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ABSTRACT The Internet of Things (IoT) based Wireless Sensor Networks (WSNs) contain interconnected
autonomous sensor nodes (SN), which wirelessly communicate with each other and the wider internet
structure. Intrusion detection to secure IoT-based WSNs is critical for identifying and responding to great
security attacks and threats that can cooperate with the integrity, availability, and privacy of the network
and its data. Machine learning (ML) algorithms are deployed for detecting difficult patterns and subtle
anomalies in IoT data. Artificial intelligence (AI) driven methods are learned and adapted from novel data
for improving detection accuracy over time. In this article, we introduce a Red Kite Optimization Algorithm
with an Average Ensemble Model for Intrusion Detection (RKOA-AEID) technique for Secure IoT-based
WSN. The purpose of the RKOA-AEID methodology is to accomplish security solutions for IoT-assisted
WSNs. To accomplish this, the RKOA-AEID technique performs pre-processing to scale the input data using
min-max normalization. In addition, the RKOA-AEID technique performs an RKOA-based feature selection
approach to elect an optimum set of features. For intrusion detection, an average ensemble learning model
is used. Finally, the Lévy-fight chaotic whale optimization Algorithm (LCWOA) can be executed for the
optimum hyperparameter chosen for the ensemble models. The performance evaluation of the RKOA-AEID
algorithm can be tested on the benchmark WSN-DS dataset. The extensive experimental outcomes stated the
higher outcome of the RKOA-AEID algorithm with other approaches with an improved accuracy of 98.94%.

INDEX TERMS The Internet of Things, security, red kite optimization algorithm, deep learning, feature
selection.

I. INTRODUCTION these networks are usually employed in inaccessible land-

With this enormous and progressive development of Internet
technology, giving security to Internet of Things (IoTs) based
wireless sensor networks (WSN5s) is extremely important as
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scapes and manage various security attacks [1]. Applications
depend on IoT and WSN is revolutionizing a person’s life
because it can support day-to-day activities. [oT and WSN
are possible for making the earth a smart planet. Various
IoT network designs are affected by WSNs. The confu-
sion takes place from the resemblance and difference of the
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2 conditions [2]. It contains transmission capabilities, mem-
ory, and limited processing; both networks can be efficient
for real-time applications like border region monitoring that
requires round-the-clock surveillance [3]. Any sensors can
fail or stop functioning in an insecure condition but human
support could not have potential [4]. A network has been sim-
ply reconfigured by employing robust and energy-efficient
routing approaches [5]. IoT and WSN can be prone to
selective forwarding, wormhole, grayhole, sinkhole, DoS,
blackhole, hello flood attacks, and Sybil, etc. due to their
complexities.

In the meantime, Intrusion detection can resolve these
issues and ensure network data security [6]. Intrusion detec-
tion can be an effective technique, which attempts to alert and
identify the attempted intrusions into the system or network
[7]. However, the number of online businesses across traffic is
increasing every day and therefore, the network features have
also become highly difficult thus carrying further challenges
for intrusion detection [8]. ML techniques can be primarily
employed to produce accurate techniques particularly devel-
oped for prediction, classification, and clustering. In this
study, ML performs an essential role in IDSs in WSN [9].
Certain security mechanisms were designed for WSNs in
conventional analysis. Nevertheless, IDS should be utilized
in critical security applications for comprehensive defence.
In WSN, the IDS for current efforts could not be directly
employed due to resource limits [10]. Hence, various meth-
ods are introduced for identifying intrusions in WSNs. The
majority of them can be targeted at specific attacks, and in
this case, ML-based IDS have determined for WSN utilizing
IDS databases.

In this article, we introduce a Red Kite Optimization
Algorithm with an Average Ensemble Model for Intrusion
Detection (RKOA-AEID) technique for Secure IoT-based
WSN. The RKOA-AEID technique performs pre-processing
to scale the input data using min-max normalization. In addi-
tion, the RKOA-AEID technique performs an RKOA-based
feature selection approach to elect an optimum set of fea-
tures. For intrusion detection, an average ensemble learning
model is used. Finally, the Lévy-fight chaotic whale optimiza-
tion Algorithm (LCWOA) can be executed for the optimum
hyperparameter chosen for the ensemble models. The perfor-
mance evaluation of the RKOA-AEID technique is tested on
benchmark IDS datasets. In short, the key contributions are
given as follows.

