(Ui2
sni ) ≥ log2

(
ki + kf

log2(e)PiPf

)1/3

+
n+ 1
3

−
log2(qi + ϵ2i ) + log2(qf + ϵ2f )

6

+
log2(Uf ) + log2(Ui)

2
. (10)

Taking the powers of the both sides of Inequality 10, we get

D ≥

(
2n+1(ki + kf )
log2(e)PiPf

)1/3 ( U3
i U

3
f

(qi + ϵ2i )(qf + ϵ2f )

)1/6

. (11)

□
One straightforward conclusion of Theorem 2 is introduc-

ing the following lower bound for reciprocal ID attacks. Even
though it is the most generic bound, it is a loose bound.
Corollary 3: A typical reciprocal ID attack on an SPN

cipher with Ui ≥ 1 has the data complexity of at least 2(n+1)/3

chosen plaintexts.
Proof: The data complexity is bounded below by(

2n+1(ki + kf )
log2(e)PiPf

)1/3 ( U3
i U

3
f

(qi + ϵ2i )(qf + ϵ2f )

)1/6

(12)

by Theorem 2. Ui ≥ 1 ⇒ Uf ≥ 1 by Theorem 1. On the
other hand (

U3
i U

3
f

(qi + ϵ2i )(qf + ϵ2f )

)1/6

≥ 1

since Ui ≥ 1, Uf ≥ 1. Meanwhile, (ki + kf ) ≥ 2 and

PiPf < 1. Hence,
(

ki+kf
log2(e)PiPf

)1/3
≥ 1 which simply implies

the result. □
We can directly use Corollary 3 for AES with n = 128.
Corollary 4: Any typical reciprocal ID attack on AES with

Ui ≥ 1 has the data complexity of at least 243 chosen
plaintexts.

The most dominant parameters in data complexity are Pi
and Pf . So, we can simplify the lower bound as follows.
Theorem 3: A typical reciprocal ID attack on an SPN

cipher with Ui ≥ 1 has the data complexity of at least
(2n+1(PiPf )−1)1/3 chosen plaintexts.
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The probability p = PiPf is 2−68 in [46]; 2−52 in
[32] and [33]; 2−74 in [30] and [31] (7)-round attack); and
2−36 in [31] for the 6-round attack. So the data complexities
are bounded by 265.7, 260.3, 267.7 and 255 respectively.
The following bound is a sharp bound but specific to the
parameters of an attack as in Theorem 2. But Theorem 4 is
more simple than Theorem 2.
Theorem 4: A typical reciprocal ID attack on an SPN

cipher with (ni, nf ,Ui,Uf ) has the data complexity of at

least
√
2sni+snf UiUf chosen plaintexts (or, equally, chosen

ciphertexts).
Proof: The data complexity is at least(

2n+1(ki + kf )
log2(e)PiPf

)1/3 ( U3
i U

3
f

(qi + ϵ2i )(qf + ϵ2f )

)1/6

chosen plaintexts (or, equally, chosen ciphertexts) by
Theorem 2. We can write this bound as(

22sni+snf 22snf +sni (qi + ϵ2i )(qf + ϵ2f )U
3
i U

3
f

(qi + ϵ2i )(qf + ϵ2f )

)1/6

which is equal to
√
2sni+snf UiUf . □

Let us note that the bound in Theorem 4 is the geometric
mean of the data complexities in CP and CC scenarios. So,
if they are equal, they also equal their geometric mean. So,
we have precise equality. In general, it is possible to bound
the data complexity by using the number of active words in
Lemma 1. This well-known result is valid for an arbitrary ID
attack.
Lemma 1 ([29]): A typical ID attack on an SPN cipher

with the parameters
(Ui,Uf ,Du, ni, nf , ki, kf ,Pi,Pf ) requires at least

2n+1−s(ni+nf )(ki + kf )
log2(e)PiPf

data in both the chosen plaintexts and the chosen ciphertext
scenarios.

Indeed, the data attains the bound if the numbers of
structures are integers. That is, we have D = Du2n+1−sni−snf

in CP if O(Ui2sni ) = O(qi2sni ) and D = Du2n+1−sni−snf

in CC if O(Uf 2snf ) = O(qf 2snf ). We have seen that
D = Du2n+1−sni−snf in almost all the ID attacks (e.g.
[30], [31], [32], [33], [46]) since the attacks make use of
plenty of structures to optimize the overall complexity in both
directions. As one exceptional example, the parameters of the
attack on Camellia in [49] are sni = 128, snf = 56 and
Du = 2168. So, Ui = 2−7.5 and Uf = 257. Then, the
attack requires Du2129−128−56

= 257256 = 2113 CC in the
decryption oracle, but 2121.5 CP in the encryption oracle.

