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ABSTRACT Bearings in actual working environments typically operate in healthy conditions, resulting in
an imbalance in the data collected data. The majority of the collected data are related to bearings in healthy
conditions, with insufficient data related to faults. This imbalance leads to accuracy and stability issues in
deep learning models used for diagnosis purposes. To address this issue, we propose employing a residual
factorized hierarchical search-based generative adversarial network (RFH-GAN) and a residual shrinkage
network with pyramidal squeezed attention (PSA-DRSN) for unbalanced fault diagnosis. The process
involves transforming vibration signals collected from bearings into time-frequency (TF) domain images
through the utilization of the continuous wavelet transform (CWT). The enhanced RFH-GAN generates
synthetic fault samples with authentic characteristics, while the PSA-DRSN performs fault diagnosis. The
experimental findings substantiate that our method improves the quality of the generated samples, mitigates
the data imbalance issues that are inherent in conventional diagnosis methods, and attains heightened
precision and efficacy in fault diagnosis tasks.

INDEX TERMS Fault diagnosis, data imbalance, continuous wavelet transform, generative adversarial
network, deep residual systolic network.

I. INTRODUCTION
Bearings have widespread use in a variety of fields, including
rail transportation, wind power generation, aerospace, and
the machinery industry. Nevertheless, the complex operating
conditions of rotating machinery lead to inevitable transmis-
sion system failures. Bearing failures constitute a significant
proportion of these incidents, amounting to 30% to 45%
or more of the total failures [1], [2], [3]. The operational
performance of rotating machinery is directly influenced by
the health statuses of bearings [4]. Severe bearing failures
can pose a substantial safety threat to machine operators and
reduce the lifespan ofmachinery. Consequently, precisely and
reliably detecting and assessing bearing health statuses [5]
are of utmost importance. However, an imbalance in bearing
data poses a significant challenge to data-based bearing fault
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diagnosis methods, often resulting in model bias [6], [7],
[8]. Researchers have made significant efforts to address
the influence of data imbalance on intelligent bearing fault
diagnosis models [9], and their approaches can be employed
to mitigate the data imbalance issue.

Approaches based on data augmentation commonly
employ generative models or oversampling techniques to
increase the number of fault samples, thereby improving the
effectiveness of diagnostic models. For instance, Su et al. [10]
employed the K-nearest neighbors algorithm to optimize the
iterative generation strategy, aiming to enhance the learn-
ing efficiency of generative adversarial network (GAN) and
achieve high accuracy. Wu et al. [11] obtained enhanced data
and achieved high accuracy by applying local weighting to
their oversampling technique. Diaz [12] used the synthetic
minority oversampling technique (SMOTE) to synthesize
fault samples for attaining balanced data while effectively
improving the accuracy of fault diagnosis.
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Designing classification models using this approach sig-
nificantly enhances their diagnostic accuracy by crafting
models that are specifically customized for limited and
imbalanced datasets. To illustrate this point, An et al. [13]
presented a self-learning relocatable network (STNN) with
the aim of mitigating the impact of imbalanced data on
the diagnosis process. This was accomplished by intro-
ducing three innovative loss terms: self-belief (Ls), self-
suspicion (Ld ), and correction (Le) terms. In a similar vein,
Y.W. Tan et al. [14] introduced a domain-adaptive net-
work framework known as deep mixup to tackle distribution
mismatches and data imbalance issues. Experimental evi-
dence has demonstrated the effectiveness of this approach
in addressing data imbalances. In a different approach,
Lu et al. [15] proposed a common feature space mining
network (CFCNet), a two-stage migratable network designed
to tackle imbalanced fault diagnosis tasks. Additionally,
Wu and Zhao [16] presented a DCNN fault classification
model that incorporates parameter-based migration learning,
yielding promising results.

