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ABSTRACT In today’s world, the importance of the Green Internet of Things (GIoT) in the transformed
sustainable smart cities cannot be overstated. For a variety of applications, the GIoT may make use of
advanced machine learning (ML) methodologies. However, owing to high processing costs and privacy
issues, centralized ML-based models are not a feasible option for the large data kept at a single cloud server
and created by multiple devices. In such circumstances, edge-based computing may be used to increase
the privacy of GIoT networks by bringing them closer to users and decentralizing them without requiring
a central authority. Nonetheless, enormous amounts of data are stored in a distribution mechanism, and
managing them for application purposes remains a difficulty. Hence, federated learning (FL) is one of the
most promising solutions for bringing learning to end devices through edge computing without sharing
private data with a central server. Therefore, the paper proposes a federated learning-enabled edge-based
GIoT system, which seeks to improve the communication strategy while lowering liability in terms of
energy management and data security for data transmission. The proposed model uses FL to produce feature
values for data routing, which could aid in sensor training for identifying the best routes to edge servers.
Furthermore, combining FL-enabled edge-based techniques simplifies security solutions while also allowing
for a more efficient computing system. The experimental results show an improved performance against
existing models in terms of network overhead, route interruption, energy consumption, and end-to-end delay,
route interruption.

INDEX TERMS Federated learning, network overhead, energy consumption, edge computing, green Internet
of Things, security and privacy, end-to-end delay, route interruption.

I. INTRODUCTION
The Internet of Things (IoT) is a term used to represent a
collection of technologies and fields of study that enable
global communication among physical things all over the
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world. The IoT in recent years is equipped with various
cutting-edge computing and detecting proficiencies with
innovations in Deep Learning (DL) models [1], [2]. This
emergence has opened various opportunities in several fields
for significant applications like the Green Internet of Things
(GIoT) for sustainable smart cities, healthcare systems, and
vehicular networks [3]. The IoT connects physical things to
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generate a substantial amount of data using various sensors
and forward data intelligently. Due to the fact that the
IoT-based system consists of huge parts and entities, the
total energy consumption of the network may be lowered
with minimal reduction in the energy consumption of each
network device. Furthermore, because vast data created by
IoT-based devices is stored on servers, it is vital to design
an energy-efficient network. As a result, developing and
cost-effective energy management inside the IoT system
is critical. Green wireless communication is also vital in
developing an energy-efficient IoT because IoT elements
often connect over wireless channels [4].

Therefore, GIoT research focuses on reducing energy
consumption in IoT-based systems, aligning with sustainable
cities. Researchers propose algorithms to solve energy-
related problems, improving the acceptability of IoT-based
systems internationally. Research focuses on reducing energy
consumption in GIoT design and development to enhance
the acceptability of IoT-based systems internationally, with
a major emphasis on reducing greenhouse gas emissions [5].
GIoT applications are created in industries like healthcare,
manufacturing, engineering, and smart cities to increase
productivity and cost-effective performance. Edge comput-
ing is a distributed computing method that employs a
number of edge servers to improve response time while
minimizing latency. The combination of edge computing
with GIoT improves internet backbone efficiency in terms
of processing and data storage, but security concerns, low-
powered sensors with battery capacity difficulties, and
transmission range remain. As a result, adopting a new
paradigm to provide energy services with secure data trans-
mission for sustainable cities utilizing GIoT-based systems is
critical.

Edge computing is a cloud storage solution for data
sources outside the cloud, utilizing end devices to bring
training models closer to data production [6], [7]. The
edge-cloud computing network consists of a cloud server,
end devices, and edge nodes [8], [9], [10]. However, it incurs
high transmission costs and requires ongoing training [11],
[12]. Edge computing can deter privacy-conscious consumers
from participating in model training, leading to stricter
privacy rules [13], [14]. To address this, Federated Learning
(FL) is used to facilitate collaborative learning of complex
model training data within users’ devices [15], [16]. This
approach can enhance GIoT performance by allowing local
data to train within a cloud server, reducing the need
for data concentration in a cloud server. The combination
of FL enabled edge-based will significantly increase the
performance of the GIoT network. Because the traditional
cloud-based ML-based approach requires data to be centered
or concentrated in a cloud server. Hence, this study proposes
an FL-enabled edge-based collaboration for GIoT. The
followings are the key contributions of the paper:

• The applicability of FL-enabled Edge-based servers in
the GIoT paradigm was presented. The FL-based model
was used to intelligently model the data in real-time and

thereby increase the GIoT communications and reduce
the energy consumption of the GIoT-based systems.

• In GIoT-enabled distributed networks, the combination
of the FL model and edge-based delivers optimum
energy consumption with the least routing overhead and
a healthy efficiency toward sustained development.

• The implementation of a FL enabled edge-based system
guarantees a safe GIoT system for sustainable cities
against hostile acts, because the data will not be
processed outside the GIoT cloud, and the FL approach
will be utilized to train the data.

• It keeps track of situations involving total data secrecy
to categorize the GIoT sensors involved in data
transmission.

The remainder of this paper is as follows. Section II
represents the application of GIoT. It is followed by the
extensive review on the existing works in section III.
Section IV consists of mathematical model and methodology
followed in this paper. Section V contains detailed analysis of
the results corresponding to the proposed system. Section VI
contains the study limitations and future work followed by
the conclusion in section VII.

II. PROMISING APPLICATIONS OF GREEN INTERNET OF
THINGS
The GIoT paradigm aims to reduce energy usage by
connecting everything, anytime, and anywhere. It consists
of intelligent, self-contained systems that share data and
access other sources [1], [2]. Energy-efficient devices and
sensors are used to collect data. However, building a
green intelligent network still presents challenges. Inte-
grating energy efficiency in IoT-based layers will make
green technology a reality. Advanced Internet applications
and gadgets are crucial for environmental preservation
and cleaner air. Green renewable energy proficiency is
essential for energy savings. Optimizing IoT operations
and reducing energy consumption is essential for mineral
wealth preservation and habitat restoration. Energy-efficient
strategies are needed in production, operation, and disposal
departments.

