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ABSTRACT Electric mobility is getting prominence in modern transportation as government policies aim
to reduce greenhouse gas (GHG) emissions. In the context of real-time testing, numerical modelling and
simulation of electric vehicle (EV) powertrains play a vital role in developing an efficient electric powertrain
and charging infrastructure as it consumes less time and cost. Also, it enhances the overall performance by
optimizing the size and configuration of the EV powertrain under different driving conditions. Thus, the
review paper explores the different modelling approaches used for estimating the energy consumption (EC)
and driving range (DR) initially. Further, the vehicle analytical model is discussed in detail with sub-models
of powertrain components and vehicle dynamics, which have the mathematical correlation related to power
losses and energy flow. Additionally, the necessity, development process, characterization and accuracy of
localized driving cycles (DCs) and commonly used driver controller models for EVs are critically elaborated.
Further, the impact of various influential input parameters such as vehicle parameters and driving conditions
on EV performance characteristics is analyzed along with different improvisation methods utilized in the
existing literature. From this extensive review, it can be concluded that simulation results by using an
analytical vehicle model have good accuracy with chassis dynamometer-based testing and it can be used
for optimizing the size and configuration of EV powertrain components under different scenarios. Finally,
the present status and future research required in the field of EV powertrain development through modelling
and simulation are summarized to extend the application of EVs in transportation sectors.

INDEX TERMS Electric vehicle, modelling and simulation, analytical vehicle model, driving range, energy
consumption.

ABBREVIATION AND NOMENCLATURE
Aave, Average acceleration; BLDC motor, Brushless direct-
current motor; CVT, Continuously variable transmission;
Dave, Average deceleration; DC, Driving cycle; Dcyc, Drive
cycle distance; DMMCP, Dual-motor with multi-mode cou-
pling powertrain; DOD, Depth-of-discharge; DR, Driving
range; E2W, Electric-2-wheelers; E3W, Electric-3-wheelers;
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E4W, Electric-4-wheelers; EC, Energy consumption; ECP,
Equivalent circuit parameters; EM, Electric motor; EMS,
Energy management system; EPA, Environmental protection
agency; ERDC, E-rickshaw driving cycle; EV Electric vehi-
cle; EVIDC, New driving cycle for e-rickshaws; FEM, Finite
element method; FTP, Federal test procedure; GHG, Green-
house gas; G2V, Grid-to-vehicle; HWEFT, Highway fuel
economy test cycle; IDC, Indian driving cycle; IM, Induction
motor; N.V, Nominal voltage; NEDC, New european driving
cycle; NVH, Noise, vibration and harshness; PA, Percentage
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of acceleration duration; PAM, Pulse amplitude modulation;
PC, Percentage of cruising duration; PD, Percentage of deac-
celeration duration; PI, Percentage of idling duration; PID,
Proportional–integral–derivative; PMSM, Permanent mag-
net synchronous motor; PVM, Power-based vehicle model;
PWM, Pulse width modulation; RMS, Root mean square;
SE2WC, Shanghai electric two-wheeler cycle; Si IGBT,
Silicon-based power converters and insulated-gate bipolar
transistor; SiC MOSFET, Silicon carbide metal–oxide–
semiconductor field-effect transistor; SOC, State-of-charge;
SRM, Synchronous reluctance motor; STR, Source-to-range;
T.R, Transmission ratio; Tcyc, Drive cycle time duration;
UDDS, Urban dynamometer driving schedule; Vave, Average
velocity; Vmax, Maximum velocity; VRP, Vehicle routing
problem; UC, Ultra-capacitor; WLTC, Worldwide harmo-
nized light vehicles test cycle.

I. INTRODUCTION
According to the global EV outlook 2022, electric mobility
can be a primary driving force to ensure the decarbonised
transportation sector, which contributes a high share of GHG
emissions globally. Especially, road vehicles driven by fos-
sil fuels contribute about 74.5% of greenhouse emissions
among other transportation sectors. Also, global EV sales
in 2022 have increased by about 13%, which indicates the
direction of road mobility is put a path to achieve net zero
emission by 2050 and sustainable development goals [1].
As of now, battery and fuel cell EVs are considered as
final step of the electric revolution in the transportation
sector, whereas it has evolved with the different variants
of hybrid electric vehicles [2], [3]. The salient features of
EV powertrains over conventional powertrains are higher
well-to-wheel efficiency, urban accessibility, comfort and
reliability with zero tailpipe emissions and less maintenance
due to simple and efficient powertrain design [4], [5]. There-
fore, the autonomy of EVs should be cautiously designed
as they play a vital role in public transport of smart cities
as shared mobility [6], [7]. Moreover, EVs are classified
by their powertrain autonomy such as electric powertrain
with and without transmission along with the position of
the motor like conventional, in-wheel and hub-mounted [8],
[9]. The outline of EV powertrain architecture with the key
components such as power source (battery), power electron-
ics, motor, transmission, final drive and different controllers
are presented in Fig. 1. The selection of electric powertrain
size and configuration should satisfy the vehicle perfor-
mance requirements with considering vehicle constraints and
power source variables. Currently, the simple electric driv-
etrain with a Li-ion battery as a power source is used for
vehicle applications [12], [13], [14]. Also, electric motors
(EM) like brushless direct-current (BLDC), induction (IM),
synchronous reluctance (SRM), and permanent magnet syn-
chronous (PMSM)motors are chosen according to the vehicle
performance requirement, space availability, noise, vibra-
tion and harshness (NVH) characteristics. Also, the power
electronics and different control systems in EVs are to ensure