The bound in Lemma 1 might be insufficient for a
reciprocal attack if the quantity of the difference, |ni − nf |,
is large enough or the number of structures is less than one in
one direction. We treat all the cases to have complete security
proofs of SPN ciphers in terms of data requirements of
reciprocal ID attacks. It is possible to eliminate the pairs from

the cancellations either in the ciphertexts or in the plaintexts.
Therefore, if one of ni or nf is too small, the corresponding
reciprocal attack requires so much data.
Theorem 5: The data complexity of a typical recipro-

cal ID attack on an SPN cipher having the parameters
(Ui,Uf ,Du, ni, nf , ki, kf ,Pi,Pf ) is bounded below by√

2n+1−s·min{ni,nf }(ki + kf )
log2(e)PiPf

. (13)

Proof:We have

D = (qi + ϵi)2sni ≥

√
qi + ϵ2i 2

sni =

√
2Du2n−snf

≥

√
2n+1−snf (ki + kf )

log2(e)PiPf

in CP scenario. Similarly,

D = (qf + ϵf )2snf ≥

√
qf + ϵ2f 2

snf =

√
2Du2n−sni

≥

√
2n+1−sni (ki + kf )

log2(e)PiPf

in CC scenario. Hence, the data complexity is bounded below
by √

2n+1−s·min{ni,nf }(ki + kf )
log2(e)PiPf

which concludes the proof. □
Theorem 5 introduces an efficient bound. In fact,

min{ni, nf } = 4 in almost all the reciprocal attacks on
AES, and the data complexities of some of them are depicted
in Table 2 along with the lower bounds deduced through
Theorem 5. The question is if the bound in Theorem 5 is
sharp. We claim that it is a sharp bound and define the
reciprocal attacks attaining this bound as the attacks with
optimal data.
Remark 2: Theorem 2 may be seen similar to the bound

given in [29], which is stated as√
2n+1−s·max{ni,nf }(ki + kf )

log2(e)PiPf
(14)

It is plain that the maximum of ni, nf is taken in [29] and
the bound in Theorem 2 is superior to the bound in Equation
14 which simply improves the lower bound significantly. The
bound in Lemma 1 dominates the data if the number of
structures is not small (more than four according to our
assumption) in both directions and simply determines the
data complexity in most of the attacks. However, we must
develop a generic bound valid for any reciprocal ID attack.
We use Theorem 5 to provide minimum data required for
an arbitrary reciprocal ID attack. For example, we prove
Theorem 7, Theorem 8 and Theorem 9 by using Inequality
13 in Theorem 5 for the security of AES.
Definition 2: We call a reciprocal ID attack with data

complexity D as a reciprocal ID attack with optimal data if
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TABLE 2. Some examples of reciprocal ID attacks on 7-round AES with
min{ni , nf } = 4. The data is given in CP. The lower bound in the last
column is by Theorem 5.

its data complexity is not more than twice the bound given in
Theorem 5. That is,log2 D− log2

√2n+1−s·min{ni,nf }(ki + kf )
log2(e)PiPf

 = 0

where ⌊·⌋ is the flooring function.
There is no reciprocal ID attack on AES with optimal data

yet. For the first time, we introduce it in Section V. This
example proves that the bound in Theorem 5 is a sharp bound.

We characterize the reciprocal ID attacks with data
attaining the bound in Theorem 5 in the following statement.
Theorem 6: Assume ni ≤ nf . The data complexity D of

a typical reciprocal ID attack on an SPN cipher having
the parameters (Ui,Uf ,Du, ni, nf , ki, kf ,Pi,Pf ) attains the
bound in Inequality 13 if and only if D ≤ 2snf , and if D < 2snf
then ni = nf .
Proof: Let ni ≤ nf and Du =

ki+kf
log ePiPf

. Assume D ≤ 2snf .

That is, D = ϵ2snf where ϵ ≤ 1. Then Du = ϵ222snf +sni−n−1

in terms of the CC attack. So, D = ϵ2snf =

√
2n+1−sniDu

which is simply equal to√
2n+1−s·min{ni,nf }(ki + kf )

log2(e)PiPf
.

For the other direction, assume D is equal to the bound
in Inequality 13. The number of the structures is at least

Du
22sni+snf −n−1 and then

2sni · Du
22sni+snf −n−1 ≤ D =

√
2n+1−sni · Du.

Solving the inequality with respect to Du, we have Du ≤

22snf +sni−n−1. But, this is the number of the pairs in the CC
scenario with only one structure or its subset. So, D = ϵ2snf .
If ϵ < 1 then ni = nf by Theorem 1 since the attack is
reciprocal. □
Corollary 5: Assume D ≤ 2max{sni,snf } of a typical

reciprocal ID attack on an SPN cipher having the parameters
(Ui,Uf ,Du, ni, nf , ki, kf ,Pi,Pf ). Then,

Du ≤ 2min{sni,snf }+2max{sni,snf }−n−1

and n+ 1 ≤ min{sni, snf } + 2max{sni, snf }.
Proof: Assume D ≤ 2snf and ni ≤ nf . Then√
2n+1−sniDu ≥ 2n+1−sni−snf Du by Theorem 6. So, Du ≤

2sni+2snf −n−1. On the other hand, 1 ≤ Du. So, n + 1 ≤

sni + 2snf . □

Corollary 5 can be utilized in developing a design criterion
for an SPN cipher to provide security against ID attacks. The
diffusion layer of a block cipher is supposed to satisfy the
bound