While the aforementioned methods produced shown
promising diagnostic outcomes, they are not without lim-
itations. For example, data augmentation techniques uti-
lizing generative networks such as GANs or VAEs often
require a considerable number of samples to effectively
capture the underlying data distribution. However, as sam-
ple sizes decrease, the quality of the generated samples
diminishes, thereby adversely affecting a model’s diagnos-
tic accuracy. Similarly, oversampling methods encounter
data distribution challenges at the edges, leading to poten-
tial impacts on the diagnostic efficacy of the utilized
model. Additionally, the design-based approach for clas-
sification models heavily relies on researchers’ domain
expertise, particularly when formulating the loss function,
posing challenges in terms of achieving optimal diagnostic
outcomes.

To circumvent the aforementioned issues, this paper
employs a modified deep residual factorized hierarchical
search-based generative adversarial network (RFH-GAN)
with superior image processing capabilities to generate fault
samples and balance the data. The generated data are sub-
sequently used by a deep residual shrinkage network with
pyramidal squeezed attention (PSA-DRSN) for fault diag-
nosis purposes. The study conducts experiments on various
bearing datasets to demonstrate the effectiveness of the pro-
posed approach in terms of addressing data imbalance issues.
The method introduced in this research presents several
advantages and innovative contributions, which are summa-
rized as follows.

(1) This paper introduces an enhanced approach for diag-
nosing faults in rolling bearings, leveraging data and feature
augmentation techniques to effectively manage imbalanced
bearing fault data. By constructing a GAN-based framework
to synthesize fault samples and balance their data distribu-
tion, the generation quality and stability of the network are
improved.

(2) By adopting distinct loss functions for the generators
and discriminators of the GAN, the stability of the GAN is
enhanced.

(3) To transform vibration signals into TF pictures, the sug-
gested approach employs the CWT. To optimize the ability of
the network to create images, this method fully exploits the
deep feature information of the RFH-GAN.

(4) A productive pyramidal squeezed attention module is
added to enhance the DRSN backbone network. This module
enables the network to establish long-term channel depen-
dencies and extract multiscale spatial information with finer
levels of detail.

II. THEORETICAL BACKGROUND
A. CONTINUOUS WAVELET TRANSFORM (CWT)
Signal processing frequently entails transforming time
domain (TD) signals into TF representations to unveil the
most important information. Although TD signals may not
always be the optimal representations, methods such as
the CWT or the short-time Fourier transform (STFT) are
frequently utilized to extract essential information from
signals [17].
In this paper, the CWT is selected for transforming TD

signals because, in comparison with the Fourier transform,
the CWT not only inherits and extends the localization con-
cept of the short-time Fourier transform but also overcomes
its limitations, such as the use of a fixed window size for all
frequencies [18]. The CWT is defined as follows:

CWTψx (τ, s) = 9ψx (τ, s) =
1

√
|s|

∫
x(t)ψ(

t − τ

s
)dt (1)

where τ denotes the translation parameter, s denotes the scale
parameter, x(t) denotes the TD signals and ψ(t) denotes the
mother wavelet function.

One crucial stage in the CWT is the selection of the mother
wavelet function, and several options are available, including
Gabor,Meyer,Morlet, and other functions [19]. As theMorlet
function aligns with the impact characteristics produced by
bearing defects [20], it is utilized in this study for the CWT.
The Morlet function is defined as follows:

ψ(t) = e−
t2
2 cos 5t (2)

B. DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL
NETWORK (DCGAN)
The DCGAN represents an improvement over the original
GAN [21]. To enhance the image processing capability of
the network, the fully connected (FC) network of the original
GAN is replaced with a convolutional network, the pool-
ing layer is replaced with a convolutional layer, and BN
is employed after the convolutional layer [22]. The Tanh
function is utilized in the output layer of the DCGAN gen-
erator, while the ReLU activation function is used in the
other layers [23]. Conversely, the subsequent layers of the
discriminator employ the ReLU function, and the output
layer of the discriminator employs the sigmoid function [24].
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Fig. 1 shows theDCGAN’s generatormodel, and Fig. 2 shows
the DCGAN’s discriminator model.

Fig. 3 illustrates the operating principle of the DCGAN.
By engaging in an adversarial game between the discrimi-
nator and generator, the DCGAN can process images more
effectively [25]. The generator receives random noise as its
input. The discriminator’s role is to determine whether the
input samples are real samples by comparing them with the
generated samples [26].