The data collected by devices and sensors are interpreted in
the processing systems since most GIoT outdoor applications
operate similarly, and wireless channels are used to transfer
the required information. Hence, the three main purposes
of using GIoT energy are: (i) data capturing using sensors,
(ii) processing, and (iii) data transmission. The real-time
operating systems and periodic wake-up mechanism energy
usage are insignificant. Therefore, analyzing the energy usage
of a GIoT-based system for energy efficiency and minimizing
the number of these processes as much as feasible becomes
crucial [17]. Apart from reducing energy use, ways of creat-
ing energy from alternative sources such as solar, wind, and
geothermal should be researched. Temperature, wind speed,
and daylight hours all have an impact on these power gen-
erating source. The GIoT’s four dimensions are illustrated in
Figure 1.
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FIGURE 1. The green internet of things general components.

A. APPLICATION ASPECTS OF GIOT SYSTEM
There are numerous applications and services available for
GIoT technology, as demonstrated in Figure 2. Among
the components are smart cities, smart energy and smart
grid systems, crystallized intelligence, industrial automation,
intelligent health systems, and smart logistics. GIoT can be
employed in several scenarios due to its low energy utilization
and excellent flexibility to the environment.

FIGURE 2. Application of green internet of things in Smart-X.

1) GIOT FOR SMART CITIES
In smart cities, the application of GIoT can aid in providing
real-time answers to emerging challenges and enhance urban
flow management. In recent years, smart cities have sparked
increased interest in a variety of issues, including population
aging, climate change, technology advancements, economic
and environmental changes, and so on. Smart parking,
traffic management, and evaluating the strength of buildings,
bridges, and monuments have all benefited from IoT-based
solutions. In recent years, GIoT has been seen in different

sustainable smart cities, such as smart traffic, light, transit,
and smart bridges [18], [19]. As a result, becoming green
is a must to reduce overall electricity usage and reduce
environmental damage.

2) GIOT FOR SMART HOMES
In 2002, the European Union (EU) parliament passed a
rule requiring European countries to implement specified
practices to improve energy efficiency in households and
offices [20]. In this regard, several research initiatives have
been initiated to improve the energy efficiency of the
GIoT systems, such systems including AIM, DEHEMS,
SEEMPubs, IntUBE, and DIMMER, [21]. The GIoT reduc-
tion of energy waste in smart homes has been governed by
the EU Directive for the management of smart systems [17].
When individuals who reside in a smart house depart, the
GIoT automatically turns off lights. Furthermore, GIoT-based
cooling systems canmanage the house temperature according
to interior activities while using the least amount of energy.
As a consequence, by monitoring and recording energy-
related metrics, GIoT can reduce building energy use and
associated expenditures, improving the quality of life by
making cities green [22].

3) GIOT FOR THE SMARTER ENVIRONMENT AND IMPROVE
INDUSTRIAL CONTROL
The GIoT technology has been used to detect forest fires
in the field of smart ecosystems, monitor drinking water,
evaluate air and saltwater pollution, govern the surrounding
region, establish a smart grid, and detect forest fires. Further-
more, the IoT may be utilized in sensitive applications such
as recalling fluid identification for server farms, predicting
erosion and radiation at thermal energy stations to generate
spill notifications, and monitoring fragile constructions to
prevent disintegration. Being eco-friendly means that no
significant harm is done to the environment in situations
where this innovation is directly linked to the climate.
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4) AGRICULTURE AND ANIMAL HUSBANDRY IN THE GIOT
SYSTEM
GIoT technology has the potential to boost crop longevity
and quantity in the agriculture and livestock industries. GIoT
systems can be more beneficial in tracking and monitoring
farm animals, monitoring soil moisture and tree pests, setting
up smart meteorological stations, and caring for newborn
animals, among other things [23]. Green guidelines must be
followed at all phases of the growth of healthy crops and
animal products for people.

5) GIOT FOR E-HEALTH
As technology gadgets have improved human well-being in
healthcare systems, GIoT techniques have been developed
to improve medical systems. Medical refrigerators can be
monitored, athletes can be cared for, elderly patients can
be watched more easily, and UV radiation can be accessed
via the IoT. To monitor various physiological aspects of the
human body, many GIoT-based medical sensors and gadgets
with limited battery life have been developed. If an object
in these programs does not need to be active at a specified
moment, its status is changed to power-saving mode to save
energy. Furthermore, if no processing tasks are assigned,
the CPU speed is lowered. Given that GIoT is so close to
humans in many applications, it must be environmentally
friendly to demonstrate that it is not dangerous. It’s also worth
mentioning that one of the GIoT’s goals is to reduce the
number of sensors required to monitor physiological signals
[24]. Delivering a green brain-to-machine interface is also
crucial in brain-controlled GIoT applications [25].

III. RELATED WORK
This study conducted a Comprehensive Literature Review
(CLR) on GIoT-enabled enabled with various technology,
with a focus on incorporating various concepts related to
security and privacy of IoT-based systems like FL, Edge
computing, and AI, DL, and ML-based models and their
utilization in GIoT technology. Rapid, dependable, low-
latency IoT communication links are becoming increasingly
necessary, and GIoT has evolved as an innovative technology
to meet this demand. Nevertheless, there are many technolog-
ical and tactical challenges in GIoT adoption. Understanding
the current stage of the investigation is crucial to identifying
the key challenges and opportunities in order to build and
execute GIoT in interactions with diverse technologies in
a sustainable and effective manner. In order to provide a
thorough understanding of the current research being done in
this section of study conducts CLR on GIoT-enabled models
using FL, Edge computing, ML, DL, and AI.

Equipment and software aspects should be considered for
GIoT technology with hardware solutions producing devices
that consume less energy without sacrificing performance.
Software solutions, on the other hand, enable current systems
to utilize less energy bymaximizing resource use. Electricity-
saving virtual machine techniques should also be introduced.

The FL model protects the participants’ privacy by disclosing
parameters from the trained model rather than real data,
which is the model’s primary aim. However, several recent
studies have discovered that when FL players or FL servers
are unethical, security and privacy concerns might arise. FL’s
objective is hindered since the global model’s influencemight
be tainted, and users’ privacy can be threatened during model
training. In order to get a better understanding of this study
well, a comprehensive review was carry out.