PiPf ≤ 2n+1−min{sni,snf }−2max{sni,snf }

for any initial and final rounds and for any ID characteristic.
The straightforward conclusion of Corollary 5 is that if the

number of structures is less than one, then the number of
active words in both input and output cannot be arbitrarily
small.
Corollary 6: Assume Ui < 1 for a typical recipro-

cal ID attack on an SPN cipher having the parameters
(Ui,Uf ,Du, ni, nf , ki, kf ,Pi,Pf ). Then, n+1

3s ≤ ni = nf

IV. PROVABLE SECURITY OF AES AGAINST ID ATTACKS
Any ID attack on AES makes use of 4-round ID characteris-
tics and all these characteristics are identified by Grassi et al.
in [25]. We introduce the result of the minimum number of
data used in a typical reciprocal ID attack on AES exploiting
one of these characteristics.
Lemma 2 ([25]): If the total numbers of the active input

diagonal and the output inverse diagonal columns in any
4-round characteristic of AES is less than four then this
characteristic is an ID characteristic.
Definition 3: We call any 4-round ID characteristic

described in Lemma 2 as a 4-round conventional ID
characteristic of AES.

All the known ID attacks on AES are reciprocal ID
attacks since their number of structures are integers in
both encryption and decryption directions. Moreover, they
all exploit 4-round conventional ID characteristics. Indeed,
there are no known ID characteristics of AES other than
conventional ones. We give a lower bound for the data
complexity of a reciprocal ID attack on AES exploiting one
of the 4-round conventional ID characteristics.

We introduce the following conjecture in Claim 1. Then,
Theorem 7 below can be extended to all the ID attacks on
AES when the conjecture is proven.
Claim 1: All the truncated ID characteristics of r-round

AES where r ≥ 4 are conventional 4-round ID
characteristics.

There are powerful indicators in the literature about the
correctness of Claim 1. Sun et al. reduce the problem of the
existence of an ID for a given SPN (Substitution Permutation
Network) to the problem of the existence of an IDwhose input
and output Hamming weights are both one. They conclude
that AES has no 5-round ID unless the details of the S-Box are
not taken into consideration [26]. Another proof is provided
by Wang and Jin in [27], exploiting the properties of AES
S-box by using the ‘‘dependent tree’’ method. However, their
result is given under the assumption that all the round keys are
uniformly random and independent. Boura and Coggia show
that AES has no 5-round ID by using MILP solvers if the
details of both the S-box and the key schedule are taken into
account. Moreover, their result is valid only if the first and the
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last rounds of the characteristic contain two active S-boxes in
total [28].

Theorem 7 gives a powerful lower bound for the data
complexities of all the known reciprocal ID attacks on AES.
Theorem 7: A typical reciprocal ID attack on AES exploit-

ing a 4-round conventional ID characteristic has the data
complexity of at least 266 chosen plaintexts.
Proof: The number of active MC operations (whose input

difference is nonzero) before and after any conventional ID
characteristic is at least two (one in the initial rounds and
one in the final rounds). The total number of passive bytes
in one column of the input and in one column of the output
of a 4-round conventional ID characteristic is at least 4 by
Lemma 2. So, PiPf ≤

(4
2

)2
2−32. The number of the key bits

involved is at least 48. Hence, we have ki+kf
log2(e)PiPf

≥ 231.

If ni + nf < 12 then the data D ≥ 270 by Lemma 1.
Let ni + nf = 12. Then, we have at least three active MC
operations. If there are exactly 3 active MC operations then
there is only one active MC operation either in the input or in
the output. So, ni ≤ 4 or nf ≤ 4 and hence 2129−8·min{ni,nf } ≥

297. On the other hand, PiPf ≤ 2−24
· 42 · 2−16

= 2−36

and ki + kf ≥ 64. Hence, D ≥ 269 by Theorem 5. We need
more data if ni ≤ 4 or nf ≤ 4 and there are more than
3 active MC operations, again by Theorem 5. So, assume
ni > 4 and ni > 4 and hence there are at least two activeMC
operations in each direction. Then PiPf ≤

(4
2

)2
2−64

≤ 2−58.
We have ki + kf ≥ 96. So, ki+kf

log2(e)PiPf
≥ 264. Then, we have

2129−8·min{ni,nf } ≥ 281 since min{ni, nf } ≤ 6. Therefore,
D ≥ 271 by Theorem 5. So, let ni + nf > 12. In this case,
the number of active MC operations is at least 4. Let the
number of the active MC operations in the initial and final
rounds be mi and mf respectively. If (mi,mf ) = (1, 3) then
PiPf ≤ 2−222−22

= 2−44 and ki+kf ≥ 80. Hence,Du ≥ 249.
On the other hand, ni ≤ 4. So, D ≥ 2(49+96+1)/2

= 271

in the CC scenario. The case (mi,mf ) = (3, 1) is similar.
One can mount the attack in the CP scenario in this case.
We need more data for (mi,mf ) = (1, ≥ 3) since PiPf is
getting less and ki + kf increases and hence Du increases.