The adversarial learning process continues until Nash
equilibrium is achieved, thereby reducing the discrepancy
between the generated and real samples [27]. At this stage,
the generator can produce synthetic samples that closely
resemble the distribution of the real samples by utilizing the
following loss function for the model:

minGmaxD V (D,G) = Ex∼Pr(x)[logD(x)]

+ Ez∼Pz(z)[log(1 − D(G(z)))] (3)

FIGURE 1. Generator model diagram.

FIGURE 2. Discriminator model diagram.

FIGURE 3. Schematic diagram of the DCGAN.

C. DEEP RESIDUAL SHRINKAGE NETWORK (DRSN)
As a deviation from the conventional deep residual network
for defect identification, Zhao et al. [28] presented the deep
residual shrinkage network (DRSN) in 2020. The DRSN inte-
grates soft thresholding with a neural network architecture to
efficiently eliminate noise and generate distinctive features.

Before the emergence of deep learning models, soft
thresholding played a crucial role in signal denoising. How-
ever, achieving satisfactory denoising performance typically
demands substantial filter design expertise [29]. The soft
thresholding function is defined as follows:

y =


x − τ x > τ

0 −τ ≤ x ≤ τ

x + τ x < −τ

(4)

where x represents the input features, y represents the output
features and τ represents the threshold value.
Equation (5) presents the derivative of the soft thresholding

function, where it can be observed that the derivative of
the output with respect to the input can only take values
of 0 or 1 to prevent the gradient disappearance and explosion
problems [30].

∂y
∂x

=


1 x > τ

0 −τ ≤ x ≤ τ

1 x < −τ

(5)

Fig. 4 illustrates the fundamental structure of the resid-
ual shrinkage module. The input features undergo absolute
value operations and global average pooling before entering
the fully connected layer [31]. Equation (6) is employed to
normalize the FC layer’s output within the range of (0, 1).

αc =
1

1 + e−zc
(6)

where zc denotes the cth neuron feature and αc denotes the
cth scaling parameter.

FIGURE 4. Residual shrinkage module.

The threshold value is calculated using Equation (7), where
the scaling parameter is multiplied by the threshold value.
This prevents the output features from all being zero and
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allows the soft threshold to be positive and stay within an
acceptable range:

τc = αc · average
i,j

∣∣xi,j,c∣∣ (7)

where τc denotes the threshold value of the cth channel of
the feature map;|·| denotes the absolute value operation; and
i, j and c represent the width, height, and channel indices of
feature map x, respectively.

III. PROPOSED METHOD
A. RFH-GAN-BASED FAKE SAMPLE GENERATION
1) LOSS FUNCTION OF THE RFH-GAN
The inherent instability of a GAN has been well estab-
lished [32]. The objective of the generator is to minimize
the Jensen–Shannon (JS) index, striving to maximize the
similarity between the distributions of the real and generated
data. This enables the generator to produce data with a dis-
tribution closely resembling that of the actual samples [33].
However, when there is no overlap between the true and
model distributions, the use of the JS divergence measure
results in zero outputs from the optimal discriminator for all
generated data [34]. Consequently, the gradient disappears,
leading to instability during the training process of the GAN.
The JS index is defined as:

JS
(
Pr∥Pg

)
=

1
2
DKL (Pr∥Pm)+

1
2
DKL

(
Pg∥Pm

)
(8)

Pm =
1
2

(
Pr + Pg

)
(9)

where Pg denotes the distribution of the generated data, Pr
denotes the distribution of the real data, and DKL (·) denotes
the Kullback–Leibler (KL) divergence.

The utilization of separate loss functions for the genera-
tor and discriminator improves the quality of the generated
images and enhances the stability of the GAN training pro-
cess. Utilizing the least-squares loss function [35] can lead to
a more stable generator training procedure. The least-squares
loss function is more effective at addressing the issue of
gradient disappearance during generator training than the
conventional cross-entropy loss function.