the maximum performance of the traction motor, battery
and charger [15], [16], [17]. Recently, a lot of research
has been initiated into developing high energy density and
fast charging capability batteries with lightweight materials
and smart charging modes to eliminate the range anxiety
of drivers. Also, the development of advanced technologies
related to bi-directional power flow such as grid-to-vehicle
(G2V), vehicle-to-grid and vehicle-to-everything communi-
cations has provided more flexibility during the charging
and discharging process [18], [19]. Recently, electric pow-
ertrains with high energy density motors and multi-speed
transmission systems have gained attraction to enhance over-
all performance [20], [21].

The continuous technical improvements of electric power-
train demand to assess the EC and DR along with other per-
formance characteristics of EVs. Currently, the development
of modelling strategies with different vehicle configurations
and simulation scenarios is achievable due to the continuous
improvements in computing power capability over recent
decades [22]. Moreover, different modelling approaches are
focused on considering the influence of the size and configu-
ration of the electric powertrain, energy management system
(EMS) and atmospheric conditions on EV performances with
a specified scientific tool as per the analysis requirement
[23], [24]. The modelling process of the EV powertrain
involves data collection, developing the mathematical cor-
relation related to each powertrain component and making
proper signal flow between each sub-model [25]. In over-
all, the modelling process can be categorised into analytical
and data-driven according to the computation methodologies
used [26]. The functionality, advantages and disadvantages
of these models are shown in Fig. 2. Further, the analytical
vehicle model is classified into power-based vehicle model
(PVM), vehicle routing problem (VRP) and source-to-range
(STR). Whereas the PVM is assessing the EV performances
based on the power balance between the electric powertrain
through microsimulation and it is further extended to study
the charging performances and variation in EC due to traffic
flow with GPS data [22], [27]. In VRP modelling, the EC and
DR are assessed for selected routes with constant and average
values of vehicle acceleration and deceleration. The effect
of powertrain dynamics and EMS algorithm are neglected
in this approach to avoid complexity in computation [28].
The STR modelling approach is used to evaluate the environ-
mental effects through life cycle analysis by considering all
the manufacturing processes of powertrain components [29].
It can be used to optimize the EV powertrain to identify the
most energy-demanding process and suggest alternative new
processes at a specific region [30].

Data-driven analysis is another primary approach to eval-
uate EV performances, which is more suitable for analyz-
ing the large quantity of real-time data in absence of a
vehicle model [37], [38]. This approach is to study the
interaction effect of different vehicle input variables by con-
sidering the influence of different traffic congestion and
driving behaviours [39], [40]. However, the accuracy of
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FIGURE 1. Structural outline of EV powertrain with different control units [10], [11].

EV performance evaluation through data-driven analysis is
predominately reliable on the quality of the data processing
phase. Besides, it can be ensured by various modern com-
puting techniques like genetic algorithms, artificial neural
networks and machine learning [41], [42], [43]. By compar-
ing the modelling approaches, it is evident that analytical
model-driven approaches are more appropriate to evaluate the
EV performance entities by considering the different techni-
cal details of EVs with less error and computation effort [44].
The modelling and simulation process with the appropriate
modelling strategy requires suitable simulation software. Fur-
ther, it can be chosen based on the typical EV performance
evaluation such as vehicle system and control analysis, G2V
with renewable energy, EMS, charge scheduling and traffic
systems [45], [46]. The simulation tools play a vital role
in evaluating the EV performance in different scenarios by
reducing time consumption, cost and human effort associated
with real-time testing. However, the accuracy of simulation
results is unfailing on the data quality of powertrain compo-
nents and vehicle dynamics mathematical model [47], [48].
The primary outputs of EV powertrain simulation are EC and
DR. Other than this, the size, operating region and dynamic
behaviours of powertrain components can be evaluated for
selected DCs to know the limit of powertrain components.
In most cases, the error margin of EV performance values
through simulationwith real-time data is negligible [49], [50].
However, the real-time testing of EVs such as dynamo and

road tests plays an equal role to ensure overall EV perfor-
mances that include safety and reliability [51].

FIGURE 2. Functionality, merits and demerits of different EV driving range
modelling approaches [31], [32], [33], [34], [35], [36].
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FIGURE 3. Status of existing review work on different modelling strategies of various EV research domains [52], [53], [54], [55], [56], [57], [58],
[59], [60].