Assume (mi,mf ) = (2, 2). Then, PiPf ≤
(4
2

)2
2−64 and

ki + kf ≥ 104 for the minimum data. Hence, Du ≥ 265. So,
we need at least 2129 pairs. One structure contains at most
2127 pairs and at least 2−64 of them will be discarded. That
is, we need at least 22 structures and so D ≥ 266 both in CP
and in CC scenario. The (mi,mf ) = (2, ≥ 2) case require
more data in CC scenario and (mi,mf ) = (≥ 2, 2) case
require more data in CP scenario. When (mi,mf ) = (3, 3),

PiPf ≤
(4
2

)2
2−96 and ki+kf ≥ 128 since 128 is the minimum

key length of AES. So, Du ≥ 297. If ni = nf = 12 then the
attack is slower than the exhaustive search for any key length.
If nf ≤ 11 than we need at least 297+40

= 2137 pairs which
require at leastD ≥ 269 CP. Similarly,D ≥ 269 CC if ni ≤ 11.
The cases (mi,mf ) = (3, ≥ 3) or (mi,mf ) = (≥ 3, 3)
require more data. For the last case, let (mi,mf ) = (4, 4).

Then, PiPf ≤
(4
2

)2
2−128 and ki + kf ≥ 128 since 128 is the

minimum key length of AES. So, Du ≥ 2129. Again we need
more than 266 data for a successful attack. □

We prove in Theorem 7 that any reciprocal ID attack
on AES exploiting a conventional 4-round ID characteristic
requires at least 266 data whatsoever its steps are. The
question is if there are reciprocal ID attacks on AES with
roughly this data complexity. We introduce an example in
Section V. This attack is both a reciprocal ID attack with
optimal data and its data complexity attains the bound in
Theorem 7.
Almost all the ID attacks on AES in the literature make

use of four active bytes in either the first or the last
round which produces only one byte active after the MDS
multiplication. Then, we can prove the following statement
for these attacks even though they do not exploit conventional
ID characteristics.
Theorem 8: Let a reciprocal ID attack make use of only

four active bytes in the plaintext pairs and the MC operation
in the first round produces only one active byte. Then
the minimum data to eliminate all the subkeys involved is
bounded below by 262.
Proof: We have ni = 4, ki = 32 and Pi = 2−22. Assume

nf ≥ 4. Then Kf ≥ 32. Hence, min{ni, nf } = 4 and then

D ≥

√
2129−32(32+32)
log2(e)2−22 ≥ 262 by Theorem 5. If nf < 4 then

min{ni, nf } ≤ 3 and hence D ≥

√
2129−24·32
log2(e)2−22 > 262.

Therefore the minimum data to eliminate all the subkeys
involved is bounded below by 262. □

All the well-known ID attacks on AES in [30], [31], [32],
[33], and [46] make use of one active column of the MC
operation in the first round. This column results in only one
active byte. Hence all these attacks require at least 262 CP
according to Theorem 8.

It seems it is not possible to introduce an eligible lower
bound for the data complexity of a typical nonreciprocal ID
attack on AES. But we can give a lower bound for the time
complexity.
Theorem 9: Any typical nonreciprocal ID attack on AES

exploiting one of the 4-round conventional ID characteristics
has the time complexity of at least 288 trials.
Proof: Let us show that ni or nf of a nonreciprocal attack

on AES is greater than 10. Assume ni ≤ 9. If ni = 9 then one
structure can produce 2143 pairs and there are at least 3 active
MC operations in the first round. If there is only one active
MC operation in the last round then at most 247 of the pairs
remain and PiPf ≤ 422−242−24

= 2−44 with Du ≥ 250. So,
we need at least 8 structures in CP attack and many more
structures in CC attack. So, the attack will be reciprocal.
Assume there are two activeMC operations in the last round.
Then, PiPf ≤ 622−482−32 and Du ≥ 283. Again, the number
of remaining pairs in a structure is at most 279. Hence we
need at least 16 structures in CP attack and many more in CC
attack. So, the attack cannot be reciprocal. Assume there are
three active MC operations in the last round. Then, assume
nf ≤ 10. This implies thatPiPf ≤ 622−482−48 andDu ≥ 291.
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So, again, there are at least 24 structures in both directions.
Similarly, if all theMC operations are active and nf ≤ 10 then
there is only one case: nf = 10. The number of active bytes
in the ciphertext pairs in each MC operation must be 2-2-
3-3 or 2-2-2-4. So, PiPf ≤ 422−722−32 and Du ≥ 2115

and the attack will be obviously reciprocal. In conclusion,
if ni = 9 then nf ≥ 11. Similarly, if ni < 9 then nf ≥ 11.
So, there are at least 11 active bytes in the plaintext pairs or
in the ciphertext pairs. That is, we need at least 288 trials. □
Notice that Theorem 9 is valid for any key schedule. That

is, if AES had no key schedule and all the round keys were
equal then again any nonreciprocal ID attack would require at
least 288 trials. Each trial is almost one encryption or partial
encryption, depending on the characteristic of the special
attack.