« Develop an RKOA-AIED technique for intrusion detec-
tion in IoT-assisted WSNs. To the best of our knowl-
edge, the RKOA-AIED technique never existed in the
literature.

o Design RKOA-based FS approach, which helps to
determine an optimal set of features, decreasing high
dimensionality and considerably improving the accu-
racy of the intrusion detection model.

« Employs an average ensemble learning model which
combines the prediction results of many baseline models
for accurate and robust classification. This approach can
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enhance the reliability of intrusion detection by reducing
false positives and negatives.

o To further enhance the ensemble models’ perfor-
mance, the article LCWOA is for selecting optimal
hyperparameters.

Il. RELATED WORKS

Ramana et al. [11] proposed a Whale Optimized GRU-
IDS (WOGRU-IDS) for WSN-IoT network. In the presented
method, the WOA is used to fine-tune the hyperparameter
of the deep LSTM. The authors [1] developed a Hybrid
Muddy Soil Fish Optimizer-based Energy Aware Rout-
ing System (HMSFO-EARS) for IoT-aided WSNs. This
model focuses mainly on the detection of an optimum
route for the transmission of data in IoT-aided WSNs. The
algorithm incorporates the MSFO method with the Adap-
tive B-Hill Climbing (ABHC) concept. Furthermore, this
approach develops a fitness function (FF) for reducing energy
consumption and increasing lifespan. Rajan and Naganathan
[12] devised a Trusted Anonymous Lightweight Attacker
Detection (TALAD) system. The proposed method constructs
a routing path to the cloud with an extremely trusted node,
depending on the chosen path length limit.

Alkhliwi [13] presents an energy-effective cluster-based
routing mechanism with secured IDS in HWSN named
EECRP-SID. In the initial stage, the T2FC protocol with
2 input parameters can be employed for the CHS model.
In the next phase, the salp swarm optimizer (SSO) algorithm
was used for the optimum selection of paths. At last, robust
IDS using LSTM is implemented on the CHs. Yao et al. [14]
suggest a technique based on DCNN and principal compo-
nent analysis (PCA) for traffic anomaly detection of DoS in
WSN, depending on the WSN vulnerability to attacks and the
restricted memory capacity of their devices. The presented
algorithm has a more effective capability of feature extrac-
tion and lightweight structure that could successfully identify
network abnormal traffic in WSN with restricted memory
capacity.

Maheswari and Karthika [15] proposed the Multi-tiered
Intrusion Detection (MDIT) with a hybrid DL mechanism
for better recognition performance in WSN; spotted hyena
optimizer (SHO) and LSTM are studied to effectively design
IDS. The authors [16] designed a Secure DL (SecDL)
technique for cluster-based WSN-IoT networks. A One
Time-PRESENT (OT-PRESENT) cryptography system can
be developed for accomplishing high-level security. A Fit-
ted DNN (Co-FitDNN) is introduced for optimum route
selection. Punithavathi et al. [6] introduce a multiobjective
MRFO-based node localization with IDS (MOMRFO-NLID)
for WSNs. The proposed method includes two main steps
such as optimum Siamese Neural Network (OSNN) based
IDS and MRFO based NL. The OSNN approach includes the
hyperparameter tuning of the classical SNN with the help of
the MRFO technique.

Despite the benefits of existing IDS models available in the
literature, a considerable research gap exists which requires
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the incorporation of FS, ensemble classification, and hyper-
parameter tuning processes. While IoT devices continue to
proliferate, their resource-limited and dynamic character-
istics of the IoT environment pose critical challenges for
intrusion detection. The existing models often overlook the
crucial step of FS tailored to IoT data, which can lead to
suboptimal detection models. Besides, the significant merits
of ensemble classification in enhancing accuracy and robust-
ness need to be explored in the context of IoT-based WSNss.
Finally, hyperparameter tuning is important to optimize the
performance of the detection models but remains an under-
emphasized area. Bridging this research gap is imperative
to develop efficient and resource-aware intrusion detection
systems that are well-suited for the evolving landscape of
IoT-based WSNs, ultimately bolstering their security and
resilience against emerging threats.