A. EDGE COMPUTING, NETWORK THROUGHPUT, AND
LATENCY
Through a variety of edge servers, edge computing enhances
reaction time while minimizing latency in a distributed
fashion. Low-powered sensors have limitations with regard to
battery life, transmission range, and security, even though the
combination of edge computing and GIoT greatly enhances
network performance in terms of processing and data storage.

In [26], the authors analyze the placement of edge
computing resources on an Internet-wide scale, revealing
that these strategies can improve cloud access latency
by up to 30%. They propose an edge-cloud collaborative
computing system (ECCS) based on open-source EdgeX and
Huawei openLooKeng, which is low-latency, low-power, and
intelligent, making it suitable for real-time IoT applications.
However, it does not specificallymention network throughput
or the term GIoTs System.

In [27], the authors proposed an edge computing architec-
ture for the IoT, which brings down storage, computation,
and communication services from the cloud server to the
network edge, resulting in low latency and high availability.
Edge computing brings down storage, computation, and
communication services from the cloud server to the network
edge. ScalEdge addresses the challenges of scalability in
edge computing by providing a scalable architecture that can
handle a large number of IoT devices and data streams. The
study incorporates techniques such as data partitioning, load
balancing, and resource management to efficiently distribute
the workload across edge devices, and includes mechanisms
for fault tolerance and reliability to ensure the continuous
operation of the system. The study does not mention network
throughput or the term GIoTs System.

The authors in [28] presented a comprehensive survey to
analyze how edge computing can improve the performance
of IoT networks and classify edge calculations into different
groups based on the architecture and study their performance
by comparing network latency, bandwidth usage, power
consumption, and overhead. The study established that edge
computing migrates data calculations or storage to the edge
of the network near the end-user, and educes latency and
improves performance of IoT networks. The study failed to
mention network throughput or the term GIoTs System.

The authors in [29] presented a comprehensive survey, ana-
lyzing how edge computing improves the performance of IoT
networks and considers security issues in edge computing,
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evaluating the availability, integrity, and the confidentiality of
security strategies of each group, and proposing a framework
for security evaluation of IoTNetworks with edge computing.
The study maintained that edge computing reduces latency
and improves performance in IoT networks, and analyzed
diverse edge computing architectures and their performance.
The paper did not discuss on both GIoT system and network
throughput.

In [30], the authors proposed a personalized FL framework
for intelligent IoT applications, addressing heterogeneity
issues and achieving fast-processing capacity and low
latency. It presents a case study of IoT-based human activity
recognition to demonstrate its effectiveness. Authors in [31]
proposed a Local Data Reduction framework to address
latency and cost constraints in IoT data processing. It uses
the Markovian birth-death process and outperforms the
WLDR model, demonstrating its effectiveness in meeting
QoS requirements for real-time IoT systems.

B. FEDERATED LEARNING, ARTIFICIAL INTELLIGENCE,
AND DEEP LEARNING ENABLED WITH IOT, AND
GIOT-BASED SYSTEMS
A key component of implementing AI at the edge of the
GIoT scenario is FL, which allows numerous devices to
cooperatively train a common ML model while maintaining
the privacy of all local data. The single point of failure and
scalability problems of centralized FL can be resolved by
distributed FL (DFL) based onDevice-to-Device (D2D) com-
munications, although D2D links’ communication resource
limitations apply. Therefore, it is essential to lower the FL
models’ data communication volume between devices.

One of the first studies to show the viability of utilizing a
trained model to extract information from deep or machine
learning models is reference in [32]. The authors show that
throughout the training phase, the proposed correlations in the
training data are collected into the trained model. As a result,
publishing the trained model might result in an unauthorized
exposure to hackers that was not intended. For example,
a trained adversary’s speech recognition system can deduce
a user’s race or gender. The authors of [33] propose a
model- reversal approach for separating data from choice
tree-based or facial acknowledgment prepared models. The
goal of this method is to compare the objective element
vector to every possible value and then produce a weighted
likelihood evaluation of the correct value. The findings of
the investigation suggest that the adversary may perfectly
replicate an image of the casualty’s face using this approach.
On the other hand, the authors of [34] propose a neural
network-based method for estimating the local models of FL
players who are left out during training. The base station as-
signs resource blocks to users whose models have the largest
impact on the global FL model first in the system model. One
user in specific is selected to be permanently connected to
the base station. These estimated values are used as input by
the feedforward NN to forecast the model parameters of users

who were left out of the training iteration. Base stations can
now incorporate more locally trained FL model parameters
into each iteration of global aggregation, leading to faster FL
convergence.

Federated Learning is used in a dynamic and uncertain
portable edge network environment with varying constraints,
such as distant organization and energy circumstances.
Deep Q-Learning (DQL) may be utilized to simplify asset
distribution for model preparation, as stated in [35]. Members
of the framework model, like as mobile phones, collaborate
to create DNN models that a FL server need. Cell phones
require a lot of energy, a lot of CPU, and a lot of distant
data transfer capability. To diminish energy utilization and
preparing time, the server should distinguish the proper
measures of information, energy, and CPU assets that the
cell phones will burn through for preparing. The server is
an expert in a stochastic improvement problem in which
the state space contains the CPU and energy conditions of
the phones, and the activity space contains the quantity of
information units and energy units collected from the phones.
The reward is determined by the amount of data collected,
the amount of energy consumed, and the amount of time it
takes to train. To overcome the server’s problem, the authors
in [36] proposed a Double Deep Q-Network (DDQN). The
proposed scheme reduces the energy usage by roughly 31%
when compared to the greedy algorithm, and the training
delay by up to 55% when compared to the random scheme,
according to the simulation data. As an extension to [35], the
authors of [37] propose a resource allocation technique based
on DRL, with the extra risk that FL members are mobile
and may leave the network coverage zone. Even without
previous knowledge of the mobile network, the FL server
can optimize resource allocation amongst players, such as
channel selection and device energy use.