V. A RECIPROCAL ID ATTACK WITH OPTIMAL DATA
We introduce an example of a 6-round reciprocal ID attack as
depicted in Figure 3 on AES to show that our lower bound is
almost sharp. In this attack ni = nf = 8,Pi = Pf = 6·2−32

≈

2−29.5, ki = kf = 64. Hence Du ≥ (25927)/ log2(e) ≈ 265.3.
So, take Ui = 5 ≈ 22.5. Then, the data complexity is
D = 26422.5 = 266.5. Each pair among Du pairs suggests
around (6 · 232)2 ≈ 269 subkeys and we can determine all
these keys by guessing four bytes from RK0 and four bytes
from RK6. Then, we detect the wrong keys to be eliminated
for each guess and for each pair. So, the time complexity is
around 265.5269 = 2134.5 memory accesses which is roughly
2131 encryptions. We can recover 64 bits of RK6 which
are RK6[0, 1, 4, 7, 10, 11, 13, 14]. Then, we can recover the
remaining 16 bytes of RK6 and RK5 by exhaustive search for
AES-192 or we mount the attack with the same data, this time
to recover the other round key bytes of RK6 by switching the
active and passive bytes in the ciphertext pairs. Therefore, this
attack works on AES-192 and AES-256.

FIGURE 3. 6-Round reciprocal ID attack on AES with optimal data.

If we have only 266 CP, then the number of pairs Du
will be 265. We have around 235.5 pairs which suggest
the output of the 4-round ID characteristic for a fixed
value of RK6[0, 1, 4, 7, 10, 11, 13, 14]. Then, the probabil-
ity that a candidate for the 64-bit whitening key bytes
RK0[0, 1, 5, 6, 10, 11, 12, 15] is not eliminated is (1 −

2−29.5)2
35.5

≈ e−64
≈ 2−92.3. Hence the probability that all

the 64-bit whitening keys are eliminated is (1− 2−92.3)2
64

>

1 − 2−28. That is, we expect more than (264 − 236) of the
candidates for the round key RK6[0, 1, 4, 7, 10, 11, 13, 14] to
be eliminated. That is, we get its 28-bit information about
RK6 and the attack with 266 CP data will be faster than the
exhaustive search. Therefore our attack is an ID attack with
optimal data by Definition 2.

VI. A NONRECIPROCAL ID ATTACK ON AES
We show that the reciprocal ID attacks require many data.
Particularly, any reciprocal ID attack on AES exploiting a
4-round conventional ID characteristic requires at least 266

data by Theorem 7. We examine if a high data complexity
requirement is necessary for any ID attack in this section.
So, we introduce a nonreciprocal ID attack on AES which
requires only 230 CP to show that Theorem 7 is not true
for nonreciprocal ID attacks even though the characteristic
exploited is a 4-round conventional ID characteristic given in
Lemma 2.
For the illustration of how to mount an ID attack on

AES with small data complexity, we exploit the well-known
ID characteristic introduced by Biham and Keller [42]. The
Biham-Keller characteristic is exploited in several ID attacks
such as [31], [32], [33], and [42]. We use this characteristic to
mount a typical ID attack on 6-round AES which is depicted
in Figure 4. The parameters of the attack are as follows: ni =

4, ki = 32,Ui = 2−2,Pi = 2−22; nf = 16, kf = 128,Uf =

2−50,Pf = 2−30. Then, the data complexity for the CP attack
isUi28ni = 2−2232 = 230 whereas it isUf 28nf = 2−502128 =

278 chosen ciphertexts. Clearly, it is not reciprocal. Indeed,
232(2−4

− 2−2) ̸= 2128(2−100
− 2−50) and hence the

attack is nonreciprocal by Proposition 1. As easily observed,
Theorem 2, Theorem 4, and Theorem 5 do not work for this
attack since it is a nonreciprocal attack. Indeed, the lower
bounds are 2136/3, 254, and 246 respectively, which are even
higher than D = 230.

VII. A NEW ATTACK WITH MINIMUM DATA
We introduce a nonreciprocal ID attack on 6-round AES
which requires only 218 CP. This is a record in terms of the
minimum data complexity.

We derive a 3-round Impossible Differential (ID) charac-
teristic by loosening the Biham-Keller ID characteristic. This
expansion entails the activeness of all bytes in the output
difference (see Figure 5). We can exploit it by utilizing
the property that all the bytes after the SR operation in the
third round of the ID characteristic are active. So, if we add
one round at the beginning and one more round at the end,
we expect all the bytes of an input pair of MC in the fourth
round to be active for a whiting key producing only one active
byte at the end of the first round, as depicted in Figure 5.
We exploit this property as our distinguisher for our ID attack.
We can examine the distinguisher since the whole round key
is searched in the last round.

Wemount our ID attack on 6-roundAES-192 andAES-256
and we exploit their key schedules to use the minimum data
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FIGURE 4. 6-Round nonreciprocal ID attack on AES exploiting Biham-Keller characteristic.

FIGURE 5. 6-Round nonreciprocal ID attack on AES with minimum data.

in our attack on 6-round AES. First of all, we extend the idea
of the key bridge of the key schedule of AES-256 introduced
by Dunkelman et al. [9].
Proposition 2: RK0[15] can be computed through RK6 for

AES-256.
Proof: Let us assume the last round key RK6 is known. The

key schedule of AES-256 gives us

RK0[15] = RK2[14] ⊕ RK2[15] = RK4[13] ⊕ RK4[15]

which equals

RK6[12] ⊕ RK6[13] ⊕ RK6[14] ⊕ RK6[15].