Ill. THE PROPOSED MODEL

In this article, we have focused on the design and
development of the RKOA-AEID technique for secure
IoT-based WSNs. The goal of the RKOA-AEID technique
is to accomplish security solutions for IoT-assisted WSNs.
To accomplish this, the RKOA-AEID technique performs
different stages of operations namely data pre-processing,
RKOA-based feature selection, and LCWOA-based hyper-
parameter selection. Fig. 1 depicts the workflow of the
RKOA-AEID algorithm.

A. DATA NORMALIZATION

The Min-Max normalized approach was employed to scale
the data values from a set range (0O to 1) [17]. Primarily, the
Min-Max normalized approach subtracts the minimal value
in data point X and divides it by its range. The equation of
the Min-Max normalized system X_norm is represented in
Eq. (1).

(X — X_min)

X_norm = ——m— (D
X_max—X_min

In this case, the estimation of normalized can be executed
only for the training set, and the validation and testing sets
are unknown.

B. FEATURE SELECTION USING RKOA
In this work, the RKOA can be used for the optimum choice
of features. RKOA is a new meta-heuristic technique simu-
lated by red kites (RKs) social life [18]. The RKs generally
create nests near woods and lakes regions that are correct
for hunting. For obtaining better outcomes, the meta-heuristic
technique must initially navigate the problem searching space
fit to prevent trapping in the local optimum. After it slowly
moves from exploration to exploitation stages and uses the
optimum performance from the final iterations. RKOA takes
3 important phases that are defined:

The first phase—a primary position of birds: During this
phase, based on Eq. (2), the RK’s position is initialized
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Classification Process using ensemble learning model ( LSTM, BiLSTM, BiGRU)

Parameter Tuning Process using Lévy-fight chaotic whale optimization

Performance Evaluation

FIGURE 1. Workflow of RKOA-AEID system.

arbitrarily as,

Pos; j(t) = Ib+rand x (ub —1b),i=1,2,...,nand j
=1,2,...,d 2

whereas Pos; j(t) is i position of RKs at iteration ¢, Ib, and
ub defines the lower as well as upper boundaries, corre-
spondingly, n represents the population size, d demonstrates
the dimension of the problem, and rand implies the random
number from zero and one.

The second phase— leader selection: Choosing the leader
is acquired based on Eq. (3):

_—  —
Best(t) = Posi(t) if fi (t) < fpest () 3)

In which, Best(t) implies the position of the optimum
bird from the iteration ¢, Pos(¢) indicates the position of i
RK from the iteration ¢, f;(t) denotes the value of the bird
estimation function from the iteration ¢, and fpes (f) implies
the value of estimation function of best bird from the iteration.

The third phase—the bird’s movements: It can be assumed
that RKs need to slowly move from exploration to exploita-
tion stages by assuming a reducing co-efficient (D) based on

Eq. (4).
f ¢ —10
b= (exp (t—max) - t—max) (4)

In which, ¢ stands for the present iteration and 7_pax Signi-
fies the maximal iteration.
The birds upgrade their positions by Eqgs. (5) and (6):

pos;™ (t + 1) = Pos; (t) + Ppi (t + 1) 5
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FIGURE 2. Steps involved in RKOA.
— —_s ——
Ppi(t +1) = D () XPp; (t) + SC (1)
o) (Posrws @) — Pos; (r)) +UCH
_ —
o (Best @) — Pos; (t)) 6)

In which, Pos,s(t) denotes the bird position chosen by
the roulette wheel from iteration ¢, pos?®”(t+1) refers to the
novel position of birds, and SC and UC represent the arbitrary
vectors of social and individual modules, correspondingly.
Afterwards, in the upgrade position, it is essential to verify
the searching space boundaries; it could be led to employ in
Eq. (7),

N B ——
post® (t + 1)= max (min (pos;‘ew t+1DH+ Mb) , lb) (7N

A novel temporary position is exchanged once the estima-
tion function is enhanced. Then, Pos;(t+1) is equivalent to
s7¢"(t+1). As noted, SC and UC denote the arbitrary vectors
of social and individual modules, it exemplifies the voice of
unity and danger of all the birds and it can be accomplished
based on the following relation:

SCt+1) =7

ST VT i rand <05

UC(t+1) =1

SC(t+1) =7

NG rf if Otherwise 8)
UCt+ 1) =7

Which, rj— denotes the arbitrary vector from the range of
one and two; r,— implies the arbitrary vector from the range
of one and three, and r3— stands for the arbitrary vector from
the range of zero and one.

