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ABSTRACT Content recommendation systems, also known as recommenders, are pervasive and have
significant impact on user demands over the Internet. Platforms such as YouTube and Netflix constantly seek
to improve their recommendation systems, to provide better quality of experience (QoE) for their users. QoE,
in turn, depends on a multitude of factors, including the quality of recommendation (QoR), e.g., based on
users histories and content categories, and the quality of service (QoS), e.g., measured by network delay and
throughput. Even though QoS is key in a best-effort Internet, existing recommendation systems overlook it,
resulting in recommendations that are suboptimal in terms of QoE. In this study, our goal is to devise a QoS-
aware, QoE-friendly, content recommendation system and indicate its feasibility in thewild. For this purpose,
we conducted an experiment with real users driven by the following question: When should recommenders
account for low QoS? Each user is requested to evaluate pairs of videos, that vary in their contents and QoS
levels. We experimentally determined category-dependent thresholds that determine the sensitivity of users
with respect to QoS and QoR. Given the collected insights on QoS-aware recommendations, we considered
our second research question: Can recommenders compensate for low QoS?We conducted experiments over
the Internet, relying on YouTube API and network measurements tools, and report our findings on (i) the
characterization of QoS and (ii) the compensation for low QoS. Our measurements suggest that content far
from the trends tends to be far from the user. We quantified the extent to which unpopular content tends to
be served with a lower QoS and established a methodology to determine the relationship between content
popularity and its physical proximity to users. Then, we verified that making requests a bit trendier can hit
much closer content.

INDEX TERMS Network measurements, quality of experience, quality of service, recommenders.

I. INTRODUCTION
Recommendation systems drive a significant fraction of the
demand for content on the Internet. More than 50% of
YouTube user requests come from their recommendations [1].
In Netflix, this number builds up to 80% [2]. The main goal
of a recommendation system is to satisfy users by suggesting
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contents they will enjoy. However, the user satisfaction (or,
quality of experience – QoE) depends on a multitude of
factors. This makes the design of content recommendation
systems challenging, attracting significant research interest to
account for the multiple, sometimes conflicting, factors that
affect QoE [3], [4], [5], [6], [7], [8].

The relevance of a recommended item to a user (or, quality
of recommendation - QoR) is one among the multiple factors
that impact QoE. The quality in which the content is delivered
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FIGURE 1. Quality of service (QoS) and quality of recommendation (QoR)
impact quality of experience (QoE). Our experiments aim at figuring their
interplay, with implications to similarity caching, service provisioning and
content recommenders.

to the users (or, quality of service - QoS) also plays an
important role in QoE. In particular, for video services,
which account for the majority of Internet traffic [9], QoS
impairments (e.g., buffering, startup delay and low video
quality) are key aspects affecting QoE. While recommenders
such as those used by Netflix influence a significant portion
of users’ demands, caches such as those deployed by Akamai
serve a vast amount of content to end users. Caches reduce
the load on custodians, decrease the latency for users, and
benefit the network infrastructure by reducing traffic over
bottlenecks.

Given the benefits of caching, significant effort has
been invested in improving cache performance. In par-
ticular, similarity caching [10], [11], [12] and cost-aware
caching, including QoS-aware [13], [14] and utility-driven
caching [15], are some of the various recent developments in
this domain [16], [17], [18]. Such advances, in turn, suggest
novel opportunities but also pose new challenges in the realm
of content distribution.

The basic idea behind similarity caching and cost-aware
caching consists of determining both the similarity between
contents and the cost to serve and/or retrieve a content,
and then making decisions about which content to store
and/or serve based on such assessments. Clearly, the multiple
dimensions involved in the problem are intertwined, and
the optimal decisions are non trivial. In particular, a user
consuming a content not stored in a local cache may
experience low QoS, and may prefer to rely on a content
recommender to find a title that suits its expectations in
terms of both content and QoS, motivating our main research
question: Can a recommender compensate for low QoS?
Quality of Service (QoS). QoS metrics include network

delay and losses, as well as application layer metrics such
as video bitrate. Some of these elements are intertwined.
For instance, the bitrate may change to accommodate a
high loss ratio. QoS metrics are usually governed by
Service Level Agreements (SLAs) and are one of the major
focuses of network administrators, who monitor QoS to
eventually perform a system upgrade or reconfiguration. For
the purposes of this study, caching is a key element impacting
QoS. As mentioned above, by bringing content closer to
users, caches can reduce delay and losses.

FIGURE 2. Relation between network, QoS, QoR and QoE.

Quality of Recommendation (QoR). QoR refers to the
quality of recommendations issued by an automated recom-
mendation system. Users provide feedback about recommen-
dations explicitly, e.g., by indicating the number of stars
deserved by a certain video, or implicitly, e.g., by abandoning
a video session before it ends.
Quality of Experience (QoE). QoE is a broad concept that

encompasses any aspect that may impact the user experience.
It is commonly defined as the QoS perceived by users.
In this work, QoE encompasses all the QoS and QoR aspects
discussed above (see Figure 1). It may also encompass
additional contextual elements, such as the time of the day
and the device used by the user to watch a video.

In Figure 2 we further relate the QoS, QoR and QoE.
To accommodate the fact that, in previous works, QoE did
not account for content recommendations, in that figure
we distinguish between application-level metrics, such as
rebuffers and changes in resolution, and content-aware QoE,
which accounts for recommenders. As mentioned above,
given our focus on the relationship between network, caching
and recommenders, in the remainder of this work we refer to
content-aware QoE simply as QoE.

A. GOALS
Our work is driven by two main questions:

• When should recommenders account for QoS?
• Can recommenders compensate for low QoS?

We provide the following (partial) answer to our first
question: recommenders should account for QoS primarily
when the difference between interest in two videos (measured
by the number of stars to the low QoS video minus the
number of stars to high QoS video) varies between 0 and
2. As shown in Section II, in those cases, users may
change their preferences due to QoS-impairments. When the
difference between interests is large, users typically stick
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to their choices. When the difference between interests is
negative, QoS does not play a significant role. Considering
the scenarios wherein recommenders should account for QoS,
the second question relates to the extent to which it is feasible
to compensate for low QoS: Can recommenders compensate
for low QoS?We indicate that most contents have at least one
other content that is close to them, with respect to distances in
the recommender graph, and that can be served with a higher
QoS, e.g., because it is cached. Such contents are natural
candidates to replace each other, leveraging the recommender
graph, allowing recommenders to compensate for low QoS
(Section III).

B. INSIGHT
The design of recommendation systems, whose ultimate goal
is to deliver a high QoE, improves if both QoR and QoS
are considered by the recommendation algorithms. In fact,
QoS-aware recommendation systems have multiple benefits:
(a) end-users will enjoy a higher QoE, (b) content providers
will gain from the increased retention rate of their (more
satisfied) customers, and (c) network administrators can
optimize their network design (e.g., through novel caching
policies), as shown in some recent studies [18]. Moreover,
current architectural trends make joint QoR and QoS
recommendations feasible. This is evident in the practices of
content providers such as Netflix, Amazon, and YouTube,
which currently deploy and/or control caching devices in
content distribution networks (e.g., Netflix OpenConnect,
Amazon CloudFront, Google Global Cache and Akamai
CDN). Thus, content providers have knowledge of the QoS
according to which content can be delivered.

C. GAP IN PRIOR ART
While there is vast literature on recommendation systems
based on content/user characteristics (QoR) [1], [2], and
on the interplay between QoS and QoE [19], to the best
of our knowledge the relationship between QoS, QoR and
QoE has not been previously investigated (see Figure 1).
To build better recommendation systems and content delivery
mechanisms, wemust understand this interplay. For example:
Towhat extent do QoS impairments affect users’ choices with
respect to the content they want to consume? How does the
content category impact the sensitivity of users with respect
to QoS and QoR? Which of the two contents, A and B, with
QoRA > QoRB and QoSA < QoSB, should be preferred by
the recommendation system?Which will lead to a higher user
QoE? Currently, we lack answers to these questions.

D. CHALLENGES AND CONTRIBUTIONS
The most pressing challenge in understanding how QoS
and QoR impact QoE is conducting experiments with real
users. Even though there are some previous works that con-
sidered the interplay between caching and recommendation
systems [16], [17], [18], [20], [21], [22], none of these
works accounted for a reality check against experiments with

real users. Running such experiments involves motivating
users to participate, designing a robust experimental setup
and adjusting the experiments according to preliminary
input. In this study, we addressed these challenges by
devising controlled online experiments. To the best of our
knowledge, we provide the first dataset collected from real
users about preferences for video pairs, accounting for QoS
impairments.1 Motivated by this gap, we make the following
contributions (see also Table 1):

1) Experiments with real users. We built an exper-
imental web platform and collected data from real
users regarding their interests and sensitivity to QoS
impairments while watching a set of video pairs (one
with low QoS and supposedly high QoR, and the other
with high QoS and supposedly low QoR). For each
pair of videos presented, we collected overall feedback
about preferences, taking into account the nature of the
content and QoS, as well as feedback about each of the
two dimensions of interest: QoS and QoR.