□

A. AES-256 CASE
Let us take 218 chosen plaintexts which give us 235 pairs.
Guess 128-bit RK6. Then, we can compute RK0[15] through
the key schedule by Proposition 2 for AES-256 and determine
the remaining 24 bits, RK0[0, 5, 10] for each pair through the
linear equations 1MC1[4, 8, 12] = 0, 1MC1[0, 8, 12] = 0,
1MC1[0, 4, 12] = 0, and 1MC1[0, 4, 8] = 0. Obtain the

ciphertexts of around 213 pairs which produce only one active
byte at the end of the first round for a fixed 32-bit RK0 in the
four active input bytes, since the probability of producing one
active byte throughMC1 is 2−22.

Let us consider the equivalent key MC−1(RK5) which is
executed before the MC operation and choose one of its
inverse diagonals to eliminate. Each inverse diagonal enables
us to compute the corresponding column of the output of the
fourth round. If we consider the first inverse diagonal then we
can eliminate the round key bytes MC−1(RK5)[0, 7, 10, 13]
by computing the first row of the output difference of the
fourth round and checking if MC−1

4 produces less than four
active bytes in the first column. This will give us a contradic-
tion since we expect all the bytes of an input pair of MC to
be active in the fourth round. The probability of this contra-
diction is slightly larger than 2−6. Therefore, the probability
of eliminating each candidate for MC−1(RK5)[0, 7, 10, 13]
is (1 − 2−6)2

13
≈ e−128

≈ 2−184.5. Hence we expect all
the guessed keys to be eliminated. If there are some key
candidates left, we repeat the attack for the second, third, and
last columns ofMC−1

4 to eliminate the keys left.
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We guess 128 bits of RK6 and determine 8 bits of
RK0 through the key schedule and 24 bits of RK0 from
data. So, we have 152 bits and each guess is eliminated by
about 211 pairs on average. Hence the time complexity is
2152211226 = 2189 memory accesses which is around 2186

encryptions. The memory complexity is 224213 = 237 units
which is roughly 243 bytes. The data complexity is 218 CP.

B. AES-192 CASE
We need a hash table for RK0[0, 5, 10, 15] which can be pre-
pared during offline (see [42]). The table contains about 210

keys for each plaintext pair (P[0, 5, 10, 15],P′[0, 5, 10, 15]
leading to only one active byte after MC1, and is sorted with
respect to the plaintext pairs.

First, let us guess RK6. Then, computeMC−1(RK5)[0, 13]
through the key schedule for AES-192 since we can compute
the first two columns of RK5 from RK6. Furthermore, guess
one byte from MC−1(RK5)[10, 7] and determine the other
byte through each ciphertext pair. Then, for each 144-bit
secret information, determine the ciphertext pairs among 235

pairs leading to the impossible differential in the output.
That is, check if 1MC−1

4 [0, 4, 8, 12] has at least one passive
byte. The probability is about 2−6. So, there will be around
229 ciphertext pairs for each 144-bit guess of RK6 and
MC−1(RK5)[10, 7], which is loaded in a memory for key.
This memory can be reused for different 144-bit guesses.

Each 144-bit candidate is tested with the plaintext pairs
of the corresponding ciphertext pairs. We have around 229

plaintext pairs and each pair eliminates around 210 keys
RK0[0, 5, 10, 15] from the hash table. If all the candidates
for RK0[0, 5, 10, 15] are eliminated, then the 144-bit guess
is eliminated. So, the time complexity is 2144229210 =

2183 memory accesses which is around 2180 encryptions for
AES-192. The memory complexity is 12 · 232232210 ≈ 278

bytes. The data complexity is 218 CP.

VIII. ENHANCING INTEGRAL ATTACK
We have introduced an attack on 6-round AES with the
minimum data in the previous section. Its time complexity
is marginal. In this section, we study the improvements over
the best attack on 6-round AES in terms of data, time, and
memory complexities.

The integral attack using the partial sum technique in [14]
has been the best attack on 6-round AES with respect to
the total complexity given in [14] as 244 encryptions since
2000. In this section, we examine the practical security of
6-round AES and improve the best attack further. We utilize
the partial sum technique but we refrain from an extensive
elaboration on this technique. One can see [14] for the details.
In summary, we prove better complexities in data, time, and
memory.

First of all, we introduce here a small correction in the
attack in [14]. It is given only for recovering the four bytes
of one of the reverse diagonals of the round key RK6 in the
sixth round with a complexity of 244 encryptions. However,
the attack should be repeated four times to recover the whole

round key in the last round. The fifth round key can be
recovered much faster in the cases of 192-bit and 256-bit key
lengths. So, the overall complexity should be 246 rather than
244. We correct this minor fault and amend the complexity in
Table 1 accordingly.

The attack uses 6 · 232 CP in [14]. In this section,
we improve the attack by using only 232 CP for AES-128 and
it is 8 times faster. The attack is 4 times faster for the other
key lengths and utilizes 233 CP.

Let an oracle encrypt 232 CP where the first diagonal
(P[0, 5, 10, 15]) takes all the values and the other bytes are
constant, and it publishes the corresponding ciphertexts.