To identify device failures in Industrial Internet of Things
(IIoT), the authors in [38] presented an FL approach based
on blockchain. The FL system’s platform architecture is built
on blockchain and supports the verified integrity of client
data. Each client generates a Merkle tree regularly, with each
leaf node representing a client data record and the root being
recorded on the blockchain. Furthermore, to address data
heterogeneity, a new centroid distance weighted federated
averaging (CDW FedAvg) algorithm is proposed, which
takes into account the distance between positive and negative
classes in each client dataset. The empirical research results
of FL-based production line fault prediction were presented
by the authors in [39]. For Horizontal Federated Learning
(HFL) and Vertical Federated Learning (VFL), federated sup-
port vector machine (SVM) and federated random forest (RF)
algorithms are developed. An experimental technique is pro-
posed to evaluate the efficacy of FL and centralized learning
algorithms. In [40], the authors devised a FL technique for
DL-based machinery fault detection. The model aggregation
method is altered adaptively utilizing a dynamic verification
approach based on the FL framework, which overlooks some
customers’ low-quality data. In addition, a self-supervised
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learning technique for learning structural information from
little training data is proposed. This approach offers both data
augmentation and multitasks learning effects. Experiments
on two rotating equipment datasets suggest that this method
can be used to diagnose faults in rotating machinery.

The proposed method and the typical centralized training
method on the Non-IID, however, still have a large gap. Edge
device failures have a significant impact on IIoT industrial
product manufacturing. The authors in [41] developed
a new communication-efficient on-device FL-based deep
anomaly detection framework for sensing time-series data
in IIoT to overcome this challenge. It allows distributed
edge devices to work together to increase the generalization
ability of an anomaly detection model. To accurately
detect abnormalities and an attention mechanism-based
Convolutional Neural Network- Long Short-Term Memory
(CNN-LSTM) model is presented. To avoid memory loss
and gradient dispersion, it employs a CNN module based
on an attention method to collect key fine-grained char-
acteristics. To increase the efficiency of communication
and fulfill the urgency of manufacturing anomaly detection,
a gradient compression technique based on Top-k selection is
developed.

The contribution of devices to the worldwide aggregation
of FL was quantified by [42]. The learning model’s accuracy
and reliability have been increased. An adaptive calibration
approach of global aggregation frequency is suggested based
on a deep Q network (DQN), which minimizes the loss
function of FL under a certain resource budget. In a time-
varying communication environment, it realizes the dynamic
trade- off between computing energy and communication
energy. To detect network threats in industrial cyber-physical
systems, the authors in [43]developed DeepFed, an FL-based
intrusion detection model using CNN and GNU. Multiple
industrial cyber-physical systems can use the specified FL
framework to create a comprehensive intrusion detection
model for privacy protection. To maintain the secrecy and
privacy of model parameters during the training process,
a secure communication protocol based on the Paillier
cryptosystem was created. The model is highly effective
in detecting various sorts of network threats in industrial
cyber-physical systems, according to tesing on a data
set from a real industrial cyber-physical system. Many
smart city applications have been developed to assist the
public in utilizing proactive and adaptive solutions [44],
[45]. On the other hand, most Green IoT devices are
utilized to collect a big amount of smart data and are
required to achieve a reliable and energy-efficient solution.
In order to manage diverse routing processes in sustainable
cities, GIoT-assisted applications have been discovered.
The most difficult objectives, however, are data latency
and resource management efficiency. Edge computing is
also being combined with GIoT to improve compute and
storage resources. Nonetheless, the research community
is still grappling with intelligent and optimized energy
systems.

Furthermore, due to the large amount of data collected
in GIoT systems, many re-transmissions may occur, as well
as network dis-connectivity, thus, transmission fees and
over- heads are incurred. By extending the extent of energy
gaps, such solutions increase the unpredictability of IoT
systems in green communications [46], [47]. Malicious
nodes can also affect communication networks and disturb
the monitoring environment of green urbanization. In an
unmanaged environment, GIoT devices are more exposed to
security risks. These limitations have a big influence on GIoT
data and put transmission privacy in jeopardy. Therefore, the
combination of FL-enabled edge-based computing will help
in the integration of security solutions in GIoT sustainable
cities given protection to the energy-oriented route and
network threats.

In [48], the authors proposed an energy-efficient integra-
tion of joint edge intelligence nodes, focusing on bandwidth
allocation, CPU frequency, transmission power optimization,
and learning accuracy. The study optimizes computation
frequency allocation and reduces energy consumption in
IoT devices. The Alternative Direction Algorithm (ADA)
is proposed to reduce complexity and energy consumption
at each iteration of FL time. At the expense of a slight
increase in FL time from IoT devices to edge intelligence
nodes, the suggested Alternative Direction Algorithm can
modify the frequency of the central processor unit and
power transmission regulation to lower energy usage. The
authors in [49] proposed framework uses a blockchain
network for secure model aggregation, with each node
hosting an SGX-enabled processor. This ensures model
authenticity, integrity, and tamper-proof storage. Experiments
were conducted with various CNN models and datasets to
evaluate its performance.

C. FEDERATED LEARNING, AGGREGATION ALGORITHM,
LOCAL MODEL TRANSPORTATION, AND CENTRALIZED FL
FOR IOT, AND GIOT-BASED SYSTEMS.
The authors in [50] explored the use of Async-HFL for con-
verging speed under system heterogeneities and stragglers.
It designates device selection and device-gateway association
at the gateway and cloud levels, demonstrating its faster
convergence and cost savings compared to state-of-the-art
asynchronous FL algorithms. Authors in [51] presented a
secure, reliable FL algorithm that integrates hybrid differen-
tial privacy, categorizes users based on privacy needs, and
proposes an adaptive gradient clip scheme and improved
composition method for improved performance. In [52], the
authors explored the integration of edge computing and FL in
medicine, focusing on the potential of intelligent processing
of clinical visual data, enabling remote healthcare centers to
securely benefit from multi-modal data.