2) Investigation of the relationship between QoR and
QoS. We report insights on the relationship between
recommendation and QoS. The interest in a video is
characterized by the number of stars the user assigns to
the video content, as is typically done on platforms such
as Netflix. We then defined the difference of interests
as interest for video A, served with low QoS, minus
interest for video B, served with high QoS. According
to our findings, if the difference of interests, measured
on a scale ranging from -5 to +5, is between 0 and 2,
a significant fraction of users prefer to watch the high
QoS video even though they would have preferred the
content of the low QoS video, i.e., if the difference of
interests is in the range [0,2], QoS affects users choices
with respect to the content they wish to consume.

3) Design of QoS-aware recommendation system,
given the QoS-QoR-QoE interplay thresholds
found.We conducted an initial data-driven study on the
design of future QoS-aware content recommendation
systems. The proposed logistic regression based
classifier, to classify videos according to the user’s
preferred choices, accounting for QoS and QoR,
reached an accuracy of 77.6%.

4) Characterization: far from the trends, far from
the user. We quantified the extent to which unpop-
ular content tends to be served with a lower QoS.
In particular, we establish a methodology to determine
the relationship between content popularity and its
physical proximity to users by combining sampling
of the recommendation graph and traceroutes in the
physical network. The proposed method allows us to
determine how popular a content has to be to be
closer to the user, and it is instrumental for tuning
recommenders.

1Our results can be reproduced and extended by the scientific community.
URLs, scripts and datasets are available at https://tinyurl.com/qosqoeqor
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TABLE 1. Overall set of questions and answers addressed in the study.

5) Compensation: A bit trendier, much closer. Favor-
ing slightly trendier content while issuing recommen-
dations (i.e., allowing a content distance between the
requested content and the served content) can signifi-
cantly increase the proximity of contents to users (i.e.,
decreasing network distance), positively impacting
QoS. In particular, our results suggest conditions under
which a recommender can compensate for low QoS,
at zero costs for the network admin.

As indicated in Table 1, it is worth noting that the notions
of content distance in the recommender graph and content
distance in the network are instantiated in a similar but
slightly different fashion when conducting the experiments to
answer our twomain questions. The content distance from the
recommender perspective was measured using the difference
between the number of stars towards each content while
answering our first main question, and through the distance
in the recommender graph while answering our second main
question. Content distance in the network is characterized
by network impairments while answering the first question,
and by network delay and number of hops towards servers
while answering the second question. Our key takeaways are
summarized as follows: recommenders should account for
QoS for contents that are close to each other (as measured
by the difference between the number of stars issued towards
the two) and they can compensate for low QoS (due to large
distances in the network, e.g., as measured by network delay)
by being replaced by alternative contents (whose distance is
small in the recommender graph).

Figure 2 illustrates the connections between our research
questions outlined in Table 1. In Section II, our primary
focus centers on the concepts of application QoS at the
level of visual stimuli, metrics pertaining to traditional QoE,
and content-aware QoE, as shown in the upper part of
Figure 2. Conversely, in Section III, our emphasis shifts
towards network parameters and recommenders, as indicated
in the lower part of Figure 2, which refers to the relationship
between network delays, caching and recommenders.

Overall, our work bridges network-level QoS, application-
level QoS, including rebufferings and resolution changes, and
content-aware QoE, through the unified pipeline shown in
Figure 2. Prior studies [23], [24], [25], [26] explored part
of this pipeline, focusing on how network parameters can be
leveraged to predict QoS disruptions at the application level,

and how the latter can be used to produce application-level
QoE metrics, such as the Video Multimethod Assessment
Fusion (VMAF) score. As elaborated in Appendix A, we used
the VMAF score to directly gauge the impact of video
impairments on QoE (Section II) and to indirectly determine
the influence of network conditions on QoE (Section III).

E. PAPER OUTLINE
Section II tackles contributions 1, 2 and 3, answering the
question ‘when should recommenders account for QoS?’
while Section III tackles contributions 4 and 5, answering
the question ‘can recommenders compensate for low QoS?’
Section IV presents related work, and Section V concludes
the study.

II. WHEN SHOULD RECOMMENDERS ACCOUNT FOR
QoS?
In this section, we describe and report the results of
our experiment to quantify the sensitivity of users with
respect to QoR and QoS. We developed an online plat-
form and invited users to visit it and participate in our
experiments. The data collection phase lasted 10 months
and the dataset comprises 1,002 entries and 376 partici-
pants. Each user provided feedback for, typically, 3 pairs
of videos.
Overview: We conducted experiments with real users to

assess their preferences with respect to video pairs. Each
user was exposed to a series of video pairs. Each pair
of videos was selected such that one of the videos was
hypothesized to bemore interesting than the other (hypothesis
checked in Section II-D). The video that was assumed to
be more interesting, however, was served with a lower QoS.
To this end, we purposely added QoS impairments to that
video. The disturbance types and frequencies were inspired
by [19], and consisted of rebufferings and bitrate changes
(for details on the disturbance frequencies and durations,
see Appendix A). Then, we experimentally validated our
hypothesis with respect to users’ interests and empirically
discovered the thresholds governing the tolerance of users
with respect to QoS impairments while choosing which video
to watch. In summary, the two products of our methodology
are (i) the collected dataset and (ii) a systematic strategy for
quantitatively answering the questions posed in the proposed
research agenda.
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A. DESCRIPTION OF THE EXPERIMENT
The user watches 3 pairs of videos; the 3 pairs presented
to each user are randomly selected from a set of 7 video
pairs corresponding to different categories. Although the
categories of both videos in the pair are the same (e.g.,
sports or music), the videos were chosen so that one of them
is, on average, more interesting than the other. In addition,
the supposedly more interesting video has a low quality of
service, whereas the less interesting video has high QoS.
Our goal is to analyze how much the user is willing to
compromise the quality of service in order to watch a more
interesting content, i.e., to quantify the tradeoff between
quality of service and quality of the content (for details
on QoS impairments and the demographics of users see
Appendices A and B).

1) VIDEO WITH LOW QoS (VIDEO A)
Despite having a lower QoS, it has content that is more
interesting for most users. For instance, in the sports category,
videos of extreme sports generally have more views than
those of less radical sports do.

2) VIDEO WITH HIGH QoS (VIDEO B)
Has no QoS impairments at all, but the content is generally
considered less interesting. For instance, in the category
of comedy, a classical joke is usually not considered as
interesting as a brand new one.

All selected videos lasted, roughly, 30 seconds so as to
make the experiment more attractive to a broader audience.

3) ETHICS AND PRIVACY
The participants were volunteers invited personally or
through mailing lists to participate in our measurement
campaign. The experiment lasts for approximately 8 minutes,
and participants were free to leave the experiment at any
point. In addition, participants were allowed to choose
whether they wanted to identify themselves (through their
email). We will share our results with those that identified
themselves.

4) TECHNICAL CONSIDERATIONS
Our experiments were conducted on the Internet. Participants
accessed the experiment through a website, in which they
were guided over video pairs and corresponding ques-
tionnaires. Note that the QoS impairments were added to
the videos in an offline fashion, prior to those videos
being presented to the users. The instability of the Internet
connectivity of users could, in principle, cause additional
QoS impairments. To avoid this, we developed a software
module that downloaded the entire video files in a given
session to a local cache in the participant’s machine before the
experiment started. By doing so, we were able to control the
QoS impairments to which each user was exposed. A detailed
list of the QoS impairments added to each video is available
together with our datasets. For the purposes of this study, the

impact of those impairments was fully captured through the
replies provided by users regarding how those impairments
impacted their QoS.

B. TERMINOLOGY AND FEATURES
Next, we introduce basic terminology.

1) VIDEO PAIRS
There were seven video pairs in our experiment. Each pair
comprised two videos of the same category/topic.

2) SESSION
Users typically watch three pairs of videos, and rate each pair
producing three samples that are recorded in our dataset.

3) SAMPLE
A record of the answers of a user rating a pair of videos,
i.e., interests values for the two videos in the pair along with
an annoyance value for the low-QoS video, the preferred
video and a textual field justifying the choice for the preferred
video.

4) CLASSIFIER
A recommendation system encompassing decision rules to
classify samples according to our target variable, namely,
which video in a given pair a user prefers to consume.

5) CLASSIFIER PERFORMANCE METRICS
Metrics used to assess and compare the performance of
different classifiers, e.g., F1 score or accuracy [27].

6) ACCURACY
One of our key performance metrics, which is equal to
the fraction of correctly classified samples in our dataset.
Accuracy assessment involves a resampling procedure, such
as cross-validation.

Next, we list the features collected in our experiment.
After watching a video pair, the user was asked to complete

a form with the following fields:

7) INTEREST IN LOW QoS VIDEO (IntLowQoS)
Interest in the content of the low QoS video (integer values
from 0 to 5).

8) INTEREST IN HIGH QoS VIDEO (IntHighQoS)
Interest in the content of the high QoS video (integer values
from 0 to 5).

9) ANNOYANCE
A measure of the user’s discomfort with respect to inter-
ruptions in one of the videos. Annoyance reflects the
user’s sensitivity to video quality glitches, in the video that
contained disturbances (integer values from 0 to 5).
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TABLE 2. Statistics on video pair preferences, showing the 95% confidence intervals of interests expressed over videos and annoyance due to QoS
impairments.