In contrast to the JS measure employed in the original
GAN, the Wasserstein distance can be utilized as a discrimi-
nator loss function [36], and its optimization process is more
reliable. By computing the dissimilarity between the distri-
butions of the generated and genuine data, the Wasserstein
distance generates a loss signal characterized by smoothness
and continuity, thereby aiding in mitigating concerns such as
modal collapse [37]. Equation 10 presents the expression of
the Wasserstein distance:

W
(
Pr ,Pg

)
= inf
γ∈S(Pr ,Pg)

E(x,y)∼γ [∥x − y∥] (10)

where inf denotes the maximum lower bound, γ denotes
the joint distribution of Pr and Pg, S(Pr ,Pg) denotes all
possible joint distributions, and γ (x, y) denotes the ‘‘cost’’
of transferring from x to y.

To further enhance the stability of the training process,
we introduce a human gradient penalty term [38]. By assign-
ing a gradient penalty to the linearly interpolated samples
between the real and fake samples, the gradient penalty term
might encourage the discriminator to be attentive to smooth
changes in the sample space. This improves the quality and
diversity of the fake samples and enhances the training sta-
bility of the GAN. The objective functions of the enhanced
GAN are as follows:

minG V (G) =
1
2

Ez∼pz(z)

[
(D(G(z)) − 1)2

]
(11)

maxD V (D) = Ex∼Pr(x) [D (x)]

− Ez∼Pz(z)[D(G(z))] + Gp (12)

x̂ = ϵx + (1 − ϵ)G(z) (13)

Gp = λ · Ex̂∼P̂x

[(∥∥∇D(x̂)
∥∥
2 − 1

)2] (14)

where x̂ denotes the linear interpolation operation between
the discriminator input and the true sample, λ denotes the
weight of the gradient penalty term, ∇ denotes the gradient
operator, Gp represents the gradient penalty, ϵ stands for
a real number in the range [0,1], and ∥·∥2 denotes the L2
parametrization of a vector.

2) GENERATOR STRUCTURE OPTIMIZATION
Similarly, to address the issue of training instability in GANs,
we incorporate a residual network module into the generative
network, enabling the fusion of the features learned by the
higher-level network [39].
The proposed residual generative adversarial network opti-

mizes the feature transfer operations between different neural
network layers by adding inputs and mappings at the output
of each hidden layer. The proposed residual generative adver-
sarial network is composed of five residual network layers.
Additionally, the model architecture is depicted in Fig. 5.

FIGURE 5. Structural illustration of the residual generation model.

3) DISCRIMINATOR STRUCTURE OPTIMIZATION
The network structure of the discriminator is inspired by
MnasNet, and a decomposed hierarchical search space is
integrated into the discriminator to achieve hierarchical diver-
sity. In this method, the CNN model is divided into discrete
blocks, the input resolution is gradually decreased, the filter
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size is increased, and separate searches are carried out for
the operations and connections in each block. This enables
the use of various layer structures in various blocks [40]. The
strategy ensures layer diversity and boosts the computa-
tional efficiency of the network by lowering the number
of required parameters. Fig. 6 shows the enhanced dis-
criminator structure, while Fig. 7 shows the phase layer
structure.

FIGURE 6. Architecture of the discriminator.

FIGURE 7. The layer configuration of the discriminator. ‘‘MBConv’’
represents mobile inverted bottleneck convolution, and ‘‘DWConv’’
signifies depthwise convolution.

B. FAULT CLASSIFICATION BASED ON THE PSA-DRSN
The PSA-based residual shrinkage block and the architec-
ture of the pyramidal squeezed attention-based deep residual
shrinkage network (PSA-DRSN) introduced in this paper are
depicted in Fig. 8 and Fig. 9, respectively.

The PSAmodule, depicted in Fig. 10, employs amultiscale
pyramidal convolution structure to combine the informa-
tion acquired from the input feature maps [41]. Initially,
the PSA module constructs a multiscale feature map using
the proposed squeeze-and-concatenation (SPC) technique,
as depicted in Fig. 11. The relationship can be formulated as
follows:

G = 2
K−1
2 (15)

where K represents the nucleus size and G represents the
group size.