II. OBJECTIVE AND METHODOLOGY
Over the years, numerous studies have been carried out on
numerical simulation of EV performance characteristics at
various driving and atmospheric conditions. Particularly, the
estimation of accurate DR by evaluating the EC of EVs is
the key factor for eradicating driver anxiety and establish-
ing charging infrastructure in region-specific. So, it is more
important to understand the different modelling strategies
along with simulation tools used for evaluating the EV per-
formance characteristics such as EC, DR, gradeability and
acceleration. Since few review articles are published in the
open literature to analyze the different modelling strategies
and simulation tools used in various research domains of EV
as discussed in Fig. 3.

However, there are no studies focused on an in-depth
analysis of vehicle analytical modelling approaches for pre-
dicting EV energy consumption by considering the different
research entities to improve the accuracy of simulation
results. Additionally, researchers in the field of EV power-
train development for green mobility should have a clear
perspective on different losses by powertrain components
at wide operating regions which significantly influences the
selection and matching of powertrain components. Also, the
standardization of regional DCs needs to understand the char-
acterization of localized driving conditions which improves
the reliability of EV performance measurements. Further,
the influence of variation in the vehicle, road and ambient
parameters on EV performance along with its improvisation
methods should be reviewed for optimizing and extending the

performance of EV powertrain. To bridge these voids, this
review article is framed to provide a critical analysis on the
application of the analytical modelling approach for evaluat-
ing EV performance through numerical simulation alongwith
the characterization of localized DCs. Fig. 4. illustrates the
structural outline of the content discussed in section-wise of
this review article. The authors believe that this review may
act as a prime platform for the researchers to make use of
numerical modelling and simulation for developing efficient
EV powertrains.

III. ANALYTICAL VEHICLE MODELLING APPROACHES
Based on the modelling approach and direction of energy
flow, the vehicle analytical model is further classified into
backward-facing and forward-facing [61]. In the case of the
backward-facing model, generalized forces and motions are
the inputs and outputs of the powertrain components, which
is reversed in the forward-facing modelling approach [62].
The generic structure for backward-facing model consists
of sub-models related to DCs, vehicle dynamics and pow-
ertrain components. Further, the size of the battery, EC and
DR of EVs are estimated in the battery sub-model with
the efficiency map and datasheet parameters of power-
train components and vehicle through other sub-models for
different DCs [65]. Furthermore, efficiency maps are col-
lected through the testing of real-time powertrain components
such as battery, converter, motor and transmission at static
conditions. So, backward-facing model is not able to rep-
resent the dynamic behaviours of powertrain components.
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FIGURE 4. Status of existing review work on different modelling strategies of various EV research domains [52], [53],
[54], [55], [56], [57], [58], [59], [60].

However, it requires lesser computational effort and time
for sizing and optimizing the size of powertrain compo-
nents by estimating the EC of EVs [26], [66]. Conversely,
the forward-facing model is desired to study the dynamic
behaviour of the driver and the interaction between power-
train components with their limitations [67]. To accomplish
this, the driver sub-model is used as a controller in the
forward-facing model as shown in Fig. 5a. to match the
vehicle speed with reference speed (DC speed), which is not
available in the backward-facing model as shown in Fig. 5b.
Further, the error signal from the controller generates the
throttle or brake command as a control signal to regulate
the torque and speed of the motor. Then, the torque from
the traction motor is applied to the wheel through the trans-
mission model [68], [69]. Since the forward-facing model
demands more computation effort and time, it can be used
for evaluating the EV prototype through hardware in loop
testing more easily and rapidly. Additionally, forward-facing
model can be used to develop and evaluate the controller
and regenerative braking for EVs since it is very realistic in
dynamic conditions [70], [71]. Moreover, it is indispensable
to understand the different input and output parameters of
sub-models used in both approaches for evaluating the EV
performances as discussed in the consecutive sections.

IV. MODELLING OF DRIVING INPUTS
The primary input of the EV powertrain model for assessing
EC and DR is vehicle speed. During modelling, the vehicle
speed in the DC sub-model is given in the form of time and

FIGURE 5. Structural overview of forward and backward-facing modelling
approaches with sub-models [63], [64].
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FIGURE 6. Overall functionality of the diver sub-model along with its inputs and outputs.

vehicle velocity profile. Also, the driver unit is modelled in
the forward-facing model to match the vehicle speed and
DC speed. In this section, the DC model is elaborated with
the necessity, development process and characterization of
region-specific DCs. Also, the driver model with different
control strategies is discussed as follows.