Similarly, authors in [53] proposed a DRL-based joint
secure aggregation and resource orchestration scheme for
hierarchical FL assisted by untrusted mobile-edge com-
puting (MEC) servers. The scheme aims to maximize
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long-term social welfare while minimizing data size,
payment, and resource orchestration. The hierarchical reward
function-based DRL algorithm (MATD3) is proposed,
achieving superior performance over comparison algorithms.
The authors in [54] introduced a mobile crowdsensing-based
geospatial physical distance monitoring model for efficient
pandemic management. It analyzes human mobility infor-
mation to identify hot-spot regions and monitors physical
distance mandates. The model also includes an Android
application called SocialSense for effective pandemic man-
agement. Experimental results show improved accuracy in
hot-spot identification and physical distance monitoring
compared to existing approaches

In [55], the authors proposed a SemiPFL framework
that supports edge users with limited labeled data sets and
unlabeled data. It involves edge users collaborating to train
a Hyper-network, generating personalized autoencoders. The
framework outperforms state-of-the-art federated learning
frameworks in various application scenarios, including wear-
able health and IoT. It also performs well for users without
labeled data sets and increases performance with increased
labeled data and users. The authors in [56] proposed a novel
adaptive mechanism for CSFL motivates organizations to
contribute data resources in dynamic training environments,
using multi-agent reinforcement learning to optimize strate-
gies without private information or precise accuracy. In [57],
the authors presented a privacy-preserved FL approach for
cyber-attack detection in edge-based IoT ecosystems. The
lightweight convolutional Transformer network is designed
to identify attacks by learning attack patterns from local
edge devices. The approach outperforms traditional FL in
detection accuracy and is effective in handling non-stationary
data.

The authors in [58] presented an algorithm that improves
the privacy of terminated raw data by enhancing differential
privacy before transmission to the edge server, thereby
ensuring privacy for gradient attacks on FedGAN. In [59],
the authors presented an edge learning-based green content
distribution scheme for IC-IoT, enhancing speed and recovery
capability through intelligent path selection and distributed
coding. The scheme’s effectiveness and performance have
been verified through simulation experiments. The authors
in [60] discussed the design of FL at the network edge,models
the incentive interaction between a global server and devices,
presents open research challenges, and offers future research
perspectives.

Similarly, authors in [61] employed deep reinforcement
learning (DRL) agents on edge nodes to indicate IoT device
decisions, while federated learning (FL) is used to train agents
distributedly, demonstrating the effectiveness of these meth-
ods in dynamic IoT systems. The authors in [62] proposed a
Deep Reinforcement Learning (DRL)-based green resource
allocation mechanism for mobile users, aiming for energy
efficiency and user satisfaction, with its effectiveness vali-
dated through simulation results. Furthermore, authors in [63]
proposed a secure, efficient AIoT scheme for private energy

data sharing in smart grids. It introduces an edge-cloud-
assisted federated learning framework, local data evaluation
mechanism, optimization problems for Energy Distributors
(EDOs) and energy service providers, and a two-layer deep
reinforcement-learning-based incentive algorithm for EDO
participation.

The existing work have been so far conducted mostly on
IoT-based network, and some on IIoT, Mobile, and IoMT-
based applications. To the best of our knowledge this will the
first study on the use of FL enabled with Edge computing on
GIoT-based system. In order to improve the performance of
the GIoT networks, this article proposes a FL enabled with
edge computing for security and privacy concerns associated
to GIoT networks in order to find potential solutions to
mitigate these risks. Additionally, we provide some privacy
preservation measures to increase network security. We use
distributed FL for privacy because the FL algorithm is also
sensitive to privacy concerns. Table 1 shows the comparison
of the model analysis with existing studies.

IV. METHODS AND MATERIALS
A. FEDERATED LEARNING-ENABLED EDGE-BASED
DESIGN
When comparing the FL model’s implementation to tra-
ditional cloud-centric training methodologies, the model
training on edge-enabled networks offers the following
benefits: (i) As the amount of data that needs to be sent
to the cloud is minimized, the network bandwidth cab
be used very efficiently. In other words, aggregated and
updated hyper-parameters can be communicated rather than
communicating raw data for processing. As a result, data
transmission costs are minimized dramatically, and backup
infrastructures are relieved of their pressure. (ii) The FL
model ensures proper privacy, especially when it uses edge
computing in the GIoT platform since users’ raw data does
not need to be sent to the cloud-based on the preceding
statement. This improves user privacy and minimizes the
likelihood of eavesdropping to some levels, assuming that
FL players and servers are not malevolent. Indeed, with
improved privacy, more users will be ready to participate
in shared model training, allowing for the development of
better prediction frameworks. (iii) The FLS offers low latency
as most ML models utilized at the edge nodes can be
regularly trained and updated using FL. Similarly, major
decisions, such as real-time processing can be made locally
at the edge nodes or end devices in the Multi-access edge
computing (MEC) architecture [65]. As a result, the latency
is significantly reduced compared to when choices are taken
in the cloud before being sent to end devices. This is crucial
for time-sensitive operations like real-time processing in
emergence for decision making in GIoT systems, where even
the smallest delays can be fatal [30], [66], [67].

FL allows users to train a sharedmodel cooperatively while
maintaining their details on their devices, reducing privacy
issues. As a result, FL can be used to train machine learning
models in mobile edge networks. There are mainly two main
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TABLE 1. Comparison of the proposed model with existing FL-based model.

entities in the FL model: (i) the participants (data owners),
and the FL server (model owner). Let the set ofN data owners
be represented by N = 1, . . . ,N , each with a private dataset
DiϵN . By using its dataset Di, each data owner i to train
a local model wi and send the local model parameter only
to the FL server. The w = UiϵNwi are aggregated by all
collected local models to generate a global model wG. The
local model is different from the traditional centralized that
uses D = UiϵNDi to train a model wT , the model training
takes place centrally before the data from each source is
aggregated.

B. PROPOSED MODEL
The proposed system adopts the same method for the radio
model in [68] to compute the energy consumption. ETr (l, d)
is the energy consumed in transferring data bits of size l over
a distance of d , as shown in Eq. 1.

ETr (l, d) =

{
l(Ee + Efs ∗ d2), if d ≤ dt
l(Ee + Eamp ∗ d4), if d ≤ dt

(1)

where Ee denotes the energy transferred at a point of size l,
Efs denotes the energy supplied and Eamp represents for either
the quantity of electrons passing across the wire or the rate at
which current is flowing through the circuit.

The receiving node, on the other hand, dissipates the
quantity of energy consumption ERx(l), is given by Eq. 2.