10) PREFERENCE
Preference for one of the two videos. It takes a binary
value, either lowQoS or highQoS. This is the target variable.
It indicates which video a user preferred, accounting for
interests and sensitivity to QoS impairments.

11) RATIONALE AND COMMENTS
After each session, the user is invited to explain, in text, why
he/she has chosen a video. The user can also add additional
information regarding the experiment.

We derived an additional feature based on sentiment
analysis of the provided text comments: polarity score.

12) POLARITY SCORE (SENTIMENT)
A continuous metric generated by the VADER sentiment
analysis tool [28] executed on top of the textual feedback
(rationale and comments), taking values from −1 to +1
(details deferred to Section II-F).

Among our findings, we discovered that, together with
other features, the polarity score significantly improved
classification accuracy (Section II-F).

C. EXPERIMENTAL RESULTS
In this section we report basic experimental results. Our
goals are to (i) test whether our assumption about the videos
hypothesized as being less interesting, holds in the considered
population; (ii) verify whether users were able to distinguish
between QoS and the nature of the content and (iii) assess the
role of QoS in user choices.

We begin by considering goal (i), and compute the means
and confidence intervals of users’ interests, corresponding to
the low and high QoS videos. Our aim is to check whether our
assumption regarding videos with high QoS, hypothesized as
being less interesting, holds in practice. Let I (L) and I (H) be
the interests in low and high QoS videos, respectively. Let
I
(L)

and I
(H)

be the corresponding sample means.
From our experiments, we learned that I

(L)
= 3.31 and

I
(H)

= 2.77. In addition, the 95% confidence intervals are

FIGURE 3. Annoyance per video pair.

given by

I (L) ∈ (3.22, 3.39), I (H) ∈ (2.67, 2.86). (1)

Clearly, the interest expressed over low QoS videos is
greater than that over high QoS videos, and the confidence
intervals do not overlap, suggesting that the difference
is statistically significant. To further validate this point,
we executed a one-sided statistical hypothesis test, in which
the null hypothesis H0 corresponds to the mean interest
over low QoS videos being smaller than or equal to the
mean interest over high QoS videos, and the alternative
hypothesisH1 corresponds to the mean interest over low QoS
videos being greater than the mean interest over high QoS
videos. We were able to reject the null hypothesis, with a
p-value less than 0.05, indicating that the positive difference
between interests over low QoS and high QoS videos is
statistically significant. The above conclusions still hold
for all the considered categories, with a notable exception
being the category of animals, where the confidence intervals
overlap. However, the statistical one-sided hypothesis test is
still able to reject the null hypothesis (see column p-value
in Table 2).

Table 2 reports the different video pair categories, together
with the number of samples collected for each category.
It also indicates the number of users that preferred each of
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TABLE 3. Correlation matrix.

the two videos in each session (those results are discussed
in Section II-E). Table 2 shows that the samples are
uniformly distributed across categories, and confirms the
above observations regarding the difference between interests
across categories, as further discussed next.

D. HYPOTHESIS AND CONSISTENCY CHECKS
1) HYPOTHESIS CHECK
Table 2 reports the mean and standard deviations of
Annoyance and interest levels in low and high QoS videos
(IntLowQoS and IntHighQoS). It also reports the 95%
confidence intervals for the two latter metrics. Clearly,
the average interest for the low QoS video is consistently
higher than that for the high QoS video (thus validating our
hypothesis). The greatest difference occurred for the science
category (category 6) and the smallest for documentaries on
animals (category 5). As discussed above, the latter category
is the single category for which there is an overlap between
the confidence intervals corresponding to interests in low and
high QoS videos.

Figure 3 shows how Annoyance varied for different video
pairs, with error bars corresponding to standard deviations.
Figure 3 together with Table 2 indicate that users who
preferred the high QoS video typically were more sensitive to
QoS impairments, implying that QoS played a fundamental
role in their preference for the high QoS video. The results
reported in Figure 3 and Table 2 serve to confirm that users
in general faced a tradeoff between QoR and QoS while
choosing their preferred video.

2) CONSISTENCY CHECK
Table 3 presents the correlation matrix for a selected set of
features. The matrix indicates that most participants knew
how to answer the questionnaires properly. This conclusion
is supported by the low correlation observed between
Annoyance and interest in the low QoS video (IntLowQoS).
It suggests that participants were capable of isolating the
influence of QoS when assessing their interest for contents,
and that they were able to jointly account for QoS and QoR
when determining which videos they preferred to consume.

For each pair of features, we performed a hypothesis test
in which the null hypothesis corresponded to no correlation
between the features. In Table 3, we highlight the entries
for which the p-value is less than 0.0001, indicating that the
correlation is statistically significant. The three pairs with
correlated features are: (i) IntLowQoS and IntHighQoS, (ii)
Annoyance and IntHighQoS, and (iii) Annoyance and Senti-
ment. The first pair, in particular, confirms our expectations

FIGURE 4. Video preferences as a function of interests and QoS: when
the difference between interests is smaller than 2, users trade between
QoS and QoR and may prefer a less interesting video with higher QoS.

regarding the behavior of users, providing further evidence
that the experiment is inherently consistent.

E. QoS VS. QoR: WHAT (AND WHEN) IS IMPORTANT?
Figure 4 summarizes the role played by QoS and the nature
of the content in user choices. The x-axis indicates the
difference between interests towards low and high QoS
videos, IntLowQoS - IntHighQoS (ranging from -5 to 5).
Each bar indicates the number of samples in which users
preferred each of the two videos in each video pair. As a sanity
check, when users prefer the content of the high QoS video
(i.e., negative values in the x-axis), it is almost always the
case that they choose that video as their preferred one (90%
of cases).

Note that some users found that, in certain video pairs,
we reduced the quality of the video that was deemed less
interesting for them. Hence, it is not always the high QoR
video whose QoS is reduced. In the particular instances of
video pairs wherein low QoR videos had their QoS reduced,
users did not encounter a dilemma in their selections. In such
cases, the majority of users consistently chose the video with
the higher QoS and QoR as their preferred option, although a
few exceptions are discussed in Appendix C.

1) WHEN THE DIFFERENCE BETWEEN INTERESTS IS SMALL
OR ZERO, QoS IS IMPORTANT
In particular, when the difference between interests is 0, the
high QoS video is chosen in 71.9% of cases. The remaining
28.1% of the answers can be explained by the granularity that
the users could declare their interests, e.g., a user slightly
more interested in the low QoS video might have equally
rated her interest in both videos. In situations where the
difference between interests is 1 or 2 (on the x-axis), the
low QoS video is still the most preferred choice. However,
for a significant fraction of samples (30%) users chose
the high QoS video, even when it did not correspond to
their favorite contents. Those scenarios clearly involved a
tradeoff, wherein users favored QoS over QoR. One of our
aims in the remainder of this paper is to characterize and
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FIGURE 5. Word clouds for comments by users that prefer (a) high and (b) low QoS videos. The former focus on interruptions, and
the latter on content.

automatically identify those scenarios to improve the design
of recommendation systems.

2) THE ROLE OF QoS IS CATEGORY DEPENDENT
Returning to Table 2, among the 1002 samples, in 561 (i.e.,
55.99%) users preferred the high QoS video. As previously
pointed out, the average interest towards low QoS videos was
higher than that towards high QoS across all the 7 video pairs
considered (see Table 2). However, in 5 out of the 7 video
pairs (namely, football, comedy, extreme sports, animals
documentary and music) most users preferred the high QoS
video clips (Table 2) despite expressing more interest towards
the low QoS video. The other 2 video pairs (pets and
scientific documentary), in which the majority preferred
the video with interruptions, were precisely those with the
largest difference of interests between the videos of the pair.
In these situations, the average difference between interests
was greater than 0.8 stars. Additionally, these two video pairs
were the ones where users reported the lowest absolute values
of Annoyance, suggesting that when watching videos about
pets and science users are concomitantly (i) more determined
with respect to their interests and (ii) less sensitive to QoS
impairments.

F. TEXT MINING AND SENTIMENT ANALYSIS
By analyzing the textual information provided by users,
we can gain insights into how they formulate their decision-
making process, with respect to their overall satisfaction with
a video. One approach to analyzing the text is to count the
occurrences of specific words or terms to determine what
the users deem most important. To this end, Figures 5(a)
and 5(b) present word clouds for comments made by users
who preferred high and low QoS videos, respectively. In the
word cloud representing the high QoS choice (Figure 5(a))
there is a much more significant presence of words related
to QoS such as: quality, image, interruption, failure and flaw.
It is also important to highlight the presence of the preposition
‘‘without’’ which is almost always associated with the word
‘‘failure’’ to indicate ‘‘without failure’’.

In the word cloud referring to instances where the low
QoS video was preferred (Figure 5(b)), ‘‘interesting’’ and

FIGURE 6. Accuracy of classification of users that prefer high QoS and
less interesting videos as opposed to low QoS and more interesting
videos, as a function of polarity score threshold.

‘‘content’’ were the most prevalent words. Words related to
QoS, such as ‘‘quality’’, are still present, but the presence
of the word ‘‘despite’’ is noteworthy as it generally denotes
contrast. In many instances, users explained that they chose
the low QoS video despite its low quality. In summary, word
clouds are instrumental to understand the participants video-
choice process, and corroborate the fact that QoS and QoR
play a fundamental role in determining QoE.