FIGURE 8. PSA-based residual shrinkage block (PSA-RSB).

FIGURE 9. Architecture of the PSA-DRSN model.

FIGURE 10. Architecture of the PSA module.

FIGURE 11. The SPC module, where C denotes the input channel
dimensions of each branch, and each feature map at different scales of Fi
has a common channel dimensionality of C ′ = C/S with S=4. Concat
denotes connecting features in the channel dimension.

The equation defining the generation of the multiscale
feature map is as follows:

Fi = Conv (ki × ki,Gi) (X ) i = 0, 1, 2 · · · S − 1 (16)

where ki = 2 × (i+ 1) + 1 denotes the ith kernel size, Gi
denotes the ith group size, and Fi signifies the feature maps
at distinct scales.

The multiscale preprocessed feature maps are obtained as
shown in the following equation:

F = Cat ([F0,F1, · · · ,FS−1]) (17)
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Channel-level attention vectors are obtained through the
utilization of the SEWeight module for attention extraction,
yielding attention weights that can be represented as a vector:

Zi = SEWeight (Fi) , i = 0, 1, 2 · · · S − 1 (18)

where Zi represents the attention weights.

FIGURE 12. SEWeight module.

To facilitate the interaction of attention information,
we fuse the cross-dimensional vectors. The complete mul-
tiscale channel attention vector is obtained sequentially as
outlined below:

Z = Z0 ⊕ Z1 ⊕ · · · ⊕ ZS−1 (19)

where the concatenation operator is denoted by ⊕, Zi rep-
resents the attention value originating from the Fi, and Z
signifies a vector comprising multiscale attention weights.

Second, the recalibration weights of the multiscale chan-
nels are acquired by recalibrating the channel-level attention
vectors using the softmax function, as shown in the following
equation:

atti = Soft max (Zi) =
exp (Zi)

S−1∑
i=0

exp (Zi)

(20)

where atti is theweight of themultiscale channel recalibration
operation. The channel attention of the feature recalibration
process is stitched and fused to obtain the whole channel
attention vector as follows:

att = att0 ⊕ att1 ⊕ · · · ⊕ attS−1 (21)

where att is the multiscale channel weight obtained after
noticing the interaction.

Finally, multiplying the rescaled weights of the multiscale
channel attention atti with the feature map of the correspond-
ing scaleFi yields a refined featuremapwith richermultiscale
feature information, which can be expressed as:

Yi = Fi ⊙ atti i = 1, 2, 3, · · · S − 1 (22)

C. UNBALANCED FAULT DIAGNOSIS BASED ON THE
RFH-GAN AND PSA-DRSN
This study introduces a novel fault diagnosis approach that
integrates an RFH-GAN and a PSA-DRSN to tackle the data
imbalance issue in fault diagnosis cases. The RFH-GAN is
trained to adaptively learn the data distribution and generate
fault samples to construct balanced data. However, the gener-
ated samples inevitably contain noisy or redundant features.
To mitigate the impact of noise or redundant features on the
deep learning-based diagnosis results, this paper employs the
PSA-DRSN. The PSA-DRSN learns effective discriminative

features from noise-containing data or more complex data
to achieve enhanced diagnosis accuracy and stability. The
specific process of this method is illustrated in Fig. 13.

(1) Data preprocessing is performed. The TD signals are
first truncated using a sliding window, as depicted in (a)
of Fig. 14. The truncation window covers M data units at
once, where each unit represents a complete cycle. After
each intercept, the window is shifted backward by N units.
Subsequently, the CWT is applied to convert the signals into
a TF image. This process is iterated until reaching the end,
as illustrated in (b) of Fig. 14.

(2) The generative network is trained using the TF images
generated by the CWT, and the generator is used to generate
fault samples after the training process is completed.

(3) The CWT-transformed normal samples are partitioned
into training and test sets at an 8:2 ratio. The test set for
the fault category contains an equal number of samples to
that contained in the test set for the normal category. The
generator is exclusively incorporated into the training set to
produce fault samples.