A. DRIVING CYCLE
The EC, DR and sizing of the EV powertrain are assessed
by the standard DCs, which are represented as a 2D look-
up table consisting of time and vehicle velocity. Commonly,
international-legislated DCs based on several driving stan-
dards are used in most of the EV performance assessment
studies, which are originally developed for fossil-fueled vehi-
cles (FV) [72], [73]. Due to the differences in torque, power
and braking characteristics of EVs, the estimated value of EC
and DR using standard DCs are not matched with real-time
data [74]. To overcome these issues, the localized DCs for
EVs in a particular region or city should be developed by the
researchers based on the road profile, traffic conditions and
vehicle class or type [75], [76]. The development process of
DCs for EVs involves route selection, collection and process-
ing of driving data for a particular EV. Further, the selection of
drive routes such as urban, rural, sub-urban, and motorway is
based on the traffic conditions and vehicle classes [77], [78].
Most commonly, the methods based on random selection,
clustering, statistical and Markov chain analysis are used to
collect and process the real-time driving data for developing
the localized DCs [79]. Further, the accuracy of DC data is
ensured by increasing the recording frequency of sample data
through the data logging devices [80], [81]. Table 1 elaborates
on the characterization of non-legislative or localized DCs for
different driving conditions and vehicle classes of EVs and it
is evident that the EC of EVs for localized DCs is closely
matched with real-time data.

B. DRIVER MODEL
The driver sub-model replicates the driving behaviour of a
human realistically. During modelling, deviation in speed

(dV) between desired DC speed (Vdesired) and actual vehicle
speed (Vact.) as defined in equation 1. Based on the sign
of dV, the driver command for acceleration or deceleration
and braking is generated to follow the Vdesired [90]. In most
cases, the driver sub-model has two subsystems such as the
driver controller and commands for acceleration and braking.
Further, the driver controller signal is given a normalised
value between 0 to 1 as input to the accelerator and brake
pedal for acceleration and braking [91], [92], [93]. Fig. 6.
elaborates on the overall functionality of the diver sub-model
alongwith its inputs and outputs. There are several controllers
used for tuning the Vact. based on Vdesired by its response
time and ability to minimize the error. In several studies, the
PI controller is used in the driver model to regulate the Vact.
according to the Vdesired [94], [95]as stated in equation 2.

dV = Vdesired − Vact. (1)

PI (S) =

(
I∗1
/
S
)

+ P (2)

Here, S, I and P are the time, integral, proportional gain
respectively. However, PID-based controllers are widely used
in real-time application as it is very easy to implement with
shorter response time and minimum error [96]. Here, the dV
is the input for the PID controller and Vact. is matched with
Vdesired by tuning the PID controller transfer function such
as proportional (Kp), integral (Ki) and derivative co-efficient
(Kd) [97] in equation 3.

K (S) = Kp +

(
Ki
S

)
+ (Kd ∗ S) (3)

Here, Kp has more influence on the driving behaviour mean-
while the Ki and Kd are used for smoothening of driver
behaviour to maintain the Vact. closer to Vdesired. Irrespec-
tive of the controlling methods and nature of the DCs,
the driver controller should maintain the dV in the range
of ± 2 kmph [98], [99].

V. MODELLING OF VEHICLE DYNAMICS
It is essential to understand the total tractive force (Ft), torque
(Tt) and power (Pt) required at the wheel for selecting the
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TABLE 1. Details on the characterization of localized DCS for different EV configurations.

appropriate size and configuration of the electric powertrain.
In this section, the importance and mathematical correlations
of vehicle dynamics, wheel and tire sub-models are explained
for calculating total tractive requirements to improve the
accuracy of EC and DR estimation.

A. VEHICLE PARAMETERS
The vehicle dynamics of EVs are broadly classified into lon-
gitudinal, lateral and vertical dynamics, which substantially
deal with vehicle velocity, steering and vibration behaviour
[100]. Mostly, the longitudinal vehicle dynamics is consid-
ered to evaluate the performance of the EV powertrain in
basic powertrain modelling [32], [101], [102]. The longitu-
dinal vehicle dynamic sub-model is used for estimating the
EV traction requirements by considering the input data of the
vehicle and environmental conditions as exposed in Fig. 7.
The resistive forces considered for modelling are aero-

dynamic drag and road load (grading and rolling resistive
force). The equations used for calculating the resistive and
acceleration forces along with their influencing factors are
discussed in Fig. 8. The Ft, Tt and Pt required at the wheel
of EVs are calculated by using all the forces, effective
wheel radius (Rw) and vehicle velocity (Vv) as described in

equations 4, 5 and 6. During modelling, the numerical values
of Tt and Pt are considered as a primary input to determine
the size of the transmission, EM and power source.

Ft = Fae + Fro + Fg + Flac (4)

Tt = Ft ∗ Rw (5)

Pt = Ft ∗ Vv (6)

B. REGENERATIVE BRAKING
Unlike FVs, recovering kinetic energy during deceleration
and braking is an added inherent feature in EVs which
is achieved by the bi-directional functionality of electric
drives [109]. During DC simulation, the total energy of
the battery (Etot_bat) is estimated by adding the magni-
tude of the integrated value of battery output (Pbat_out) and
input power (Pbat_in) during traction and braking or decel-
eration [110] as stated in equation 7. Here, the (Pbat_in)
sign is negative because of vehicle deceleration and nega-
tive grade angle (θ). According to equations 8 and 9, the
input power to the battery from the regenerative braking
system is estimated by using the regenerative braking fac-
tor (β), power at the wheel (Pwheel_regen) and powertrain effi-
ciency (ηpowertrain_regen) during regenerative braking. Here,
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FIGURE 7. Longitudinal vehicle dynamic sub-model for estimating the EV traction requirements [103], [104], [105].