ERx(l) = Ec ∗ l. (2)

where Ec is the energy consumption at Efs supply. The
study adopts a three-layer network in GIoT, consisting of
green devices, servers, and edge nodes for GIoT devices.
Wireless communication networks connect devices with
limited communication and computational resources to
servers. Models that map the physical status of devices and
update in real-time are edge-based nodes. The server to which
a device belongs establishes its edge node, where the device’s
history and current behavior are moving close to an edge node

form by collecting and processing the device’s existing key
physical state. The edge of the training node i edgei(t) within
time t can be represented as

edgei(T ) =
{
F(wti ), fi(t),Ei(t)

}
, (3)

where the currently trained parameter wti of node i, F(w
t
i ) is

the current training state of the node i, the energy consump-
tion is represented by Ei(t), and the current computational
capability is fi(t) of node i.
It has worth noting that the mapped value of an edge differs

from the actual value. The CPU frequency deviation f ′
i (t)

is used to represent the difference between the device’s real
value and its edge translating estimate. As a result, following
normalization, the edge model may be stated as follows:

edge′i(T ) =
{
F(wti ), f

′
i (t),Ei(t)

}
. (4)

This model may accept the device’s physical state data
and self-calibrate derived from the empirical divergence
values while maintaining device consistency and giving
back information in real-time, dynamic optimization of the
physical environment is achieved.

The curator transmits the job and the populated global
model w0 in the first step of federated learning task
initialization. The training node i then utilizes its data Di to
update the local model parameters wti to determine the best
parameter that minimizes the loss function after receivingw0.
Equation 5 gives the formula to minimizes the loss function
for the best parameter is as follow:

F(wti ) =
1
Di

∑
xj,yjϵDi

f (wti , xj, yj), (5)

where F(wti ) are the true values for instances quantifying the
difference between estimated running data,Di, t representing
the current local iteration index, and the samples of training
data is xj, yj.

For the proposed model to count for malicious updates,
we introduce learning quality and interaction records to
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weaken the threat of malevolent data. The curator j′s belief
for the node i in the time slot t can be stated as follows using
the subjective logic model:

bti→j =
(1 − uti→j)q

t
i→j

f ′
l (t)

.
αti

β ti
(6)

where the edge deviation of the curator j is f ′
l (t) to the node i,

the number of positive interactions is αti , and the number of
malicious actions is β ti such as uploading indolent data, the

quality of learning based is qti→j =
wti−w̃∑n
i=1 w

t
i−w̃

based on the
trustworthiness of most training devices.

The mismatch between the attributes supplied by a node
and the predicted value of the attributes uploaded by all nodes
has a substantial impact on a client’s learning performance.
Eq. 6 shows that the higher the reputation value, the higher
the client’s learning quality in response. In addition, the
curator will choose the node with the greatest trust value
to improve training accuracy and prevent malicious assaults.
In non-IID FL models, the curator utilizes the FoolsGold
technique to identify untrustworthy nodes based on the
steepest adjustment variety of indigenous model updates. The
curator i’s trust worth for the node j is stated as

Ti→j =

T∑
t=1

bti→j + iuti→j, (7)

where the coefficient indicating the degree of uncertainty is
iϵ[0, 1] affecting the reputation and the failure probability is
uti→j of the packet transmission. The curator retrieves in the
global aggregation the updated status values and integrates
the relevant nodes’ local models wti into a balanced learning
algorithm. This is represented as

wk =

∑Nd
i=1

∑T
t=1 Ti→jwti∑Nd

i=1 Ti→j
. (8)

Nd is the number of training devices, and wk is the global
parameter after thek thglobal aggregate.

The IoT devices and local model layer, the edge computing
and aggregation server layer, and the smart IoT application
layer are the three levels that make up the FL-based
architecture for IoT data. Each layer has an impact on the
network quality of service as well as the model dependability.
According to this scenario, the GIoTs environment has
edge servers that are placed along the applications partway,
including wireless base stations and devices equipment. The
local models from the GIoT applications are combined into
a global model based on their local data using the edge
computing server. The GIoT applications only share their
local models, rather than their local data, in order to protect
their privacy. However, FL is the underlying principle of
the system, which involves GIoTs environment completing
learning tasks in a distributed manner.

As shown in Figure 3, in order to deliver their cloud service
to end customers, cloud providers must combine sparsely
distributed user traffic through a carrier’s access gateway

FIGURE 3. The general overview of the federated learning architecture for
GIoT networks.

nodes (AGNs) and send it to datacenters. They must build
a virtualized aggregation network to link AGNs with their
datacenters in order to achieve this. Network services can now
be moved from dedicated hardware to distributed pools of
commodity servers thanks to network functions virtualization
(NFV) [68], [69]. Network edge functions can be moved
from dedicated hardware to dispersed pools of commodity
servers thanks to network functions virtualization. Transport
between access gateway nodes and such servers hosting
virtual network functions (VNFs) is provided via metro
aggregation networks.

Cloud providers can build their own virtualized metro
aggregation networks by including NFV onto those networks.
By effectively using network resources for cloud access, this
raises the quality of service (QoS) of their cloud services.
In order to connect datacenters with carrier’s AGNs, cloud
providers must use less physical network infrastructure due
to intense competition and an increase in data traffic. The
solution to this problem rests in how a cloud provider’s
virtual network is mapped onto a carrier’s physical network
infrastructure.

C. PROBLEM FORMULATION FOR EXPERIMENTS
Table 2 shows the network parameters that were utilized
to evaluate the proposed model. With probability sampling,
the number of sensor nodes in the sensing area of 100m2
is set to 200 and will remain stable. The initial energy of
the sensor nodes is set to 5j, the transmitted signal is set
to 20m, and the maximum size of the data packet is set
to 64 bits. The trace file is created after 1000 seconds of
simulation, and the statistics obtained are used to examine the
results. NS-3 simulator tool and a well-known simulator have
been used in conducting the experiments. The tool has been
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TABLE 2. Simulation setup parameters.

widely used by several authors to evaluate the packet level and
node behavior for realistic network state and unpredictable
behavior. To get the attention of the node, the attackers
flood the network with fake packets, causing communication
links to become congested and sensor data to be lost. Both
the source and destination sensor nodes are not assumed
to be attackers in the proposed approach. Due to long-term
resource budget constraints, solving the sensor node may be
problematic. If the current aggregation’s energy consumption
is too high, there will be an energy scarcity in the future.
Furthermore, because this is a nonlinear programming issue,
the complexity climbs exponentially as the number of FL
rounds increases. As a result, the sensor node and long-term
resource budget constraints will need to be simplified.