In the RKOA, according to the present position of all
the birds, the neighbour position is arbitrarily selected using
a roulette wheel, and the optimum solution is found still.
During the initial iterations, the value of D(¢) is around one to
search and explore novel spaces. As it moves depending on an
individual element, the RK searches novel spaces depending
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on its position and arbitrarily chosen neighbour. Slowly, this
technique moves from the primary to intermediate iterations,
and the co-efficient D(¢) reduces to achieve balance among
the exploration as well as exploitation phases. During the
last iterations, this co-efficient prefers zero and the method
exploits the search for optimum performance among the
attained optimum performances. Fig. 2 represents the steps
involved in RKOA.

In the RKOA system, the objectives are combined as a
single objective equation for presenting weighted recognition
of all the objective importance [19]. During this case, it is
implementing an FF to integrate both objectives of FS as
depicted in Eq. (9).

Fitness(X):a-E(X)—i—ﬁ*(l—%) ©)]
whereas, Fitness(X) defines the fitness value of subset
X, E(X) demonstrates the classifier error rate by employing
the FS from the X subset, |R| and |N| illustrate the count
of FSs and the count of new features from the database
correspondingly, @ and 8 denotes the weighted of classifier
error and rate of decrease, « € [0, 1] and = (1—«).

C. INTRUSION DETECTION USING AVERAGE ENSEMBLE
MODEL

For intrusion detection, an average ensemble process is
applied. The averaging method is one of the simplest ways to
combine the prediction of multiple models [20]. It is a pop-
ular ensemble algorithm where all the models are separately
trained, and the averaging method linearly incorporates the
prediction of methods by averaging them to generate the last
forecast. This method is easy to implement without any need
for further training on a large number of individual forecasts.
The last prediction outcomes are commonly defined by a
majority vote on the prediction of the classifier and can be
represented as hard voting.

y;i = mode {c1, c2, ... ,cr} (10)

Hard voting is simple to apply and achieves optimum
outcomes than the baseline classifier, however, it could not
consider the probability of minor forecast class. For instance,
in three classifiers with prediction probability of (63, 0.49,
and 0.48), hard voting yields (0, 0, 1) as an equivalent pre-
diction of the probability. In such cases, the last hard vote
prediction of the 3 classifiers’ votes will be 0. Therefore, soft
voting assumes the probability values of all the classifiers
instead of the prediction label.

X
1
y = argmax;-— Zw,'j (11)
j=1
In Eq. (11), Wj; refers to the probability of i class labels of
the j* classifier. An improved version of voting is to weigh all

the classifiers proportional to their outcome on the validation
set.
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1) LSTM MODEL

LSTM networks are a form of RNN primarily intended to
decide the vanishing gradient problem of RNNs regarding
long sequences [21]. An LSTM network design contains a
layer of LSTM units and then a typical feedforward network.
In a common approach, an LSTM unit functions as follows:
assume x; exists the present input at time ¢, the output of the
input gate as:

=0 (Wl."xt + Wy + b,-) , (12)

In which, Wl.x and Wl.h denote the weighted matrices, /;_1
implies the preceding hidden layer (HL) of the unit, and b;
stands for the bias vector. The function o (x) € (0, 1) defines
the sigmoid function deployed to the gate. Also, the outcome
of forgetting gate f; is calculated as

fi=o (Wi + Wi + ). (13)

Lastly, the resultants of output gate o, and cell state ¢, as,
¢ =iy @ tanh (Wrx + W +be) + e, (14)
O =o (ng, + Wy + bo) : (15)
hy = Oy @ tanh (¢y) , (16)

whereas © refers to the Hadamard product.

2) BiLSTM MODEL

A BIiLSTM contains 2 parallel LSTM layers are forward
as well as backward directions. While the input has been
handled twice, BILSTM extracts more data from the input.
So, increasing contextual data to create optimum forecasts
than LSTMs. The BiLSTM structure contains 2 LSTM layers,
maintaining previous and forthcoming context at every time
of the sequences. The outcomes of all the LSTMs can be
integrated depending on the following formula:

yi =Wy h + W i+ by (17)

In which, iz, and E represent the outcomes of forward and
backward LSTMs.