Next, we explore the relationship between sentiment
analysis and video recommendations. In particular, we focus
on one of our experimental findings that relates (a) sentiments
expressed by users in their remarks about the experiments,
with (b) their choice of preferred videos.

Using off-the-shelf sentiment analysis algorithms, we found
a correlation between the sentiments expressed by users and
their choice of preferred videos. In particular, we found
that users with more positive sentiments tended to be more
inclined towards preferring videos with lower QoS (they
are more resistant and lenient towards QoS impairments).
In contrast, users who choose the high QoS video, usually
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complain about the lack of quality in the low QoS one. Thus
their explanations contained more negative words.

Valence Aware Dictionary and Sentiment Reasoner
(VADER) provides a lexicon and a rule-based sentiment
analysis tool. Given a textual input, VADER returns a polarity
score, which measures how positive or negative is a given
piece of text [28]. The polarity score ranges between -1 and 1.
We empirically found the optimal threshold of 0.36 to classify
our data. Using this threshold, we establish the following
rule: the estimated preference is categorized towards the
‘‘high QoS’’ video if the polarity score is less than or equal
to a threshold of 0.36, and towards the ‘‘low QoS’’ video
otherwise.

We empirically observed that negative comments refer
to complaints about QoS that lead to the choice of high
QoS videos despite their less interesting content. Figure 6
shows the accuracy of the classification of users who prefer
high QoS and less interesting videos as opposed to low
QoS and more interesting videos, as a function of polarity
score threshold T . If the polarity score of a post is below
T , we classify the post as pertaining to a user who favors
QoS. Otherwise, the post is classified as favoring QoR.
Indeed, an interesting finding is that using the polarity score
metric and the above simple rule, with T = 0.36, namely,
that if polarity is less than or equal to 0.36, the estimated
preference is high QoS. We achieve an accuracy of 62.3%
(see Figure 6) and a precision for low and high QoS videos of
59.1% and 64.1%, respectively. Similar results were obtained
while training a decision tree to distinguish between the two
classes, with the entropy of the classes as the criterion to
set the threshold. This is a promising result for the ability
to predict the expected preference of users, with respect to
QoS and QoR, e.g., from past users’ comments; we plan to
further investigate this relationship between natural language
processing, users moods, and QoS-sensitivity as part of future
research.

G. MODELING USER CHOICES
Next, our goal is to derive decision rules for predicting
users’ preferences. For that purpose, we consider supervised
learning approaches [29]. First, we rely on a classical
statistical model, namely, Logistic Regression. Linear Dis-
criminant, Quadratic Discriminant, and K-nearest neighbors
are discussed in Appendix C. In Appendix C we also propose
a heuristic to remove outliers and proceed with machine
learning approaches and a ten fold cross validation. While the
first class ofmodels is simpler and amenable to interpretation,
the latter leads to higher accuracy. In Appendix D we
also balance between interpretability and accuracy through
decision trees.

Figure 7 shows a scatter plot of our dataset accounting
for two features: DiffInterests and Annoyance. Recall that
DiffInterests refers to the difference between interests
expressed for videos served with low and high QoS,
DiffInterests = IntLowQoS - IntHighQoS. All the features

FIGURE 7. Scatter plot of Annoyance against DiffInterests.

considered in our model have a discrete nature. Therefore,
for a clearer visualization with scatter plots, we added a low
variance white noise to each point coordinate.We empirically
found that adding independent random Gaussian noise with
zero mean and standard deviation of 0.2 suffices for our
visualization purposes.

In Figure 7, each point corresponds to a given sample.
Points in blue and red correspond to samples in which users
preferred the high QoS and low QoS videos, respectively.
Figure 7 indicates that it is possible to split the plane in two
regions. In the extreme right region (content of lowQoS video
strongly preferred against content of high QoS video, with
DiffInterests ≥ 2) most users preferred to watch the low QoS
video. When the difference between interests varies between
0 and 2, 0 ≤ DiffInterests ≤ 2, even though the content of the
low QoS video is preferred on average, a significant fraction
of users experience higher QoE while watching the high QoS
video.

1) LOGISTIC REGRESSION
Motivated by Figure 7, we consider a simple logistic
regression model with DiffInterests and Annoyance as
candidate features. To formally assess the relevance of
these two features, we considered a more complex model
wherein all the features were present. We then performed the
corresponding hypothesis tests with the null hypothesis being
that DiffInterests and Annoyance do not play a significant
role in the outcome variable. For both features, we were able
to reject the null hypothesis, with p-values smaller than 10−8.
We also ran the same tests for the other features, and we were
not able to reject the null hypothesis in those other cases.
The fact that Annoyance and DiffInterests are both relevant
features bodes well with Figure 7, which indicates that these
two features indeed play important roles in the classification
of the samples.

The dataset was randomly divided into training (752
observations) and testing (250 observations). Using only
75 percent of the data to fit the model, the estimated
coefficients of the line separating the two regions were
quite close to those obtained when using the complete data
set (dotted line in Figure 7). The accuracy of the test set
was comparable to that obtained using the resubstitution
method (i.e., using the whole data set for both training and
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testing). In addition, when considering only the training set
both features were still considered significant, with p-values
less than 10−6 for both DiffInterests and Annoyance. The
accuracy, precision, recall and F1-score equal 0.776, 0.7727,
0.7748 and 0.7716, respectively. We also experimented with
LDA (solid line in Figure 7), producing similar results of
0.768, 0.7625, 0.7619 and 0.7632, respectively.

III. CAN RECOMMENDERS COMPENSATE FOR QoS?
In this section, we report results on Internet measurements
indicating the feasibility of characterizing the QoS at which
different items can be served. Given such characterization,
and information about the content recommendation graph,
we present findings to support conditions under which we
have an affirmative answer to our main question, namely: Can
recommenders compensate for low QoS?

The proposed methodology involves both network and rec-
ommender measurements. Network measurements are used
to collect information regarding delays incurred to consume
different videos. We refer to the approach used to assess
those delays as content-aware pings and traceroutes, as it
involves first identifying the host that will serve the desired
content, and then issuing a ping and a traceroute
towards that host to assess the corresponding delay. Then,
we combine information collected from such measurements
together with measurements of the recommendation graph.
By sampling the YouTube recommendation graph we learn
which contents are close to each other. Then, we bridge
the gap between closeness with respect to the nature of the
content (content distance) and with respect to host proximity
(network distance) to draw our main findings. Our key
contributions are summarized as follows.

A. CHARACTERIZATION: FAR FROM THE TRENDS, FAR
FROM THE USER
We quantified the extent to which unpopular content tends
to be served with a lower QoS. In particular, we establish a
methodology to determine the relationship between content
popularity and its physical proximity to users by combining
sampling of the recommendation graph and traceroutes in
the physical network. The proposed method allows us to
determine how popular a content has to be to be closer to the
user, and it is instrumental for tuning recommenders.

B. COMPENSATION: A BIT TRENDIER, MUCH CLOSER
Favoring slightly trendier content while issuing recom-
mendations (i.e., allowing a content distance between the
requested content and the served content) can significantly
increase the proximity of contents to users (i.e., decreasing
network distance), positively impacting QoS. In particular,
our results suggest conditions under which a recommender
can compensate for low QoS, at zero costs for the network
admin.

Next, we introduce the measurement methodology. Then,
Sections III-F and III-H report a characterization of delays

towards contents and the extent to which recommenders can
compensate for those delays, respectively.

C. METHODOLOGY
1) GOALS
Popular and trending videos are known to be cached close to
users. In YouTube, in particular, a list of trending contents
is presented to users on their home page. Beyond such
remarkably trending contents, which other contents are
cached closer to users? How do different features, such as
the number of views, impact closeness? And how do users
profiles, e.g., reflected through their vantage points, impact
delays towards different contents?

TABLE 4. Datasets descriptors.

2) OVERVIEW
We used YouTube API to access the recommendation system
and generate recommendation graphs for each trending
content by performing a Breadth-First Search (BFS) through
the network of recommendations [22]. Then, we emulate
a request towards each of the videos, and determine the
corresponding media server URLs.

Let T be the set of trending videos considered as our seeds
for the BFS.We let |T | = 50, i.e., we consider the top-50most
popular videos in each of the considered regions, and start a
BFS from each of those. The BFSs are executed up to a depth
of five hops in the recommendation graph and account for
the first three videos in each of the observed recommendation
lists.

3) IS A VIDEO CACHED CLOSE TO THE REQUESTER?
We measured network level features, using ping and tracer-
oute towards video servers, and grouped the videos into two
clusters based on those metrics. Let C denote an indicator
variable, equal to 1 if our measurements suggest that the
video is cached close to our measurement vantage point, and
0 otherwise. Then, we computed the correlations between C
and metrics related to the recommenders, that are introduced
in the sequel.