V. RESULTS AND DISCUSSION
The proposed model scheme performance is compared
with other existing works like ISEC [71], kROp [72],
Diversity aware approach [73], and SWSNM [74] routing
protocols, using various benchmark schemes like network
overhead, energy consumption, end-to-end delay, network
throughput, and route interruption. The Transistor-Transistor
Logic Circuit (TTL) values ranged from 100 to 300 minutes,
the number of nodes ranged from 65 to 200, and the
message creation interval ranged from 15 to 35 secs to
65-75 seconds. The results in Fig. 4 and Fig. 5 show
the performance evaluation for energy consumption. Under
various scenarios, the results of the energy consumption show
that the proposed model improves the energy consumption by
35% and 15% when compared with the existing model using
several attackers and edge nodes. The energy consumption
under various scenarios increases due to the transmitting
of excessive control messages accordingly to the ISEC
model. The proposed model still performed better than
the ISEC model due to the introduction of the FL model
enabled edge server. The FL model reduces the energy
consumption resources and shows network stability since the
data processing is done using the FL model enabled edge
computing that brings processing closer to the end-users. The
FL model includes a multimetric training node that obtains
optimal routing decisions better than that of existing models.

The experimental result and improvement, unlike existing
models that next-hop without consideration of regular link
measurement, thus resulting in an additional energy cost of

FIGURE 4. The energy consumption changing network attacker.

FIGURE 5. The energy consumption with changing edge servers.

reconstruction of routing paths. Although ISEC models will
consider this, the performance of the model is not as that of
the proposed model due to the introduction of the FL model
enabling edge server in the GIoT environment. The proposed
system with the consideration of nodes attributes selects the
most secure routes intelligently even when compared with
the ISEC model. Hence, the proposed model incorporates
link asymmetry distance requirements along with the energy
reduction since the processing can be done in the edge nodes
with the help of the FL model enabled, reducing the energy
consumption of the GIoT system sensors.

For the changing of an attacker and edge server, the
proposed model performed better compared with the ISEC
model with the numerical value of 3% and 1%, respectively,
but when compared with another existing model, the
numerical performance is 21% and 12% respectively in the
case of network throughput results. Fig. 6, Fig. 7 show
the results of the network throughput, this improvement
was due to the introduction of the FL model enabled edge
for GIoT that seriously improve energy-efficient, secure
GIoT with the least network overhead and link-aware of
the model. Furthermore, the proposed model was able to
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FIGURE 6. The network throughput with changing network attackers.

FIGURE 7. The network throughput with changing edge servers.

prevent the attackers from redirecting the sensors’ data to
other routes for high throughput, and the FL model can be
used for processing network maintenance with it-enabled
edge computing. The FL system will continuously be
monitoring the linking routine to prevent attackers from
gaining access to any penetrating data of the client in theGIoT
system.

The proposed model performed better in terms of route
interruption when compared with existing models with
varying edge servers and attackers. This was so because the
proposed model using the FLmethod secures communication
channels within data forwarders and is very reliable. The FL
model was able to secure the GIoT system by preventing
attackers from gaining access to the edge nodes. The
proposed model secures the constructed routes better than
existing models since the FL enabled edge can be used
to move data closer to the device network processing and
prevent attackers from manipulating the confidentially of
the system, and reduce packet drop ratio. Fig. 8 displays
the changing attackers and Fig. 9 shows the edge server
route interruption performance in comparison with existing
models.

FIGURE 8. The route interruption with changing network attackers.

FIGURE 9. The route interruption with changing edge servers.

A. THE EFFECTS OF ENCOUNTER THRESHOLD (ET) IN
NETWORK SYSTEMS ON THE PROPOSED MODEL
Encounter Threshold (ET) is a parameter in wireless
communication networks, especially in protocols related
to opportunistic networking or Delay Tolerant Networks
(DTN) [75]. It determines the minimum level of signal
strength required for two devices to establish communication
or to exchange data. In networks where continuous connectiv-
ity isn’t guaranteed, such as in environments with intermittent
connectivity or sparse network coverage, ET becomes a
crucial factor [76]. This parameter helps in optimizing
communication and resource utilization in scenarios where
nodes may only sporadically encounter each other due to
mobility or other factors.

The ET concept is often associated with protocols like the
Bundle Protocol (BP) in DTNs, where nodes communicate
opportunistically by passing data when they come into close
proximity or ‘‘encounter’’ each other [77]. ET in such
protocols determines when nodes should engage in data
exchange based on signal strength or other criteria. ET in
network systems refers to the minimum signal strength or
criteria that must be met for two network devices to establish
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TABLE 3. Effect of varying encounter threshold (ET) on the network parameters.

a connection or communication [78]. Varying the ET can have
several effects on network parameters:

1) CONNECTIVITY AND COVERAGE
Adjusting the ET affects how devices connect and interact
within the network. Lowering the threshold might result
in more frequent connections among devices, potentially
expanding the coverage area. Conversely, a higher ET could
limit connections to stronger signals, reducing coverage but
potentially improving network stability and reliability within
a smaller area.

2) NETWORK DENSITY
Lowering the ET can increase network density by allowing
devices with weaker signals to join the network. This
could lead to more congested communication channels and
increased interference. On the other hand, a higher ET might
decrease network density by allowing only stronger signals,
reducing potential interference and congestion.

3) POWER CONSUMPTION
Lower ET values might require devices to constantly search
for and attempt connections with weaker signals, consuming
more power. Conversely, a higher ET might reduce power
consumption as devices spend less energy attempting to
connect to signals below the set threshold.

4) LATENCY AND THROUGHPUT
Lowering the ET could potentially increase latency due
to increased competition for network resources among a
higher number of devices. This competition for resources
might decrease overall throughput as more devices contend
for access. Conversely, a higher ET might reduce latency
and improve throughput by limiting the number of devices
competing for network resources.