3) BiGRU MODEL

The BiGRU network implemented in this case integrates
forward as well as backward GRU neural networks [22].
The HLs of forward and backward GRU are defined as izt
and Zr correspondingly. To provide timestep ¢, the input is
x;=(x1, X2, ... ,x,) €ER™_ The forward and backward HLs
are by € R and Z, € R™" correspondingly. & denotes the
hidden unit counts.

e = GRUpua (1, Tu—1 ) (18)
Zt = GRUpwa (Xt, ZH—I) (19)
By =WTh +WVh, (20)
o = (Wh) (21)
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In which, x; represents the input of timestep ¢, ;z, defines

the HL of forward GRU at timestep ¢, and (I;t denotes the
HL of backward GRU at timestep 7. W' and W" signify the
weighted matrices equivalent to forward HL 4, and backward

HL Zt from the BiGRU, correspondingly. W indicates the
weight among the HL and output layers. At last, the BiGRU
outcome is sent to the classifier for classification as:

YVt =0 (Wt + bl‘) (22)

whereas, o stands for the logistic sigmoid function. W’ and b,
denote the weighted matrix and bias from the resultant layer,
correspondingly.

D. PARAMETER TUNING USING LCWOA
For the hyperparameter selection process of the DL mod-
els, the LCWOA is applied. The hyperparameters tuned by
the LCWOA are given as follows: learning rate, number of
epochs, and batch size. WOA is based on the performance
of whales, comprising encircling prey bubble-net attack-
ing, and searching for prey [23]. WOA is unable to carry
out its maximum possible to find the global best solution
despite having a good convergence rate that directly affects
its computational accuracy. Lévy fight (LF) is added into
the exploration stage, resulting in occasional huge jumps and
frequent small movements to widen the exploration zone and
increase overall exploration abilities. An LF can dramatically
increase the diversification and intensification of the WOA
leading to improved search capability and avoiding local min-
imum. Besides this, using a chaotic map may have promising
impacts on the WOA convergence rate since it can encour-
age chaos from the possible place that is only predictable
for the primary time and stochastic for a long time. The
procedure of chaotic map from the WOA control parameter
[A, C, p, £] assists in accelerating convergence with better
searching capability.

The A and C parameters define the shrinking circle method
as allocated with ¢(0) chaotic mapping instead of the random
parameter ‘r’ as follows:

A=2ac(t)—a (23)
C =2c(t) (24)

The parameter ‘¢’ that defines the spiral upgrading position
of humpback whales is allocated by c(¢) chaotic map as

Xit+1) =L -e"Dcos Qre @) +X* @)  (25)

Chaotic map c (t) replaces p probability of selecting the
shrinking circle mode or spiral mode for updating whale
location in all the iterations. The study suggested that the
LF trajectory enhances the balance between the exploration
as well as exploitation stages. LF can be used to adjust the
whale’s position as follows:

Xi(t+1) =X;(t) + usign r1—1/2].Léevy(y) (26)
In Eq. (26), X(r) characterizes i whale location at ¢’ 7"

iteration, r; signifies a random value range within [0,1],
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TABLE 1. Description of database.

Class No. of Instances
Normal 340066
Blackhole 10049

Grayhole 14596

Flooding 3312
Scheduling Attacks 6638

Total Number of Instances 374661

and | shows the uniform distribution arbitrary integer. The
stochastic random walking approach helps the WOA to
ensure that the searching agent would efficiently explore the
searching region, as its step length is considerably higher in
the long run, which removes local minimal.

The LCWOA approach grows an FF for achieving the best
classifier results. It explains a positive integer for exemplify-
ing the good outcome of candidate performances. During this
case, the minimized classifier rate of errors can be supposed
to be FF, as expressed in Eq. (27).

fitness (x;) = Classifier Error Rate (x;)
No. of misclassified instances

- %100 (27)
Total no. of instances

IV. RESULTS AND DISCUSSION

The performance evaluation of the RKOA-AFEID technique is
tested on the WSN-DS database [24]. The dataset comprises
374661 instances with 5 classes as depicted in Table 1. From
the available 18 features, the RKOA has selected 11 features.
For experimental validation, we have used 80:20 and 70:30 of
the training/testing dataset. It is a specialized dataset for WSN
that was constructed to classify four types of DoS attacks.
The considered attacks are Blackhole, Grayhole, Flooding,
and Scheduling attacks. The data were collected using NS-2.
In addition to including normal behaviour, it was also able to
collect 374661 records containing the signatures of these four
attacks. The dataset contains normal and malicious network
traffic.