(4) The PSA-DRSN is trained using the training and test
sets to assess the model’s performance. The model’s effec-
tiveness is evaluated through metrics such as the recall and
F1 values.

IV. EXPERIMENT
A. VALIDATION USING THE CWRU DATASET
1) DATASET DESCRIPTION AND TRANSFORMATION
We utilized the CWRU bearing dataset, encompassing four
distinct bearing health conditions: normal, inner fault (IF),
outer fault (OF), and rolling element failure (RF). The dataset
was established under four distinct operational conditions,
as depicted in Table 1. The experimental data were segregated
into two sections, fans and drive ends, with sampling frequen-
cies of 12 kHz and 48 kHz, respectively. The experiments
were performed using the drive-side data with a sampling fre-
quency of 12 kHz. To provide comprehensive representations
of the bearings’ statuses while accounting for various types
of bearing faults, fault sizes, and operating conditions, the
bearings were categorized into 10 types based on their fault
types and sizes, as detailed in Table 2.

TABLE 1. Four distinct operational scenarios.

Fig. 15 illustrates the TD waveforms of various health
states. The TD diagrams clearly show that vibration data
in the normal state are characterized by a smooth profile
with minor amplitude fluctuations. Conversely, under faulty
conditions, notable shocks and burrs are observed in the
TD waveforms, with the amplitudes of shocks increasing in
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FIGURE 13. Experimental flowchart.

FIGURE 14. Schematic diagrams of the vibration signal truncation and
conversion processes.

the majority of the fault vibration data as the bearing fault
severity rises.

Fig. 16 showcases the TF images extracted from the TD
data of the CWRU dataset after performing CWT process-
ing. These images portray the various states, including the

TABLE 2. Dataset description.

FIGURE 15. TD waveforms of vibration data obtained under various
health conditions.

normal, rolling body failure, inner fault, and outer fault states.
Discrepancies in the TF attributes across distinct health states
are discernible from the illustration. More specifically, the
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FIGURE 16. TF images derived through the application of the CWT to
vibration data representing distinct health conditions.

TF images of the normal state display relatively consistent
and smooth attributes, whereas those corresponding to faulty
statesmanifest substantial alterations across both the time and
frequency domains. Noteworthy peaks and irregular patterns
characterize these alterations, and the amplitudes of these
attributes typically escalate with the severity of the bearing
fault.

Fig. 17 illustrates a comparative analysis between the ini-
tial TF images and their generated counterparts across three
distinct health conditions.

FIGURE 17. Original and generated images depicting various health
conditions: (a) original image in the normal state; (b) generated image in
the normal state; (c) original image of an inner fault; (d) generated image
of an inner fault; (e) original image of an outer fault; and (f) generated
image of an outer fault.

We assessed the obtained samples’ Fr’echet inception dis-
tance (FID) and maximummean discrepancy (MMD) values.
Two DAmethods, a WGAN and a DCGAN, were also tested.
In each experiment, 60 TF images were chosen at random,
and only samples of this kind were used to explicitly train the
model. The experimental setups and outcomes of the various
DA approaches are described in Table 3. The training period
was set to 400 for the WGAN, DCGAN, and RHF-GAN.

TABLE 3. Experimental setups and outcomes of different DA approaches.

2) DATASET SETUP AND RESULTS ANALYSIS
In practical engineering scenarios, the amount of data col-
lected during the normal operations of rolling bearings
is typically significantly greater than the amount of fault
data [42]. To assess the effectiveness of the proposedmodel in
terms of addressing imbalanced data, it is crucial to replicate

the real-world engineering context, where the amount of data
collected during normal rolling bearing operations greatly
surpasses the amount of faulty data. However, substantial data
disparities can readily constrain the classification precision
of the utilized fault diagnosis method. Consequently, this
study established four imbalanced datasets and one balanced
dataset to mirror the authentic engineering setting. The bal-
anced dataset employed synthesized samples to augment the
fault data, whereas the imbalanced dataset’s samples were
randomly drawn from the original dataset. The ratio of normal
samples to fault samples and their respective quantities are
detailed in Table 4.