4) DATASETS
A summary of the dataset descriptors is presented in Table 4.
Our dataset collected from vantage points in Rio de Janeiro,
for instance, has 872 video samples and 167 unique hosts
serving those videos, out of which 38% are marked as low
delay hosts. Content served by low delay hosts is assumed to
be cached close to users, i.e., C = 1.
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D. CONTENT DISTANCES BY RECOMMENDERS
We represent YouTube videos and their relations through
a recommendation graph G = (V, E). Thus, each video
is represented by a node, and each recommendation is
represented by an edge, where (i, j) ∈ E if j appears in the
recommendation list of i.

We consider an abstraction of a surfer that navigates across
the nodes of the recommendation graph. The surfer begins at
the seed of the graph. The shortest path between each video
and the seed is referred to as the video depth. The position of
the video in its corresponding recommendation list is referred
to as the videowidth. Note that whereas the depth is oblivious
to the ordering at which videos appear in the recommendation
lists, width is sensitive to such ordering.

1) RECOMMENDER MEASUREMENTS
Next, we consider the surfer sample path. Each time the surfer
visits a node, it produces a sample. The sample comprises the
identifier of the visited video and its view count, together with
its width and depth. Such measures are collected passively,
without interfering with the network state.

TABLE 5. Description of collected features per sample.

E. HOST DISTANCES IN THE NETWORK
We developed a software module to identify YouTube media
servers associated with each video in the recommendation
graph. Our module is similar to Wireshark web developer
tools [30]. It is important to note that the YouTube hosts
returned by our program are dependent on the network used
when collecting data. In this study, we focus on data collected
in Rio de Janeiro in an ISP’s network. After identifying hosts
associated with each sample, we performed traceroutes and
recorded the corresponding delays and path lengths.

1) FEATURE SUMMARY
A sample is a tuple containing (a) video identifier; (b) view
counts; (c) width; (d) depth; (e) host; (f ) delay observations;
(g) path length. Features are summarized in Table 5.

F. EXPERIMENTAL FINDINGS
Next, we report our experimental findings. Our experimental
goal was to characterize the relationship between the
recommendation graph and the QoS metrics.

1) BRIDGING RECOMMENDER AND NETWORK
Next, we report the correlations between recommender and
network metrics, bridging the collected measurements.

Let V and A denote the video view counts and age,
respectively, and let N be an indicator variable equal to 1 if
the video is in the native language of the region wherein our
vantage point was located, and 0 otherwise. We observed
correlations between C and the above three variables of 0.18,
0.12 and 0.13, respectively. Such correlations indicate the
extent to which more popular content is cached closer to our
vantage points. In particular, the correlation between video
language and caching suggests that the recommendation of
videos in native languages may favor users’ and higher QoS.

Let W and D denote the video width and depth, respec-
tively.

We observed negative correlations of -0.19 and -
0.23 between C and the above two metrics, respectively.
These correlations measure the tendency for videos nearer
to the recommender graph’s root to also be closer to users
within the cache network.

2) A FEW HOSTS SERVE MOST OF THE CONTENT
We found that different video links have a significant
overlap in their URLs, referring to machines stored in the
same datacenter. To illustrate this, we considered the hosts
observed from our vantage points in Rio Janeiro.We observed
four common prefixes when issuing requests to top-trending
Brazilian contents from a vantage point in Rio de Janeiro:
b8u, 8p8 and bg0. A fourth prefix, q4f, appeared in less than
5% of our requests, and was associated with high delays,
on the order of 150 ms (six times higher compared to the
others).

• b8u and 8p8 correspond to low delay values, as observed
from pings issued from Rio de Janeiro. Delays are
around 21 ms and the corresponding standard deviations
equal 0.28 ms and 0.42 ms;

• bg0 and q4f correspond to larger delays, around 28 ms
and 150 ms respectively. The corresponding standard
deviations were 11 ms and 0.45 ms.

In what follows, we refer to the aforementioned prefixes
simply as hosts, noting that they may subsume multiple
machines in the same domain. As hosts are distinguished
into two groups based on delays, we refer to those hosts as
high delay hosts and low delay hosts depending on the group
they fit. The corresponding videos served by those hosts are
marked as videos served by caches closer and farther away
from users, with C = 1 and C = 0, respectively.

3) A BIRDS EYE VIEW ACROSS COUNTRIES
Next, we present a birds eye view of our measurements.
We ran measurement campaigns across six countries. Each
country corresponds to one vantage point, and to its own set
of trendy contents.

Figure 8 shows the relationship between the distance in
the recommender graph against standardized delays, obtained
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using the MinMaxScaler [31], so that standardized delay
values fall in the range between 0 and 1. In all the
considered countries, moving deeper into the recommender
graph corresponds to higher delays. One of our aims in the
remainder of this study is to further investigate and quantify
this relationship, discussing its implications for the design of
recommenders.

Figure 9, in turn, shows the path lengths for hosts serving
contents in the six considered countries. It shows that hosts
are always up to thirteen hops from our vantage points, and
that the difference between the closest to the furthest host is
of at least two hops.

Due to space limitations, in what follows we focus our
detailed analysis on the Brazilian measurements, noting that
all our results extend to the six considered countries.

4) ACCOUNTING FOR MULTIPLE VANTAGE POINTS
Next, our goal is to further quantify the extent to which
unpopular content is impacted by slower-to-respond hosts.
To this end, we considered top trending Brazilian and
French videos. Then, we ping hosts storing those contents
from different vantage points, leveraging the measurement
infrastructure provided by SpeedChecker. We collected at

FIGURE 8. Scaled delays versus recommender depth. Scaled delays are
computed using MinMaxScaler [31].

FIGURE 9. Path lengths towards different hosts.

least 10 measurements from each host, and report median
values.

Table 7 illustrates our results. To produce Table 7,
we considered the Brazlian and French top-trending videos
and ping their closest hosts, from vantage points in Brazil,
Greece, USA and France. We grouped samples according
to whether they were associated with slower-to-respond or
fast-to-respond hosts, using the methodology described in the
previous section.

Clearly, the lowest delays for the top trending contents are
obtained in the regionswhere the contents are trending. As the
difference in delays can be of an order of magnitude, those
results illustrate that recommenders can have a significant
impact on the transit costs for service providers.2

G. SAMPLING OF RECOMMENDATION GRAPHS
Next, we describe the two strategies considered in this study
to sample the recommendation graph.

1) BREADTH FIRST SEARCH (BFS)
We set the seeds of our sampling strategy at the most popular
videos recommended by YouTube in a given region, and
exhaustively traverse the recommendations in a BFS fashion.
Each popular video generates its own rooted tree, where the
root (seed) of the tree corresponds to a popular video.

2) RANDOM WALK SAMPLING
We choose popular videos as seeds, and start random walks
from those. Each random walk corresponds to a sample path
in the recommendation graph, from the seed up to the bottom
most level. After reaching the bottom level, another seed
is selected from the top-50 most popular videos, and the
process is repeated. By the end of the process, we obtain a
collection of paths from the selected seeds (popular videos)
to the bottom ones (unpopular videos). We do not repeat the
same seed twice, with the aim of obtaining a representative
set of videos in each level.

3) CHALLENGES IN SAMPLING OF RECOMMENDATION
GRAPHS
Recommendation algorithms are strategic products, at the
core of content providers such as YouTube and Netflix.
Therefore, it is not surprising that the sampling of recom-
mendation graphs by third parties is constrained and must be
exercised under a sampling budget. Due to privacy concerns,
even in large companies such as Google, the separate content
recommendation and service provisioning teams may face
challenges in the exchange of data.

In what follows, we address such challenges involved in
the sampling of the YouTube recommendation graph, while
inquiring the YouTube API. Given the quota on the number of
API inquiries per time unit, we discovered a tradeoff between
the BFS and random walk sampling approaches. The random

2It has been reported in related work that delays and transit costs
negatively correlate with experienced QoS [30], [32].
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walk approach produces a dataset that is more balanced with
respect to the number of videos in each level. Nonetheless,
the YouTube quota is reached earlier when compared against
exhaustive BFS sampling. To further clarify that point, note
that at every request for R related videos, the value of R does
not impact the amount of quota spent, as quota are sensitive
only to the number of requests but not to the size of the
returned list. Parameter R is allowed to vary between 1 and
50 related videos. Therefore, while random walks generate
only one sample for each request for related videos, as they
randomly pick a video from the list, the exhaustive BFS
approach leverages all the videos on the related lists, and
allows the collection of larger datasets. Table 6 summarizes
the advantages and disadvantages of each of the considered
approaches. All results reported in the sequel were obtained
using BFS, except for Figures 10(b) and 11, that were
obtained using random walks.

H. EVALUATION
Next, we leverage the QoS characterization introduced in
the previous section to establish conditions under which
content recommennders can compensate for low QoS. First,
we indicate that a decision tree can capture delays based
on data collected from the recommendation graph. Then,
we illustrate a simple mechanism for recommenders to
leverage knowledge about delays to compensate for low QoS.

TABLE 6. Sampling approaches.

TABLE 7. Median ping values (times in milliseconds).

1) FROM CONTENT RECOMMENDATION GRAPHS TO
NETWORK METRICS
In this section we aim to answer the following question: Is it
feasible to assess delays (QoS) solely based on recommender
features? An affirmative answer to such question can sig-
nificantly simplify the design of QoS-aware recommenders
as, in this case, the distance of contents in the recommender
graph can be taken as a proxy to QoS metrics.