We evaluate the S-box operations as 8 × 32-bit given as

S(x) = 0e · SB−1(x)||0b · SB−1(x)||0d · SB−1(x)||09

· SB−1(x)

to deal with the Galois field multiplication, and obtain the
four bytes of the inverse MixColumn operation in one S-Box
call, where || is the concatenation.
For each inverse diagonal, guess the 32-bit key in the sixth

round and one byte of MC−1(RK5) from the column where
this 32-bit key affects after the SR−1 operation. So, we can
compute the corresponding byte at the end of the fourth round
and then check if the sum is zero for all the 232 ciphertexts.
We exploit the zero-sum distinguisher as in [14] by using

the partial sum technique. As one improvement, we utilize
the zero-sum property not for only one byte in each column
in MC4, but for all the bytes since all the 16 bytes of
MC4 are balanced. Hence, our distinguisher has the false
alarm probability of 2−128 instead of 2−32 for each structure,
which enables us to reduce the data up to a factor of six for
AES-128.

Guessing one key for the reverse diagonal RK6[0, 7, 10,
13], around one candidate for MC−1(RK5)[0] will pass the
zero-sum test given as

232−1⊕
i=0

MC4[0] = 0.

Similarly, one candidate for MC−1(RK5)[4] passes the
zero-sum test given as

232−1⊕
i=0

MC4[4] = 0;

one candidate for MC−1(RK5)[8] passes the zero-sum test
given as

232−1⊕
i=0

MC4[8] = 0;

and one candidate for MC−1(RK5)[12] passes the zero-sum
test given as

232−1⊕
i=0

MC4[12] = 0.
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After determining MC−1(RK5)[0, 4, 8, 12] for each guess
of the reverse diagonal RK6[0, 7, 10, 13], we can compute
RK5[0, 4, 8, 12] by applying MC . We have four zero-sum
tests in one column and the probability that all the tests
produce nonempty solution sets for a 32-bit guess for
RK6[0, 7, 10, 13] is (1 −

255
256

256
)4 ≈ 2−2.6. So, we expect

less than 230 candidates for RK6[0, 7, 10, 13], and around 232

candidates for (RK6[0, 7, 10, 13],RK5[0, 4, 8, 12]).
Let us store them in a memory, sayA1. Similarly, compute

and store the candidates for

(RK6[1, 4, 11, 14],RK5[1, 5, 9, 13]), (15)
(RK6[2, 5, 8, 15],RK5[2, 6, 10, 14]), (16)
(RK6[3, 6, 9, 12],RK5[3, 7, 11, 15]) (17)

in A2, A3, and A4 respectively. If we repeat the attack for
the elements in the sets Ai, i = 1, . . . , 4, by using another
structure of 232 CP, we have around one element in each set.
So, we recover RK5 and RK6 by using two structures, without
exploiting the key schedule.

The attack utilizes 233 CP instead of 6 · 232 CP. Preparing
each set Ai, i = 1, 2, 3, 4, costs around 249 S-box operations
through the partial sum. We have 232 vectors for each reverse
diagonal. Remove the vectors that appeared an even number
of times and hence around 231 will be left. The first step of
the partial sum costs 231216 ·2 = 248 S-box operations where
we search only 2 bytes of the last round key in any reverse
diagonal with 2 S-box operations. Then, there are around 223

vectors left. The second step costs 223224 · 1 = 247 S-box
operations and the number of vectors left is around 215. The
third step costs 215232 · 1 = 247 S-box operations again. The
last step is run with only 27 vectors and hence it costs also
27240 ·1 = 247 S-box operations. We use directly SB−1 in this
last step. Thenwe can check the zero-sum condition. The total
complexity is around 248 + 3 · 247 ≈ 249 S-box operations.

We repeat this partial sum technique for 3 other reverse
diagonals. So, the overall complexity is around 251 S-box
operations which is around 243 encryptions if we assume 28

S-box operations is roughly one encryption, as in [14].
We mount the attack once more for the other structure to
eliminate almost all the elements in the sets. Hence, the time
complexity is 244 encryptions. The memory complexity is
23232 = 235 bytes for loading one set among Ai, i =

1, 2, 3, 4; and 237 bytes for loading the ciphertexts. So,
we need around 237 bytes. Note that the memory for each set
Ai can be reused if we construct one set and then eliminate its
elements by utilizing the ciphertexts of the second structure
before constructing the other sets.

We can further improve the attack for AES-128 by
exploiting the key schedule. Only one structure is enough
for this case. SortA1 by RK5[12],RK6[7],RK5[0]⊕RK6[0].
Because we can deduce these values fromA4 through the key
schedule for AES-128.