FIGURE 8. Schematic representation of equations used for calculating resistive and acceleration forces with influencing factors [106], [107], [108].

powertrain efficiency is assessed by multiplying the effi-
ciency of transmission (ηTrans), electric drive (ηmotordrive)
and battery (ηbattery) during the regenerative braking [111].
The value of β lies between 0 to 1 which expounds the
amount of energy recovered from total brake energy by
the traction motor [112]. In some cases, regenerative brak-
ing efficiency (ηrb) is used to denote the performance
of regenerative braking that is delineated by the ratio
of energy recovered (Erecoverable) and maximum available

energy (Eavailable_braking) at the wheel during braking [113].
Moreover, Erecoverable to the battery is limited by the deceler-
ation and braking force, Vv, G, adhesion coefficient of the
tire, power source capability, maximum motor torque and
efficiency of powertrain components [11], [34].

Etot_bat =

∫
tr

Pbat_out (t) dt −

∫
reg

Pbat_in (t) dt

 (7)
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FIGURE 9. Outline of regenerative braking sub-model with its inputs and outputs.

Pbatin = β∗
Pwheelregen(

ηpowertrainregen
)

= β∗
(Ft ∗ Vw)regen(

ηbattery ∗ ηmotordrive ∗ ηTrans.
)
regen

(8)

ηrb =
Erecoverable

Eavailable_braking
(9)

C. TIRE AND WHEEL
In most of the EV powertrain modelling studies, the tire
and wheel sub-model is not considered as it has less impact
on EV performance. However, it is essential to consider
these sub-models for improving the accuracy of model out-
puts [114]. In real-time, the vehicle traction requirements
differ from the modelling cases due to dynamic variation
in wheel slip and rolling resistant co-efficient between tire
and road surface at different driving and ambient condi-
tions [115]. By considering the wheel slip, the total tractive
power required for propelling the EV is defined as the addi-
tion of tractive power at the wheel (Pt) and power loss due
to wheel slip (Pslip). Also, the Pslip between tire and wheel
is calculated by multiplying the tangential force (maximum
tractive force, Fz) and the difference in speed of wheel and
vehicle (Vslip). Further, the magnitude of Fz is modelled with
vertical tractive force on the wheel (Ft) and tractive effort co-
efficient (µ) as given in equations from 10 to 12. Whereas the
µ is a function of slippage value (S), which is significantly
influenced by the inflation pressure of tire and road surfaces
[105].

Ptotal_trac = Pt + Pslip (10)

Pslip = Fz ∗ Vslip (11)

FZ = Ft ∗ µ(S) (12)

Moreover, the maximum tractive force required on the
wheel is closely related to the slip of the wheel, which is
defined as the ratio of longitudinal velocity at the wheel
and tire velocity at free rolling conditions. The equations
for slip during traction (Stra) and braking (Sbra) are given in
equations 13 and 14. Here, ωt and rt are the angular speed and
radius of the tire at free rolling. Also, the range of slip value
is always positive between 0 to 1 at both conditions [116].

Stra =

(
1 −

(
Vw
/
Vt

))
∗ 100 =

(
1 −

(
Vw
/
ωt ∗ rt

))
∗ 100

(13)

Sbra =

(
1 −

(
Vw
/
Vt

))
∗ 100 =

(
1 −

(
ωt ∗ rt

/
Vw

))
∗ 100

(14)

Apart from the wheel slip, the fr is another key parameter
of tire and road which is varied based on the material used,
geometry, and nature of tire and road surface. However, the
variation in fr for different vehicle speeds should be consid-
ered for improving the accuracy of model output as stated in
equation 15. which predicts the fr with better accuracy when
the vehicle speed is up to 128 km/h. [117].

fr = 0.01
(
1 + Vw

/
160

)
(15)

VI. MODELLING OF EV POWERTRAIN COMPONENTS
The modelling of powertrain components in EV comprises
the sub-model of transmission, motor, power converter and
battery. In this section, each sub-model is defined by a mathe-
matical correlation with data sheet parameters to estimate the
power output and losses along with their types and selection
criteria as discussed below.

A. TRANSMISSION
Unlike FVs, the use of efficient power electronics-controlled
EM in EVs replaces the multi-speed with gearless or
single-speed gear transmission to match the wide ranges of
EV tractive requirements [118]. However, a trade-off analy-
sis between the size of EM and transmission is required to
optimize the performance and cost of the drivetrain Also, it is
essential to produce the maximum Tt at the same gear ratio
(G)while the EV is climbing the roadwith higher grade [119].
The criteria for the gear ratio of transmission in EV is given
in equation 16. Here Tm, (ωm)max and (Vw )max are motor
torque, the maximum angular speed of the motor and wheel
velocity [101].