Figure 10 shows a decision tree (DT) that illustrates
the feasibility of classifying contents as a function of the

corresponding QoS at which they are served, solely based on
their view counts, published date and on their position in the
recommendation graph. The training and test sets were setup
in a way such that the two target classes (C = 1 and C = 0)
were balanced, i.e., 50% of the samples correspond to each
class.

Each node in the tree corresponds to a decision. The
root node corresponds to the decision that entails largest
discriminatory power, and consists of classifying videos
based on their depth in the recommender graph. As shown in
Figure 10(a), if depth is less than 4, a fraction of 70% of the
videos are served with high QoS (low ping values, C = 0).
Alternatively, if the view count is larger than 2,42 million
views, the content is classified as served with high QoS (low
ping values and C = 1). Finally, if the age of the video is
larger than one month, it is assumed not to be cached (flash
crowds towards recent content are not captured in this simple
DT).

Despite its simplicity, the presented DT already corre-
sponds to an accuracy, precision and recall of 0.72, 0.63 and
0.88, respectively.

We repeated the same experiment, considering random
walks as opposed to BFS to sample the recommendation
graph. After this change, accuracy, precision and recall were
0.77, 0.68 and 0.83, respectively, and the obtained tree
is presented in Figure 10(b). Note, in particular, that the
depth threshold in the recommendation graph, below which a
content is inferred to be cached, decreases when considering
random walks. This is because under random walks all top-
50most popular videos are included in our dataset, increasing
the relative number of samples with depth of 1 in the dataset.
Such depth threshold of 2 is in agreement with Figure 11(a),
also obtained with random walks and further discussed
next.

2) FROM NETWORK METRICS TO NOVEL CONTENT
RECOMMENDATIONS
Next, we consider the extent to which QoS-aware recom-
menders can compensate for low QoS. Figure 11(a) shows
the relationships between recommender features (width,
depth and view counts) and QoS (ping values). Each point
corresponds to a content. The red (resp., blue) points
correspond to contents served by high ping (resp., low ping)
hosts. Note that ‘‘close’’ to a red point we typically have
multiple blue points, corresponding to low ping values. Points
which are ‘‘close’’ to each other in that figure are near
each other in the recommendation graph, suggesting that the
recommender can compensate for low QoS.

To further illustrate the feasibility of determining which
contents can be served with high QoS, Figure 11(b) shows
how view counts and depth impact QoS. Figs. 11(a) and 11(b)
show a transition at depth 2, suggesting that contents in
levels 1 and 2 can be assumed to have low ping values.
A recommender can leverage that phase transition to tune the
order of recommendations, compensating for low QoS.
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FIGURE 10. Decision tree: inferring QoS-related metrics from
content-related attributes: (a) samples collected using breadth first
search and (b) samples collected using random walk. Accuracy, precision
and recall for cases (a) and (b) equal (0.72, 0.63, 0.83) and (0.77, 0.68,
0.83), respectively.

3) RECOMMENDERS AGAINST LOW QoS
To answer our main research question, we conducted
experiments simulating scenarios in which a user randomly
starts selecting one of the most trending videos, followed
by videos from subsequent recommendation lists. These
lists were presented in 2 ways: (i) the original order,
i.e., like they would be in YouTube and (ii) according
to an algorithm that prioritizes cached videos, the Cache-
Aware & BFS-related Recommendations (CABaRet) [22].
CABaRet recommendations replace some non-cached videos
with cached counterparts, and order videos in a way that
cached videos are preferably presented at the top of the
recommendation lists.

To determine whether a video is cached or not, we lever-
aged our measurements as described in the previous sec-
tion. In particular, we use the inferred indicator C to
determine whether a video is cached, and to eventually
increment hit counts. While the authors of the CABaRet
algorithm assumed, shrewdly, that the top 50 trending videos
were cached, our measurements allowed the application of
CABaRet algorithm with more information regarding the
network conditions of the media servers.

Thus, we compared the cache-hit ratio (CHR) produced
by YouTube’s lists of recommendations against the lists
generated by CABaRet. To this end, we varied themechanism
through which users select a video from a recommendation
list, considering two alternatives: uniform and Zipf. The uni-

form distribution assumes that users select videos uniformly
at random,whereas the Zipf distribution captures a preference
towards videos ranked in top positions [33]. We also vary
the two main CABaRet parameters: maximum depth (D̃) and
maximum width (W̃ ). Larger values correspond to broader
searches for cached contents in the recommendation graph,
providing more flexibility for recommenders to compensate
for QoS. In particular, when D̃ = 1 CABaRet only reorders
the recommendations, whereas for D̃ = 2 it also replaces
some non-cached videos with cached alternatives.

Figure 12 shows that CABaRet easily achieved a higher
CHR than YouTube baseline. When the request workload
is uniform, CABaRet requires larger D̃ and W̃ to show its
benefits. This is because both replacements and reorderings
of recommendations affect CHR under the Zipf workload,
whereas the uniform workload is insensitive to reorderings.
Summary: Combining recommender and network mea-

surements, we learned that recommendation reorderings are
sufficient to increase CHR from 0.64 to 0.89 under a
Zipf workload. Diminishing returns are gained by allowing
recommendations to be replaced, in addition to reorderings.
In particular, allowing for replacements of videos that are at
most two hops away in the recommendation graph suffices to
reach a CHR of 0.98.

IV. RELATED WORK
A. QoS AND QoE PARAMETERS
There is a vast literature on the interplay between QoS and
QoE [25], [34]. The network-level QoS metrics considered
in this study were delays and path lengths. Application-level
QoS metrics include rebufferings and changes in resolution,
whereas examples of QoE metrics include Mean Opinion
Scores (MOS) and VMAF. The abandonment rate and
fraction of watched video are two additional QoEmetrics that
implicitly characterize user experience.

In this work, we acknowledge previous studies on mapping
between network-level QoS, application-level QoS and QoE.
We contribute to this ecosystem by adding a new element,
namely, recommender systems that are influenced by QoS
and impact QoE. In what follows, we briefly overview
some of the previous works that mapped network-level QoS,
application-level QoS and QoE.

1) FROM NETWORK-LEVEL QoS TO APPLICATION-LEVEL
QoS AND QoE
In [35] the authors proposed one of the first mappings
between network-level QoS and QoE. They relied on random
neural networks (RNNs) [36] for that matter. Among the
conclusions, they indicate that packet losses significantly
impact bitrates, which in turn impact QoE, and show that an
RNN can capture such relations. In this work, we also account
for the impact of bitrate changes on QoE, indicating that users
may prefer to consume a video with fewer bitrate changes
even if it is of less interest than its counterpart (Section II).
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FIGURE 11. Relationships between recommender features (width, depth and log of view counts) and QoS (ping values). Red and blue points
correspond to high and low ping values. (a) ‘‘close’’ to an red point we typically have multiple blue points; (b) there is a clear phase transition when
depth grows beyond 2.

When traffic is encrypted, there are additional challenges
to relate network-level QoS metrics and application-level
QoS. In [24] the authors used passive network measurements
from encrypted traffic to estimate application-level QoS
metrics such as average bitrate, re-buferring ratio and startup
time. For this purpose, they relied mainly on packet sizes and
headers, assuming that the latter is not encrypted. In [23], the
authors also relied on encrypted traffic information to predict
application-level QoS, using machine learning for this goal.
In addition to objective metrics, they also inferred subjective
QoE metrics, such as the MOS, following the ITU P.1203
model [37]. In this study, we use VMAF as a subjectivemetric
to assess QoE and contribute with experiments with real users
to infer the experienced QoE as influenced by recommenders.

Traditional web caching and similarity-caching [10], [11],
[38] can significantly impact network-level QoS. Indeed,
research on similarity caching bodes well with the idea
that the interplay between network-level QoS, application-
level QoS and QoE can benefit the network and its users.
In this study, we focus on a unified perspective towards
QoS and QoR on user experience, which we refer to as
content-aware QoE. The tuning of parameters of similarity-
caches is, in essence, also related to QoS, QoR and QoE,
utilizing recommendation systems to enhance QoS at the
expense of diminished QoR. Nevertheless, previous studies
on similarity caching have concentrated on the network
performance aspect, neglecting the exploration of whether
users are receptive to consuming content with lower QoR in
exchange for higher QoS. To the best of our knowledge none
of these studies carried out experiments with real users on the
relationship between QoS, QoR and QoE, and we take a first
step in this direction.

2) FROM APPLICATION-LEVEL QoS TO QoE
Many studies have analyzed the impact of application-level
QoS on user experience at the application level. Some studies

considered implicit metrics related to user engagement, such
as retention and abandonment rates, and others considered
explicit metrics, such as MOS and VMAF, also known as
Video Quality Assessment (VQA) metrics. VQA metrics can
act as a proxy for QoE.

The impact of QoS on user retention was considered
in [19], [39], and [40]. In [39] it was shown that viewers start
abandoning a video if it takes more than 2 seconds to start.
In [19], the authors reported that users typically admit up to
two rebufferings while watching a YouTube video, and that
dropout rates rapidly grow after the second rebuffering event.
These results motivated us to add up to two rebufferings per
video (and never more than four). Additional details on the
QoS impairments and demographics of users considered in
our study can be found in Appendices A and B.