In Fig. 3, the confusion matrices show the attack detection
results of the RKOA-AEID technique. The figure highlighted
that the RKOA-AEID technique attained proper identification
of different kinds of attacks.

The attack detection results of the RKOA-AEID technique
are tested with 80:20 of TR set/TS set as depicted in Table 2
and Fig. 4. The results exemplify that the RKOA-AEID
technique is recognized in 5 classes. On 80% of the TR
set, the RKOA-AEID method offers average accuy, sensy,
specy, Fseore, and AUCcore of 98.94%, 75.33%, 96.45%,
79.52%, and 85.89% respectively. Also, on 20% of TS set, the
RKOA-AEID approach achieves average accuy, sensy, specy,
Fscore, and AUCcore of 98.92%, 74.60%, 96.37%, 78.76%,
and 85.48% correspondingly.

The attack detection outcomes of the RKOA-AEID
methodology are tested with 70:30 of TR set/TS set as rep-
resented in Table 3 and Fig. 5. The outcome illustrated that
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Training Phase (80%) - Gonfusion Matrix Testing Phase (20%) - Gonfusion Matrix

Ner 522 548 217 448 Nermal 131 147 48 108
Blackhole | 856 6954 138 63 93 Blacknole | 228 1651 28 13 24
K] K]
E Grayhole | 1236 122 9996 30 286 .E Grayhole | 305 35 2499 8 79
< <
Floading | 1189 221 51 1057 15 Flooding | 326 45 18 254 36
Schoduling Attacks | 1322 m 375 16 3490 Schoduling Attacks - 306 37 98 10 873
- [ -
s £ & 3 i E & & 7 3
R Y A A LI A B {
Predicted Predicted
(a) 5
Training \g Phase (70%) - Confusion Matrix Testing Phase (30%) - Confusion Matrix
Narr 513 509 65 368 Narmal 203 21 24 162
Blacknole | 1188 5326 138 10 434 Blacknole 507 2198 57 7 184
Grayhole | 2706 70 7314 2 15 Grayhole | 1253 32 367 8 k]

Actual
Actual

Flooding { 1286 175 490 362 15 Flooding - 547 = 84 = 200 144

©

Scheduling Attacks { 887 = 129 301 4 3306 Scheduling Altacks 382 = 62 | 146 0

=
2

% 3 2
]

A

Scheduling Attack
Elackhols
A

Scheduling Attacks

Predicted Predicted
() (d)

FIGURE 3. Confusion matrices of (a-b) 80:20 of TR set/TS set and
(c-d) 70:30 of TR set/TS set.

TABLE 2. Attack detection of RKOA-AEID algorithm on 80:20 of TR set/TS
set.

Class | Accu, | Sens, | Spec, | Fseore | AUCscore
TR set (80%)

Normal 9789 [ 9936 | 8340 | 98.84 | 9138
Blackhole 9929 | 8581 | 99.67 | 8674 | 92.74
Grayhole 99.07 | 85.66 | 99.61 87.77 | 92.63
Flooding 9937 | 40.14 | 9989 | 5264 | 70.02
icé‘;ifmg 99.08 | 65.68 | 99.68 | 71.62 | 82.68
Average 98.94 75.33 96.45 79.52 85.89
TS set (20%)

Normal 9786 | 99.36 | 83.04 | 98.83 | 91.20
Blackhole 9928 | 84.88 | 99.66 | 8590 | 9227
Grayhole 99.04 | 8541 | 99.60 | 8744 | 92.50
Flooding 9933 | 3741 | 9989 | 5020 | 68.65
i‘z‘:ci“s““g 99.07 | 65.94 | 99.66 | 71.44 | 82.80
Average 9892 | 7460 | 9637 | 78.76 | 85.48

the RKOA-AEID algorithm recognized on 5 classes. On 70%
of the TR set, the RKOA-AEID algorithm gains average
accity, sensy, specy, Fycore, and AUCcore 0f 98.58%, 66.73%,
94.73%, 71.47%, and 80.73% correspondingly. Afterwards,
on 30% of TS set, the RKOA-AEID method achieves average
acciy, sensy, specy, Fycore, and AUCscore Of 98.54%, 66%,
94.58%, 70.82%, and 80.29% correspondingly.