Tt
/
(ηTrans ∗ Tm)≤ G ≤((ωm)max ∗ Rw ∗ 25)

/
((Vw)max ∗ 60)

(16)

Through the transmission model, the motor torque Tm and
speed (ωm) can be found by the following equations 17-19
with the outputs from the vehicle dynamics model such as
Tt, ωw and ηTrans along with the constant value of G [120] as
shown in Fig. 10.

Tm = Tt
/
(G ∗ ηTrans) (17)
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FIGURE 10. Outline of transmission sub-model with its inputs and outputs.

ωm = G ∗ ωw (18)

ωw = Vw
/
Rw (19)

Here. ωw and ωm is the angular speed of the wheel and
motor. Also, the efficiency of transmission during traction
and regenerative braking [121] is defined by the following
equations 20-21.

(ηTrans)trac. = (Tw ∗ ωw)
/
(Tm ∗ ωm) (20)

(ηTrans)regen. = (Tm ∗ ωm)
/
(Tw ∗ ωw) (21)

B. TRACTION MOTOR
The EV performance characteristics such as acceleration,
passing ability, gradeability and maximum speed are stead-
fastly relying on the speed-torque and power characteristics
of the EMs [122], [123]. The EM is selected by comparing
their features such as starting Torque, power output, effi-
ciency, ease of control, size, cost, noise, life and maintenance
[124], [125]. The motor drive efficiency (ηmotor_drive) is a
key factor in evaluating the size of the power source, which
is significantly affected by the efficiency of the power con-
verter (ηpow.con) and EM (ηmotor) [126], [127] as shown in
equation 22.

ηmotor_drive = ηmotor ∗ ηpow.con (22)

The studies based on evaluating the efficiency of different
EMs are seeking much more attention towards researchers
as it has lower efficiency with higher variability through-
out operating regions than inverters [128]. Generally, the
ηmotor is obtained through a load test of EM coupled with
a dynamometer. In some cases, the ηmotor is obtained by
the finite element method (FEM) through equivalent circuit
parameters (ECP) such as data of geometry and material
properties of specified motor [129]. Mostly, these data are
not revealed by the manufacturer to the user. Also, the
ηmotorcalculated from FEM is a higher time-consuming pro-
cess and can provide accurate values when appropriate motor

data is used [130]. The calculation of ηmotor with its power
components for BLDC motor [131], [132] is shown in below
equations 23-24.

ηmotor = Pm.out
/
Pm.in

= Pm.out
/
(Pm.out + Ploss)

= (Tm ∗ ωm)
/
((Tm ∗ ωm) + Ploss) (23)

Ploss = Copper losses+ Iron losses+ mechanical losses

(24)

Here, Pm.in, Pm.out and Ploss are motor power input, output
and losses. The copper or ohmic losses are defined by the
heat losses caused by the electrical resistance of wires, which
are directly proportional to the current (Im) and torque of the
motor [133], [134] as shown in equation 25.

Copper losses = (Im)2 ∗ R= K c ∗ (Tm)2 (25)

Here, R is the resistance and Kc is copper constant which
is defined by magnetic flux and resistance of brushes and
coil. Likewise, iron or core loss is another decisive factor in
the calculation of ηmotor which will be calculated by Stein-
metz equations [135]. The iron losses are increased with
an increase in the rate of magnetic field changes, which is
directly proportional to the ωm. Also, the core losses of EM
are reduced with an increase in the operating temperature due
to lower iron electric conductivity [136]. The iron losses are
modelled with three sub-components such as eddy current
(Peddy), hysteresis (Phys), and excess losses (Pexc) as pre-
sented [137] in the following equations 26-29.

Iron losses = Peddy + Phys + Pexc = Ki ∗ ωm (26)

Peddy = Keddy ∗ f 2 ∗ B2 ∗ Vcore (27)

Phys = Khys ∗ f ∗ B2 ∗ Vcore (28)

Pexc = Kexc ∗ f 1.5 ∗ B1.5 ∗ Vcore (29)

where Ki is the current constant which is defined by the
way the magnetic field is induced in the motor. Keddy, Khys
and Kexc are steinmetz eddy current, hysteresis and excess
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FIGURE 11. Overview on the function of motor sub-model.

losses constant which differ based on the types of lamination
material used in the rotor and stator. The Vcore, B and ‘‘f’’ are
iron core volume, flux density and frequency of changes in the
magnetic field [138], [139]. Similarly, mechanical losses are
another component of motor losses, which comprises friction
and windage losses as seen in equation 30. It is subjected to
vary by motor speeds not by the type of power supply.