RK5[12] = SB(RK5[3]) ⊕ RK6[12], (18)
RK6[7] = RK6[6] ⊕ RK5[7], (19)

RK5[0] ⊕ RK6[0] = SB(RK5[7]). (20)

Note that we ignore the round constants in the key schedule.
The parameters on the left of the equations are unknown and
the parameters on the right of the equations are known. So,
if we choose one element from A4 then we can determine
RK5[12],RK6[7],RK5[0]⊕RK6[0] through the key schedule
and hence there will be around 28 elements in A1. Similarly,
sort A3 by RK6[8],RK5[10],RK6[2],RK6[15],RK5[6] ⊕

RK6[5] since we have

RK6[8] = SB(RK5[12]) ⊕ RK5[8], (21)

RK5[10] = RK6[10] ⊕ RK6[9], (22)

RK6[2] = RK5[3] ⊕ RK6[3], (23)

RK5[6] ⊕ RK6[5] = RK6[6]. (24)

Then, we have only one element in A3 on average for each
element inA1 and inA4. Hence, there are around 28 elements
left in A1 and A3 for one chosen element in A4.
Similarly, we have nine byte equations for A2 with a

condition of 2−72. We can use four equations for sorting
and 5 equations for checking. For instance, sort A2 by
(RK6[1],RK6[4],RK6[11],RK6[14]) and for each candidate
compute

RK6[1] = RK6[2] ⊕ RK5[2], (25)

RK6[4] = SB(RK5[11]) ⊕ RK5[4], (26)

RK6[11] = RK5[11] ⊕ RK6[10], (27)

RK6[14] = RK5[15] ⊕ RK6[15]. (28)

These equations give one element on average for each
element inA1, inA3, and inA4. Then, it is possible to check
the candidate with the following 5 equations.

RK5[9] = RK6[8] ⊕ RK6[9], (29)

RK5[13] = RK6[12] ⊕ RK6[13], (30)

RK6[4] ⊕ RK5[5] = RK6[5], (31)

RK6[1] ⊕ RK5[1] = RK6[0], (32)

RK6[14] = RK6[13] ⊕ RK5[14]. (33)

with a probability of 2−40. We have 28 candidates for each
element in A4 in the other sets. So, all together, we expect
only one element to be left in the last five equations since we
have 240 candidates in all the sets and the probability that one
candidate satisfies the five equations is 2−40. That is, there are
around two candidates passing both the zero-sum check and
the equations of the key schedule. One of them is the correct
key and it can be deduced by a quick search.
The complexity of constructing the sets Ai is around 251

S-box operations which is around 243 encryptions. The key
schedule utilization phase is much faster. Because we test five
equations in Ai for each of 240 candidates. However, most
of them are eliminated in Equation 29. So, the key schedule
utilization phase consists of 240 tests of equations like
Equation 29, which is around 240 byte-wise XOR operations.
Similarly, eliminating vectors costs 233 S-box and 3·232 XOR
operations, 240 S-box and 242 XOR operations, and 240 S-box
and 242 XOR operations inA1,A3, andA2 respectively. It is
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clear that the key schedule utilization phase is much less than
240 encryptions.

Thememory complexity is 4·23232 = 237 bytes for loading
the sets Ai, i = 1, 2, 3, 4; and 236 bytes for loading the
ciphertexts.

In total, we improve the best attack on 6-roundAES-128 by
a factor of 6 in data usage, by a factor of 8 in time complexity,
and by a factor of 2 in memory complexity.

IX. CONCLUSION AND DISCUSSION
Our study has taken a distinct and generic approach to
the security analysis of SPN ciphers against ID attacks
compared to typical cryptanalysis works, which simply
aim to find the best attack on a specific cipher. We have
categorized ID attacks on SPN ciphers into two distinct types:
reciprocal ID attacks and nonreciprocal ID attacks.Moreover,
we have proved lower bounds on the data complexity
of a reciprocal ID attack on an SPN cipher. We have
introduced a vast theoretical framework for a comprehensive
understanding of the data requirements of ID attacks on SPN
ciphers.

As an illustrative application of our theoretical insights on
SPN ciphers, we have made use of our generic statements
to prove the security bounds for a widely recognized cipher,
namely AES, against ID attacks. Particularly, we have shown
that a reciprocal ID attack on AES exploiting a 4-round
conventional ID characteristic requires at minimum 266 CP.
Our conjecture is that all 4-round ID characteristics for AES
are conventional, resulting in a requirement of 266 chosen
plaintexts for any reciprocal ID attack on six or more rounds
of AES. We have introduced also a reciprocal ID attack on
6-round AES with 266 data to show that the lower bound
is almost sharp. On the other hand, we have demonstrated
a counterexample that this security bound is not valid for
nonreciprocal ID attacks by mounting a nonreciprocal ID
attack on 6-round AES-192 and AES-256 that requires
only 218 chosen plaintexts. However, its time complexity is
marginal. Indeed, this is not a coincidence; we have proven
that any nonreciprocal ID attack on AES exploiting a 4-round
conventional ID characteristic has a time complexity of at
least 288 trials. Then, as a practical application, we improve
the integral attack through the partial sum technique in [14],
thereby enhancing the existing record after a duration of
23 years. Our attack is the fastest against 6-round AES. The
time, data, and memory complexities are improved by factors
of 4, 3, and 3 times (or 8, 6, and 2 times for AES-128),
respectively.

We think that applying the theoretical foundation estab-
lished in this study could lead to the discovery of several
new results regarding ID attacks on other SPN ciphers. So,
similar to proving the security bounds for AES, investigating
the minimal data required for reciprocal ID attacks on
other noteworthy SPN ciphers by utilizing Theorem 2,
Theorem 4, and Theorem 5 is a prospect for future research.
Additionally, similar findings can be obtained for Feistel
networks.
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