In [41] and [42] the authors considered user engagement
as their target QoE metric. In particular, in [42] the authors
accounted for users’ interests and QoS factors to build an
engagement/QoE predictive model. Our approach is aligned
with this integrated perspective to predict QoE. However,
while the authors of [42] inferred users’ interests using
Collaborative Filtering (CF), we conducted real experiments
to directly assess users interests through their explicit
feedback.

B. CONTEXT-AWARE AND MULTI-CRITERIA
RECOMMENDERS
According to [43, §1.2], the taxonomy of recommender
systems encompasses domain, purpose and context. The
context is the environment in which the consumer receives a
recommendation [44]. In a store, for instance, the recommen-
dation of items that are out of stock is frustrating in a system
employed to discover items to purchase.

Content recommenders are sensitive to the user con-
text [45], [46]. The user context is typically understood as
the day of the week, the place where the user is consuming
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its contents, or even the device. In this study, we considered a
novel dimension of context, namely, QoS. We have shown
that it is feasible to characterize and quantify QoS per
content, and that a recommender can benefit from such a
characterization. In particular, our work is complementary to
the state of the art in recommendation systems [47], as our
insights can be coupled to existing recommenders [48], [49],
[50], [51], [52].

In this study, we indicate that QoS impairments are a key
element impacting the recommendation system context, and
provide a systematic way to quantify its effect onQoE.Virtual
QoS impairments may be due to content that is out of cache,
and in that sense are similar to impairments due physical
items being out of stock [41].

C. RECOMMENDERS COMPENSATING FOR QoS
There is a large body of work on recommenders and QoS,
and on their interplay [22], [53]. However, to the best of
our knowledge there has been no measurements to assess the
extent at which recommenders can compensate for lowQoS.3

It is well known that proxy caches are a cheap and effective
solution to counter bottlenecks in networked systems [56].
In particular, they are the first choice before considering a
costly upgrade of the network infrastructure. In this study,
we have experimentally shown that content recommenders
can catalyze the benefits of caching, further increasing
its potential at virtually zero costs. In [30] and [57]
the authors investigated statistical properties of the paths
towards contents in YouTube and Netflix. In this study,
we build on such measurements, and consider how a content
recommender can leverage those to benefit the users.

There has been a recent surge in interest in the rela-
tionship between cache networks and recommendation sys-
tems [22], [58], [59], accounting for its impact on similarity
caching [11], hit rates at femto caches [20] and network
coding [60]. In [21], for instance, the authors considered
the problem of maximizing the cache hit rate, subject to
a maximum distortion in the demand caused by a biased
recommendation system. All previous efforts considered
synthetic data to parameterize and evaluate the proposed
solutions.We envision that the dataset presented in this paper,
together with the derived insights, will serve as basis for
a data-driven evaluation of those early works and a reality
check of assumptions.

Optimal allocations in cache networks typically require
knowing the cost-to-go, i.e., the cost incurred by a miss
up until finding the content at the closest cache [61].
The methodology considered in this study to characterize
QoS at the content level can be used for those purposes,
as well as to parametrize content recommenders. The
interplay between QoS and recommenders involves both
human-related and network-related elements. CABaRet [22]

3A preliminary version of this part of our work appeared as a poster at
the Internet Measurement Conference (IMC) 2021 [54] and at Globecom
2022 [55].

FIGURE 12. Cache Hit Rate (CHR) varying workloads and recommenders.

comprises a conceptual framework to capture these factors
in an integrated fashion. In this study, we report proof-of-
concept network measurements that are complementary to
CABaRet.

V. CONCLUSION AND FUTURE WORK
Content recommenders play a fundamental role in the way
content is consumed on the Internet. Nonetheless, they are
typically devised without accounting for one of the most
critical aspects of the Internet infrastructure, namely, its best
effort nature.

In this study, we reported insights from experiments with
real subjects to assess their sensitivity to recommenda-
tions adjusted based on QoS-related features. In particular,
we quantified how QoS and QoR impact QoE and users’
choice towards their favorite videos. Our experimental results
determine how users’ preferences depend on different factors,
such as the content category and network QoS. Thus, they
allow us to find thresholds for the design of QoS-aware
content recommendation systems.

We observed that the recommenders have significant
flexibility with respect to the available contents to be offered
and their corresponding QoS levels. We discovered that
contents located at depths of one or two in the recommender
graph are highly likely to be cached near users, suggesting a
simple heuristic to favor QoS while satisfying users interests
with an increased overall QoE. Accounting for QoS, in turn,
recommenders have the potential to benefit users (who
experience higher levels of QoE), system administrators (who
reduce their service costs, e.g., serving more cached content
and reducing backhaul traffic) and content providers (who
gain increased retention rates for their contents).

We envision that our work opens up a number of interesting
avenues for future research, in the intersections between
similarity caching, QoE and QoS. In particular, there are
limitations in the evaluation of our experiments that present
opportunities for future research. First, we did not account
for potential correlation among samples produced by the
same user, and we envision the use of General Linear Mixed
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Models for that purpose. Second, such correlations may be
due to a priori interests of users towards certain categories,
which can be explicitly taken into account in future work.

APPENDIX A
QoS IMPAIRMENTS
In our experiments with real users we consider 7 video pairs,
labeled from 1 to 7. Additionally, we include a video pair
labeled 0, where both videos contain the same content but
differ only in terms of QoS impairments. In each video pair,
one of the videos contained video impairments purposely
introduced to assess the impact of QoS on QoE. The
impairments were designed to replicate real-life scenarios
by synchronizing instances of rebuffering and alterations
in resolution. Changes in resolution in video demand are
typically preceded or expected to occur alongside instances
of rebuffering (also known as stalling) either as a result of
ABR mechanisms or prompted by a user-initiated resolution
change [41].

Next, we discuss the impact of reducing resolution and of
rebufferings on user experience.

A. CHANGES IN RESOLUTION
VMAF, which stands for Video Multimethod Assessment
Fusion, is a video quality assessment metric developed by
Netflix [62]. Its primary objective is to predict the perceived
visual quality of a video by comparing it to the original
reference video. This metric holds widespread popularity in
the video streaming sector for evaluating video encoding and
compression performance.

By leveraging VMAF, we can efficiently compute the
impact of poor resolution intervals on the videos within our
experiment, in addition with the users’ feedbacks. Figures 13
and 14 show the boxplot of VMAF values and VMAF per
session over time, respectively, for five out of the eight
sessions, wherein VMAF was non-constant.

1) COMPUTING VMAF
VMAF can only be used for comparing videos with the
same duration. This limitation arises because VMAF scores
are computed and compared on a per-frame basis. However,
due to video editing that involved changes in resolution and
rebufferings, the original and perturbed videos may have
different frame counts. In order to match the number of
frames in the original videos and in the videos perturbed with
rebufferings, we proceeded as follows: First, we compare
the elements of each video-pair using the original videos
downloaded from YouTube at different resolutions. Second,
in the intervals where the video was presented at its baseline
resolution, we report in Figure 14 the original VMAF score
of 100. Third, in the intervals where we intentionally reduced
the resolution, we report in Figure 14 the average VMAF
score of the low-resolution video, considering that VMAF
tends to be concentrated around its mean. Supporting this
observation, Figure 13 presents a boxplot of VMAFs during
different phases of video streaming, indicating that variations

FIGURE 13. Boxplots of VMAF over different sessions.

in VMAF over time, given constant resolutions, are typically
on the order of 10 units.

2) ASSESSING AND COMPARING VMAF IN OUR
EXPERIMENTS
All highQoS videoswere presentedwith a resolution of 720p.
The resolution of the low QoS videos, in contrast, is different
in each video-pair. In sessions 1, 3 and 6, the resolution of
the low QoS videos did not change throughout the sessions,
and was set to 240p at session 1, and 360p at sessions 3 and
6. Session 1, with the lowest resolution, corresponds to a
mean Annoyance of 3.83. The mean Annoyance, for sessions
3 and 6, was 3.32 and 3.33, respectively (see Table 2).

In sessions 0, 2, 4, 5 and 7, the baseline resolution was set
to 720p. However, in those sessions, the resolution is reduced
at certain intervals to values as low as 144p. Figure 14 reports,
for each session, the intervals during which a reduction in
resolution occurred. When the reduction was most extreme,
to 144p, VMAF reached its lowest value, of 20, in sessions
4 and 7.

Note that users experienced a higher baseline resolution in
the sessions reported in Figure 14 compared to the constant
resolution sessions 1, 3 and 6. Nonetheless, the variations
in resolution over time, e.g., due to bit rate changes caused
by network impairments, resulted in comparable or even
higher levels of Annoyance for the sessions depicted in
Figure 14 (see Table 2). This aligns with findings in [63],
where authors report that more fluctuations in video quality
lead to decreased user engagement.

B. REBUFFERINGS
Table 8 presents details about the rebufferings introduced in
each of the 7 videos with QoS impairments.

There are a number of studies indicating how users react
to impairments. In [41], for instance, the authors show that
sessions with two impairments tend to get abandoned earlier,
after the occurrence of the second impairment, than sessions
with only one impairment. For this reason, the authors of [41]
focus on sessions with up to two impairments. This is in
agreement with our video sessions, wherein all sessions have
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FIGURE 14. VMAF as a function of time for low QoS videos.

two impairments (a notable exception being session 6, with
three impairments).