Mechanical losses = Friction and windage losses

= C + (Kw ∗ (ωm)3 (30)

Similarly, the losses in IM and PMs are varied based on the
number of stators and rotors in the motor, air resistance and
friction in the bearing [140], [141]. The power losses in IM
and PM are defined in terms of Tm and ωn [128] as shown in
equation 31.

Ploss (T , ω) =

∑
KmnTmωn (31)

Here, m, n and Kmn are integers and constants which are
varied based on the operating regions of the motor such as
constant torque and power regions. Along with the copper
and iron losses, stray loss (Ps) is additionally considered
for IMs, which is complex and very difficult to calculate.
It comprises several sub-component losses such as cross-path,
surface (Psur), pulsation (Pt), rotor harmonic current (PB) and
flux leakage losses [142], [143]. Almost, 2% of power from
the rated-power capacity of IM is lost as stray losses. Mostly,
the cross-path and flex leakage losses have been very low
in recent days due to the advanced design features of IM.
Equations 32 and 33 are defined as the stary loss, which is in

proportion to the square of the stator current (II) [144], [145].

Psur ∝ I2I f
1.5
I ;Pt∝I2I ;PB∝I2I (32)

Ps = Psur + Pt + PB = 0.01 ∗ P2N ∗

(
II
IIN

)2

∗

[(
fI
fIN

)2

+ 1

]
(33)

where IIN, fIN and P2N are rated current, frequency and power
of IMs. Through the motor sub-model, the Pm.in can be
calculated as shown in Fig. 11 with the value of Pm.out from
the transmission model and ηmotor which is calculated from
the datasheet parameters of EM. Further, the Im is calculated
from the motor voltage for the entire DCs.

C. POWER CONVERTER
The DC-AC inverter and DC-DC converter are the most com-
mon types of power converters used in electric powertrains
to regulate the current and voltage at the required magnitude
and form [146]. Fig. 12. elaborates on the power flow and
estimation of losses through data sheet parameters in the
power converter during modelling.

1) DC-AC INVERTER
Particularly, a bi-directional inverter with an appropriate
power rating is used in between the prime mover and bat-
tery of EVs to convert the DC into AC at the required
magnitude and frequency. In recent days, more research
has focused on the usage of inverters fabricated by silicon
carbide metal–oxide semiconductor field-effect transistors
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FIGURE 12. Schematic representation of Power flow in power converter sub-model.

(SiC MOSFET) with freewheeling diode than silicon-based
power converters and insulated-gate bipolar transistor
(Si IGBT) [147]. This can be justified by a wide energy band
gap, higher efficiency, power density, thermal conductivity
and switching speed of SiC MOSFET. The efficiency of the
inverter (ηinv) is defined by the ratio of motor input power
(Pm.in) and battery output power (Po/p_bat) as seen in equation
34, which is an influential parameter to define the size of the
battery in EVs [148].

ηinv =
Pm.in

Po/p_bat
=

Pm.in

Pm.in + Plo_inv
(34)

Here, Plo_inv denotes the losses in the inverter, which encom-
passes switching and conduction losses of IGBT orMOSFET
power switches and diodes. Further, it varies significantly
according to hardware parameters and operating conditions
like gate driver resistance, materials and coolant used, motor
power factor, switching frequency, temperature, pulse width
modulation (PWM) strategy, Tm andωm [149], [150]. In most
cases, the Plo_inv and ηinv are evaluated and mapped through
the electro-thermal analysis by using static and dynamic
parameters. In some studies, blanking time, reverse conduc-
tion and the thermal impedance between power switches and
cooling systems at a transient state are considered to improve
the accuracy of ηinv [149], [151]. Also, the performance of
the inverter is analyzed by using the quality factor matrix (Q)
with DC simulation as given in equation 35, which decides
the size of the thermal management system required [152].

Q =

∫
|Pm.in| dt∫
Plo_invdt

(35)

As seen in equation 36, the power losses in Si IGBT-based
inverter (Ploss_IGBT_Inv) are defined by including the conduc-
tion (Pcon_IGBT and Pcon_d) and switching losses (Psw_IGBT)

and Psw_d) of IGBT power switches and freewheeling diodes.
Also, the Ploss_IGBT_Inv is varied based on the number
of IGBTs (NIGBT) and diodes (ND) used in the inverter
according to the current rating [153]. Subsequently, different
components of power losses for Si IGBT-based inverters are
given in equations 36-40.

Ploss_IGBT_Inv = NIGBT
(
Pcon_IGBT + Psw_IGBT

)
+ ND

(
Pcon_d + Psw_d

)
(36)

Pcon_IGBT = VCE_0II_avg + RCE I2I_rms (37)

Psw_IGBT =
(
EI_on + EI_off

)
fs (38)

Pcon_d = VF ID_avg + Rd I2D_rms (39)

Pswd = (QrrVd ) fs (40)

Here, VCE_0 and RCE are saturation voltage and ohmic resis-
tance. II_rms and II_avg are the root mean square (RMS) and
the average of the collector current.EI_off andEI_on are energy
losses during switch on and off operation. fs,VF andRd are the
switching frequency, threshold voltage and direct resistance.
ID_avg and ID_rms are the average and RMS of the current
flowing through the diode.Qrr is the reverse recovery charge,
Vd is the voltage across the diode during reverse recovery.
Like IGBT-based inverters, power losses of MOSFET-based
inverters can be modelled by using equations 41-44. In the
case of MOSFET, the conduction losses in diodes are not
considered as it is very low in magnitude [154], [155].