5) NETWORK STABILITY AND RELIABILITY
Ahigher ET could result in amore stable and reliable network
as it filters out weaker and potentially unstable connections.
However, this might also limit the network’s adaptability
and flexibility in dynamic environments. Lowering the ET
might make the network more adaptable but could introduce
instability due to weaker connections.

6) SECURITY
A higher ET might enhance security by allowing only
stronger, authenticated devices to connect, reducing the risk
of unauthorized access. Conversely, a lower ET could make

the network more vulnerable to unauthorized access from
weaker or less secure devices.

Based on the various effects of ET in network system
for two network devices to establish a connection or
communication. The proposed model varying the default
setup to see how the network system will response generally.
Using various values of ET with the default setup, the
simulation was run severally. Table 3 shows the effect
of changing the encounter threshold (ET) on the network
parameters and increasing the ET. The results show a better
performance of 0.876 at 85% ET on delivery probability,
1.708 at 85% ET on average hop count, 3.729 at 95% ET
on overhead ratio, and 206 at 85% ET on dropped messages.
This shows the great effect of the FL model-enabled edge
computing on the simulation parameters. The ET was greatly
improved when compared with existing models. The model
performed best when the parameter was with a VALUE of
85%. At this tread hold, the dropped messages and hop
count decrease as the ET increases to 85%, thus, the delivery
probability increases marginally. This was so because the
FL enabled edge allowed the nodes to gain more context
information in the network, and more context information
was the best for routing to make decisions using the proposed
model.

When adjusting the ET in a network, it’s crucial to consider
the specific requirements of the network environment, such
as coverage area, the density of devices, power constraints,
and the desired balance between connectivity, stability, and
security. Fine-tuning the ET involves finding a balance that
optimizes network performance based on these requirements.
Testing andmonitoring the network’s behavior after adjusting
the ET can provide insights into its impact on various network
parameters, allowing for further optimization if needed.

VI. THE STUDY LIMITATIONS AND FUTURE WORK
By using the least amount of energy for a large number
of GIoT devices and huge data sets to train the local
models, the proposed model outperformed all other methods.
According to the findings, there is little variation in
the suggested model energy-saving effectiveness when the
number of nodes is increased from 25 to 150. The suggested
model demonstrates how to balance the aforementioned
elements by optimizing each GIoT device transmission
power, scheduling them, and adjusting the transmission
rate. The FL enabled Edge-Based GIoT systems present
numerous benefits, but they also come with limitations and
areas for potential future work. Here are some of these
aspects:
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A. THE LIMITATIONS
1) COMMUNICATION OVERHEAD
FL involves frequent communication between edge devices
and the central server, leading to increased communication
overhead. This could result in higher energy consumption and
latency, especially in resource-constrained environments.

2) PRIVACY CONCERNS
While FL aims to preserve data privacy by keeping data
on local devices, there can still be privacy risks associated
with model updates transmitted during the learning process.
Ensuring robust privacy measures is crucial.

3) HETEROGENEITY OF DEVICES
Edge devices in GIoT systems vary significantly in terms of
computational power, storage capacity, and communication
capabilities. This heterogeneity poses challenges in main-
taining uniformity and efficiency in the learning process.
Security Risks: Edge devices in GIoT systems may be
more vulnerable to security threats compared to centralized
systems. FLmodels can be susceptible to poisoning attacks or
model inversion attacks, requiring robust security measures.

B. THE FUTURE WORK
1) OPTIMIZATION TECHNIQUES
Developing more efficient communication protocols and
algorithms to reduce the communication overhead and
optimize the learning process on resource-constrained edge
devices.

2) PRIVACY-PRESERVING TECHNIQUES
Advancing encryption methods, differential privacy, and
other techniques to enhance privacy protections during FL,
ensuring that sensitive information remains secure.

3) ADAPTIVE LEARNING MODELS
Creating adaptive and dynamic learning models that can
adjust to the diversity and heterogeneity of edge devices,
allowing for more efficient and personalized learning.

4) ROBUST SECURITY MEASURES
Strengthening security protocols to mitigate potential vul-
nerabilities and threats, including exploring robust methods
against adversarial attacks on FL systems.

5) ENERGY-EFFICIENT SOLUTIONS
Designing energy-efficient algorithms and hardware solu-
tions to minimize energy consumption on edge devices,
thereby contributing to a more sustainable GIoT
infrastructure.

6) STANDARDIZATION AND INTEROPERABILITY
Developing standardized frameworks and protocols to
enhance interoperability among different GIoT devices,
ensuring seamless integration and communication in
federated learning setups.

7) REAL-TIME ADAPTATION
Enabling real-time adaptation and optimization of models
based on dynamic changes in edge device conditions,
improving the system’s responsiveness and adaptability.

Addressing these limitations and pursuing future work
in these areas will contribute to the advancement and
widespread adoption of FL enabled Edge-based GIoT sys-
tems, making them more efficient, secure, and
privacy-preserving.

VII. CONCLUSION
Edge computing is a promising solution for managing
millions of sensors and devices in GIoT. It migrates data
computation and storage to the edge of the network,
reducing traffic flows, bandwidth requirements, transmission
latency, and extending the lifetime of nodes with limited
battery resources. This approach offers a more efficient and
cost-effective solution for GIoT applications. In the study,
there is a comprehensive survey, analyzing how FL, edge,
AI, DL, and ML based models can improve the performance
of GIoT networks. The review is categorizing into different
groups based on the technologies used in GIoT systems, and
compare network latency, bandwidth usage, energy consump-
tion, and overhead to evaluate how well they function. The
study also examines security concerns in GIoT applications,
evaluating their security strategy, availability, integrity, and
confidentiality. Hence, proposed a framework for GIoT
networks with FL enabled with edge-based GIoT system.
FL is proposed to address computational complexity by
localizing a model on GIoT devices and sharing parameters
in edge nodes. This edge intelligence-aided GIoT network
aims to reduce latency and energy consumption without
affecting global model convergence. Finally, study compare
the performance of proposed model with some of the existing
work. In future works, there will be a focus on developing
reliable and effective AI, DL, and ML-based algorithms to
offer intelligent scheduling of packet transmission in the
context of the development of channel state information over
time in GIoT networks. Future research will examine more
complicated scenarios, compare the suggested model with
models based on algorithms, and consider channel power
allocation.
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