With respect to the duration of the stalls, in [64] the
authors indicate that 85% of stalls last less than 5 seconds.
According to [65], the number of stalls is more relevant

than their duration when assessing QoE, measured through
the mean opinion score (MOS). The impairments consid-
ered in this work are in agreement with such observa-
tions, noting that all the considered stalls last less than
5 seconds.
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TABLE 8. Rebufferings on video sessions (Low QoS videos of the pairs).

APPENDIX B
DEMOGRAPHICS
To preserve participants’ privacy, we anonymized the dataset,
and in what follows we present some aggregate statistics
pertaining the collected dataset, comprised mostly of grad-
uate and undergrad Computer Science students. Roughly
82% of the participants were male. A significant portion of
the participants (36%) reported that they access, on a daily
basis, exclusively content services that require subscription,
whereas a small fraction (14%) accesses only free content
services. Half of the participants (50%) access both types
of contents. To access video content, 65% of participants
reported that they use cable services, 9% 4G and 91% WiFi
(including public access points).

APPENDIX C
ADDITIONAL MODELS TO CHARACTERIZE USER
BEHAVIOR
A. LINEAR AND QUADRATIC DISCRIMINANT ANALYSIS
Next, we consider discriminant analysis. Whereas logistic
regression models the target variable as a Bernoulli trial, dis-
criminant analysis leverages the nature of the input variables.
Discriminant analysis assumes that the joint conditional
distribution of the input, given the target class label, is given
by a multivariate normal distribution with same (resp.,
distinct) covariance matrices across classes when considering
LDA (resp., QDA) [29]. Figure 7 indicates the best binormal
distributions which approximate our input variables. The
two binormal distributions have similar covariance matrices
(indicated with ellipses), hence LDA andQDA yield the exact
same accuracy. Nonetheless, as the normal approximation
is not very accurate, logistic regression still yields slightly
superior results.

In Figure 7, the solid separating line was obtained by
training LDA. Both separating lines, i.e., the one obtained
with logistic regression (dotted line) and the one with LDA
(solid line), are effective in producing splitting rules that
entail few classification errors, and indicate the expressive
power of linear models for our purposes.

B. KNN AND PERFORMANCE COMPARISON
So far we considered parametric classifiers. Next, we evaluate
the K -nearest neighbors (KNN) classifier, a non-parametric
classifier which yields separating curves that don’t admit
a closed-form expression [29]. We adopt the Euclidean

distance, and vary K between 1 and 50 (reporting in Table 9
results for K = 1, 10, 30).

Table 9 compares the performance of the classical statisti-
cal methods considered so far. It indicates that the metrics
assessed through the validation set vary slightly among
methods. In particular, the accuracy varies between 0.768 and
0.788. We also find that 30-NN performed consistently as the
best. Regarding KNN, when the number of neighbors (K ) is
small, we get a very wiggly frontier which causes overfitting;
on the other hand, for larger values of K (K = 50) the model
simplifies and the frontier produces the same accuracy as the
LDA line.

C. REMOVING OUTLIERS
Next, we report heuristics to remove outliers. We define an
outlier as a sample that is inconsistent with a basic rule
implied by the domain under study. Outliers in our dataset
may be due tomisunderstanding of the posed questions or due
to the granularity of the scales considered (e.g., users have to
rate interests over videos in a scale between 0 and 5 stars).

In particular, we consider the following simple consistency
check. If a user assigns the same number of stars to two
videos in the same video pair (DiffInterests=0) and reports
Annoyance by the QoS impairments in the low QoS video
(Annoyance >3), the user must choose the high QoS video
as his preferred consumption choice. Clearly, we assume that
in this situation there is no tradeoff between quality of service
and quality of content.

In summary, if the following three rules are satisfied
simultaneously, the sample is considered an outlier: (i)
DiffInterests = 0; (ii) Annoyance > 3; (iii) PreferredVideo
= lowQoS. We identified 59 samples that concomitantly
matched the three rules above. Those entries were classified
as outliers and were removed from the analysis that follows.

1) ADDITIONAL REMARKS
Note that we require criterion (ii) to classify a sample as an
outlier. A careful analysis of the instances wherein (i) and (iii)
are satisfied (and (ii) is not) shows that users preferred the
low QoS video in those cases because the scale of interests
(ranging among integers from 0 to 5) was too coarse. In the
textual justifications for their choices, those users typically
referred to subtle preferences towards the content of the low
QoS video (e.g., using words such as funnier and arose
my curiosity) even though they indicated the same interest
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TABLE 9. Performance of classification models.

towards the two videos in the numerical scale. The polarity
score metric captures those subtleties (Section II-F), and we
keep those instances in our analysis.

D. PERFORMANCE EVALUATION OF MACHINE LEARNING
METHODS
Next, we report results on the performance of classifiers
after removing outliers (bottom part of Table 9). We consider
a number of different machine learning models, which are
typically more complex than the simpler statistical models
discussed so far.

Table 9 shows our results. For each classifier, we report
its accuracy, precision, recall and f1 scores. The definitions
of those standard performance metrics can be found in [27].
In order to validate the results, we adopted ten fold cross
validation. The parameterization considered for each of the
classification models (e.g., number of layers in the neural
network model) was the best achievable under 10 fold cross
validation (details omitted due to space constraints).

The neural network and the random forest yield best
accuracy. Although those more complex machine learning
solutions produce higher accuracy, they are usually not
amenable to interpretation. In the following section, we bal-
ance between interpretability and accuracy through the use of
decision trees.

APPENDIX D
TOWARDS QoS-AWARE RECOMMENDERS
Next, we use decision trees to design QoS-aware recom-
mendation systems amenable to interpretation. We begin
considering the whole dataset, and progressively consider
special instances, first removing outliers and then focusing
on the music category.

To assess the impact of the multiple features on user
choices, we train a C4.5 decision tree model to predict the
preference of users towards videos. Figure 15 shows a pruned
version of the trained decision tree (Fig. 15). Each node of
the tree, except for the leaves, contains a binary decision rule

used to split the dataset. In addition, each node also contains
the number of samples at that stage wherein users chose the
high and low QoS videos (when the latter is greater, the node
is marked in red).

The root node of the tree splits the dataset using the
difference in interests (DiffInterests) between the two videos.
The fact that this feature appears at the top of the tree means
that it has significant classification relevance. If DiffInterests
≤ 0, users tend to choose the high QoS video. Otherwise,
the low QoS tends to be preferred. In both cases, Annoyance
also appears as a splitting feature at lower levels of the tree,
indicating the role of QoS in the choices.

Following the path among nodes #0 and #1 we note that if
DiffInterests< 0 it is extremely likely that the chosen video is
the high QoS. In addition, the path across node #0, #8 and #12
indicates that PolarityScore (our sentiment analysis metric)
is fairly useful in separating the data when DiffInterests > 0,
(nodes #0, #8 and #12). Annoyance is used to further split the
samples when PolarityScore is low (see Section II-F).
The decision trees also serve to support the hypothesis

that more positive comments indicate a preference towards
low QoS videos. The path across nodes #0, #1, #2 and #4
in Fig. 15(b) bodes well with the discussion presented in
Section II-F. A threshold of 0.272 (close to 0.35 chosen in
Section II-F) is selected in order to split the data so that that
samples with PolarityScore< 0.272 are classified in the class
wherein users prefer the high QoS video.

1) FOCUSING ON MUSIC
To illustrate how decision trees may vary across categories,
we focus on music, which is by far the most watched category
on YouTube. According to Table 2, users were less tolerant
to QoS impairments in the music category when contrasted
against the other considered categories. Accordingly, training
a decision tree from samples from the music subset (video
pair 7), ‘‘Annoyance’’ appears at the first level of the
classification process and participates in the separation of
70% of the samples.

2) BEYOND DECISION TREES
Random forests are the natural extension of decision trees.
Using random forests, we obtained our highest levels of
performance (see Table 9). Using random forests, we can
also estimate the importance of the different features for
classification purposes. The feature importance is the mean
importance averaged across all trees in the forest. Using such
approach, difference between interests (DiffInterests) and
Annoyance are the two most important features. Together,
they capture QoR and QoS aspects that impact user choices,
respectively, indicating that the two play an important role on
QoE.

3) PRACTICAL ENGINEERING IMPLICATIONS
In this section, we presented a systematic way to quantita-
tively assess parameters to be used by QoS-aware content
recommendation systems. Some of our results are intuitive,
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FIGURE 15. Decision trees allow us to interpret user choices.

e.g., some users will trade between QoS and QoR when
deciding which content to consume. Nonetheless, the value
of our analysis stands for a reality check of intuitions against
real data and, more importantly, quantitatively assessing
the extent at which different factors impact QoE. This
quantitative assessment is instrumental and key for the
design of novel recommendation systems. Although we
applied our analysis over the entire population of participants,
we envision that it can be also adopted in a user-oriented
framework, wherein annoyance and interests are tracked.
The sensitivity of each user with respect to QoS and QoR
across different categories can then be learned and used for
personalized recommendation.
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