Fig. 6 illustrates the training accuracy TR_accu, and
VL_accuy of the RKOA-AEID algorithm on 80:20 of the
TR set/TS set. The TL_accuy is defined by the evalua-
tion of the RKOA-AEID methodology on the TR dataset
whereas the VL_accuy is calculated by assessing the perfor-
mance on a separate testing dataset. The outcome depicts that
TR_accuy and VL_accuy upsurge with an increase in epochs.
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FIGURE 4. Average of RKOA-AEID algorithm on 80:20 of TR set/TS set.

TABLE 3. Attack detection of RKOA-AEID algorithm on 70:30 of TR set/TS
set.

Class | Accu, | Sens,, | Spec,, | Fgeore | AUCscore
TR set (70%)

Normal 97.13 [ 9939 | 7491 | 9844 | 87.15
Blackhole 98.99 | 75.06 | 99.65 | 80.04 | 87.35
Grayhole 9838 | 7222 | 9943 | 7748 | 85.83
Flooding 9921 | 1555 | 9996 | 2594 | 57.76
ii?;i‘gmg 99.18 | 71.45 | 99.68 | 75.44 | 85.56
Average 98.58 | 66.73 | 9473 | 7147 | 80.73
TS set (30%)

Normal 97.06 | 99.40 | 74.19 | 98.40 | 86.79
Blackhole 98.99 | 74.43 | 99.65 | 79.46 | 87.04
Grayhole 9829 | 70.87 | 9942 | 76.68 | 85.14
Flooding 9922 | 1463 | 99.96 | 2468 | 57.30
i‘i‘;‘i{‘gmg 99.15 | 70.66 | 99.67 | 74.87 | 85.17
Average 98.54 | 66.00 | 94.58 | 70.82 | 80.29

Accordingly, the performance of the RKOA-AEID method-
ology obtains improvement on the TR and TS database with
a higher number of epochs.

In Fig. 7, the TR_loss and VR_loss results of the
RKOA-AEID system on 80:20 of the TR set/TS set are
exposed. The TR_loss defines the error among the predictive
outcome and original values on the TR data. The VR_loss rep-
resents the measure of the performance of the RKOA-AEID
system on individual validation data. The results indicate that
the TR_loss and VR_loss tend to reduce with rising epochs.
It portrayed the enhanced performance of the RKOA-AEID
approach and its ability to generate accurate classification.
The lesser value of TR loss and VR_loss establishes the
greater outcome of the RKOA-AEID technique on capturing
patterns and relationships.

A comprehensive precision-recall (PR) examination of the
RKOA-AEID approach is portrayed on 80:20 of the TR
set/TS set in Fig. 8. The outcome values defined that the
RKOA-AEID method outcomes in greater PR values. After-
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FIGURE 6. Accuy curve of RKOA-AEID algorithm on 80:20 of TR set/TS set.
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FIGURE 7. Loss curve of RKOA-AEID algorithm on 80:20 of TR set/TS set.

wards, it can be obvious that the RKOA-AEID methodology
attains better PR outcomes in 5 classes.

In Fig. 9, a ROC curve of the RKOA-AEID methodology
is defined on 80:20 of the TR set/TS set. The outcome values
referred that the RKOA-AEID algorithm has led to greater
values of ROC. Next, it can be apparent that the RKOA-AEID
approach obtains maximal ROC outcomes in 5 classes.
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FIGURE 8. PR curve of RKOA-AEID algorithm on 80:20 of TR set/TS set.
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FIGURE 9. ROC curve of RKOA-AEID algorithm on 80:20 of TR set/TS set.

TABLE 4. Comparative outcome of RKOA-AEID algorithm with other
methods [25], [26], [27].