TABLE 4. Datasets with different proportions.

In this experimental setup, which is characterized by an
imbalanced dataset, a comprehensive performance compar-
ison involving the proposed model was conducted using
evaluation metrics, including the F1 value, recall, precision,
and a confusion matrix.

Fig. 18 illustrates that a reduction in the number of fault
samples results in diminished diagnostic performance for the
model. Conversely, an augmentation in the number of fault
samples leads to an enhancement in the model’s diagnostic
performance, accompanied by accelerated convergence. Gen-
erally, the diagnostic outcomes ameliorate with the upsurge in
the sample count. The collective findings obtained from the
five experiments are consolidated in Table 5.

TABLE 5. Diagnostic accuracies achieved on different datasets.

To evaluate the viability and feasibility of the suggested
method, we employed diverse deep learning models for
training on the datasets. Subsequently, the diagnostic out-
comes of the proposed method were juxtaposed with those
obtained from the previously developedmodels. The diagnos-
tic findings obtained from various procedures are contrasted
in Table 6.

To offer a more intuitive portrayal of the diagnostic out-
comes obtained across diverse datasets, we employed t-SNE
to reduce the dimensionality of the output layer for the
PSA-DRSN test set. The ensuing results were then visually
presented, as depicted in Fig. 20. The figure elucidates that
as the number of samples increases, the sample features
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FIGURE 18. F1 value, precision and recall variation curves.

FIGURE 19. Confusion matrices of the diagnostic results obtained on different datasets.

FIGURE 20. Feature visualizations produced via t-SNE.

TABLE 6. Outcomes of various approaches.

become more discernible. This observation implies the effec-
tiveness of the proposed approach in terms of mitigating data
imbalance concerns, ultimately enhancing the precision and
robustness of the diagnostic model [43].

B. VALIDATION USING THE PADERBORN UNIVERSITY
DATASET
1) DATASET DESCRIPTION AND TRANSFORMATION
For this experimental study, a bearing dataset from Paderborn
University, obtained from a dedicated bearing test bench, was

utilized. The experimental dataset was produced by intro-
ducing rolling bearings with varying damage types into a
bearing test module. All bearings employed in the experiment
belonged to the 8-body rolling category, designated 6203. The
defective bearingswere categorized into two classes: artificial
damage and real damage. Artificial damage entailed EDM
(cracking), drilling (spalling), and utilization of an electric
engraving machine (pitting), whereas real damage bearings
were derived from an accelerated life test bench. The dataset
was established under four distinct operational conditions,
each entailing three environmental variables, as depicted
in Table 7.

The Paderborn bearing dataset was sampled at a frequency
of 64 kHz and encompassed three health conditions: normal,
inner faults, and outer faults. The faulty data employed in the
experiments originated from genuine damage data acquired
through accelerated life tests. A total of 15 datasets were
harnessed, each encompassing 20 sets of raw data across four
distinct operational scenarios, as elaborated in Table 8.
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TABLE 7. Four distinct operational scenarios.

TABLE 8. Experimental dataset descriptions.

The TD waveforms representing distinct health conditions
are depicted in Fig. 21. For illustration purposes, a sample
from operational condition W0 was randomly chosen for the
health state dataset K001, whereas for the inner fault dataset
and the outer fault dataset, the single-point damage datasets
KI04 and KA04, respectively, were employed.

Fig. 21 depicts that in the healthy state, the vibration signal
manifests as a smooth, stochastic waveform. Conversely, the
inner and outer fault states showcase a pronounced rise in
amplitude, which is characterized by substantial periodic or
irregular shock and burr signals.

Fig. 22 depicts the TF images derived from the Paderborn
dataset’s TD data after performing the transformation. These
images portray the normal, inner fault, and outer fault condi-
tions. Evidently, distinct health conditions exhibit discernible
TF characteristics, as seen in the figure.

Fr’echet inception distance (FID) and maximum mean
discrepancy (MMD) values were computed for the acquired
samples. Three domain adaptation (DA) techniques, namely,
the WGAN, DCGAN, and RHF-GAN, were employed. Each
trial exclusively utilized samples of this type, selecting
60 random TF images. This explicit training approach is elab-
orated in Table 9, providing an overview of the experimental
configuration and the outcomes of distinct DA techniques.
A training duration of 400 iterations was applied for the
WGAN, the DCGAN, the RHF-GAN, and their combined
implementation.

TABLE 9. Experimental setups and outcomes of different DA approaches.

FIGURE 21. TD waveforms depicting vibration data across distinct health
conditions.

FIGURE 22. TF images extracted from vibration data across various health
conditions.

FIGURE 23. Original and generated images representing various health
conditions: (a) original inner fault image; (b) generated inner fault image;
(c) original outer fault image; and (d) generated outer fault image.

2) DATASET SETUP AND RESULTS ANALYSIS
In Experiment 2, we generated three unbalanced datasets and
one balanced dataset. The balanced dataset was augmented
with the generated samples to complement the faulty samples,
whereas the unbalanced dataset consisted of randomly chosen
samples from the original dataset. Table 10 outlines the ratio
of normal samples to each type of faulty sample and the
corresponding sample counts.

TABLE 10. Datasets with different proportions.

Fig. 24 demonstrates the enhancement in the model’s diag-
nostic performance as the number of fault samples escalates.
Furthermore, with a larger number of fault samples, themodel
exhibits accelerated convergence and attains improved final
outcomes. The average of the final results obtained from the
five conducted experiments is presented in Table 11.
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FIGURE 24. F1 value, precision and recall variation curves.

FIGURE 25. Confusion matrices produced for the Paderborn dataset.

FIGURE 26. Feature visualizations produced via t-SNE.

TABLE 11. Diagnostic accuracies achieved on different datasets.

We trained on the dataset using various deep learn-
ing models to validate the effectiveness of the suggested
approach. The proposed method’s diagnostic outcomes were
compared with those of the aforementioned models. The
F1 scores yielded by various techniques are displayed
in Table 12.

As illustrated in Fig. 25, the comparison among con-
fusion matrices produced across diverse datasets high-
lights the enhancement in the model’s classification
capability provided by the proposed method, effectively

TABLE 12. Outcomes of various approaches.

augmenting the diagnosis stability and accuracy of the
model.

Within this study, t-SNE was employed for dimensionality
reduction to visualize the results obtained by the output layer
of the PSA-DRSN on the test set, as depicted in Fig. 26.
The illustration highlights that with heightened sample bal-
ance, the sample features display enhanced differentiation
and separation. This observation underscores the efficacy of
the proposed method in terms of mitigating data imbalance
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concerns, consequently augmenting the precision and stabil-
ity of the diagnostic model [43].

V. CONCLUSION
This paper presents an intelligent method for diagnosing
bearing faults in the presence of data imbalance by utilizing
an RFH-GAN and a PSA-DRSN. The proposed approach
involves preprocessing the original signals using the CWT
to extract TF features enriched with fault-related informa-
tion. Subsequently, the RFH-GAN algorithm is deployed to
automatically learn the distribution of the input data and
generate additional fault samples for balancing the dataset.
Finally, fault diagnosis is performed using the PSA-DRSN.
Experimental results substantiate the efficacy of the proposed
method in terms of effectively managing fault data with vary-
ing degrees of imbalance, resulting in improved performance.

Nonetheless, the suggested approach exhibits certain lim-
itations. First, its reliance on high-quality vibration signals
for generating TF images renders its effectiveness susceptible
to compromised data quality. Second, the model training
process is tailored to a specific bearing type, potentially
inhibiting its generalization to alternative bearings or anal-
ogous mechanical configurations. As a result, forthcoming
research endeavors will center around enhancing the efficacy
of the proposed approach and broadening its adaptability to
encompass diverse bearing types or similar mechanical sys-
tems, with a particular emphasis on scenarios characterized
by suboptimal data quality.
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