Methods Accu, | Sens, | Specy, | Fgeore
RKOA-AEID | 98.94 | 7533 | 9645 | 79.52
AdaBoost 95.69 | 69.22 | 95.00 | 76.13
GB 94.58 | 71.03 | 94.09 | 71.92
XGBoost 96.83 | 71.51 | 9443 | 71.01
KNN-AOA 9720 | 70.16 | 96.04 | 73.85
KNN-PSO 92.89 | 71.30 | 95.08 | 70.48

The outcomes of the RKOA-AFEID algorithm are compared
with other classifiers in Table 4 and Fig. 10 [25], [26], [27].
The comparison outcomes stated that the RKOA-AEID sys-
tem reported effectual outcomes over other models. Based
on accuy, the RKOA-AEID technique offers an increasing
accuy of 98.94% while the Adaboost, GB, XGBoost, KNN-
AOA, and KNN-PSO models obtain decreasing accu, values
of 95.69%, 94.58%, 96.83%, 97.20%, and 92.89% respec-
tively. Also, based on sensy, the RKOA-AEID approach
attains a higher sens, of 75.33% while the Adaboost, GB,
XGBoost, KNN-AOA, and KNN-PSO approaches attain
lesser sensy values of 69.22%, 71.03%, 71.51%, 70.16%,
and 71.30% correspondingly. Next to that, concerning Fcore,
the RKOA-AEID algorithm achieves enhancing Fycore Of
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TABLE 5. CT outcome of RKOA-AEID algorithm with other METHODS [25],
[26], [27].

Methods Computational Time (sec)
RKOA-AEID 1.97
AdaBoost 3.52
GB Model 2.57
XGBoost 3.67
KNN-AOA 4.77
KNN-PSO 5.60
6.0
=3 RKOA-AEID @mm XGBoost
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FIGURE 11. CT outcome of RKOA-AEID algorithm with other
methodologies.

79.52% while the Adaboost, GB, XGBoost, KNN-AOA,
and KNN-PSO methodologies gain minimal Fy val-
ues of 76.13%, 71.92%, 71.01%, 73.85%, and 70.48%
correspondingly.

Finally, the comparative computation time (CT) results of
the RKOA-AEID technique are made in Table 5 and Fig. 11.
The RKOA-AEID technique offers a reduced CT of 1.97s.
On the other hand, the AdaBoost, GB, XGBoost, KNN-AOA,
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and KNN-PSO algorithms provide increased CT values of
3.52s, 2.57s, 3.67s, 4.77s, and 5.60s respectively.

These results confirmed the better performance of
the RKOA-AEID technique. The improved results of
the RKOA-AEID technique are due to the integra-
tion of the RKOA-based FS, ensemble classification,
and LCWOA-based hyperparameter tuning. The RKOA
algorithm selects the related and useful features from the
available set of features. With the elimination of irrelevant
features, the proposed model can concentrate on essential
factors contributing to the classification process. Besides,
the proposed model leverages ensemble learning, a robust
mechanism that combines the strengths of multiple DL tech-
niques. On the other hand, the LCWOA-based optimizer
chooses the optimal values for the hyperparameters of a
given HDL model. Hyperparameters are settings that are
not learned during training but must be set before training.
They can have a significant impact on the performance of
the model, and selecting the optimal values can lead to better
accuracy. By combining the RKOA-based FS algorithm and
LCWOA-based hyperparameter tuning, the proposed model
can achieve even better results by focusing on the most
relevant features and selecting the optimal settings for the
algorithm.

V. CONCLUSION

In this article, we have focused on the design and
development of the RKOA-AEID technique for secure
IoT-based WSNs. The goal of the RKOA-AEID technique
is to accomplish security solutions for IoT-assisted WSNs.
To accomplish this, the RKOA-AEID technique performs
different stages of operations namely data pre-processing,
RKOA-based feature selection, and LCWOA-based hyper-
parameter selection. In this work, the RKOA is applied to
elect an optimum set of features. For intrusion detection,
an average ensemble learning model is used comprising three
DL models. Finally, the LCWOA can be executed for the
optimum hyperparameter chosen for the ensemble models.
The performance outcome of the RKOA-AEID approach
can be tested on benchmark IDS datasets. The extensive
experimental outcomes point out the better result of the
RKOA-AEID method with improved accuracy of 98.94%
and decreased CT of 1.97s. In future, the performance of
the proposed model can be tested on large-scale real-time
databases.
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