Ploss_MOSFET_Inv = NMOSFET
(
Pcon_M + Psw_M

)
+ ND

(
Psw_d

)
(41)

Pcon_M = Rds_onI2M_rms (42)

Psw_M =
(
EM_on + EM_off

)
fs (43)

Psw_d = (QrrVd ) fs (44)
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Here, Rds_on is the on-resistance and IM_rms is the RMS drain
current. For both types of inverters, power losses due to con-
duction depend on the Irms which is higher at the high torque
operating region of the motor. Also, the switching losses in
the inverters are influenced by the switching frequency and
speed of the motor. From several studies, it can be concluded
that the SiC MOSFET-based inverters are outperformed at
higher switching frequencies and constant torque regions
than Si IGBT-based inverters due to their reverse conduction
potential [155], [156].

2) DC-DC CONVERTER
During traction and regeneration, the bi-directional DC-DC
converter is used for interfacing power sources with traction
drive and auxiliary devices by decrementing or boosting the
voltage [157]. Though the output voltage of the battery varies
with SOC, the DC-DC converter is designed to integrate
the battery and high-voltage DC-link [158]. The DC-DC
converter is classified based on the frequency and isola-
tion requirement such as non-isolated (low-frequency) and
isolated converters (high-frequency) [159], [160]. In several
studies, the efficiency of DC-DC converters (ηconv) is also
considered to predict the battery size accurately [161]. The
ηconv is defined by the ratio of input power to DC-link or
inverter (Pi/p_inv) and battery output power (Po/p_bat) as stated
in equations 45 and 46.

ηcon =
Pi/p_inv
Po/p_bat

=
Po/p_bat −

∑
Ploss_conv

Po/p_bat
(45)∑

Plossconv = PconIGBT + PswIGBT + Pcond + Pswd
+ Pcap + Pcore + Pcop (46)

Other than switching and diode losses in DC-DC converters,
the total power loss of the converter (Ploss_conv) includes
capacitor (Pcap), inductor’s core (PI_Core) and copper (PI_Cop)
losses as given in equations 46-48.

PCap = RC I2C_rms (47)

PI_Cop = RI I2I_rms (48)

PI_Core = WCPC (49)

Here, the Pcap is dependent on the resistance (RC) and RMS
current value (IC_rms) of capacitors which are highly influ-
enced by the selection of capacitors for DC-DC converters
in EV applications. Similarly, the inductors for converters
are selected by the trade-off between the value of its copper
and core losses [158], [162]. Further, the (PI_Cop) is reliable
on the resistance (RI) and RMS current value (II_rms) of
the inductor. Also, the PI_Core is evaluated by multiplying
the core weight (WC) and iron losses per Kg (PC) which
is quantified by phenomena of eddy current and hysteresis
losses due to different mechanisms involved in the magnetic
field fluctuations [163]. In EVs, the low-voltage DC power
is magnified into high-voltage DC power and supplied to
the inverter with a converter efficiency range of 90-95%
[164], [165].

D. BATTERY
Among the various energy sources, secondary batteries
i.e., rechargeable batteries are most suitable for EV appli-
cations due to their superior performance and smooth
operation [166]. Predominantly, the lithium-ion battery is
employed as an energy source in EVs as it has inimitable
features such as high voltage potential, lightweight, and
high energy density with low-self discharge [167]. The EC,
DR and other outputs of the battery sub-model are repre-
sented in Fig.13. along with inputs required such as total
power required from the battery voltage.

1) BATTERY AND CHARGER POWER
The total power required from a battery pack (PBat) is esti-
mated by the power consumed by the auxiliary systems
(Paux.sys), Pm.in, ηinv and ηcon as shown in equation 49. Also,
the output power of the battery during traction (Po/p_bat) is
stated by multiplying the output voltage (VBat_0/p) and cur-
rent of the battery (I_bat) [120] in the subsequent equation 50.

PBat =

(
Pm.in(

ηinvertor ∗ ηconverter
))+ Paux.sys (50)

Po/p_bat = VBat_0/p ∗ Ibat (51)

In most cases, the value of Paux.sys is considered as the max-
imum power consumed by the auxiliary systems such as air
conditioning, electrical steering, light systems, infotainment
systems, controllers, etc. However, the recommended usage
power capacity of the battery by the manufacturer is approx-
imately 80-85% of the actual power to prolong the battery
life [168], [169]. Also, the power of the charger (Pcharger) is
estimated by the ratio of Pbat and the time required for full
charging (tch) as given in equation 51. Also, the current rating
of the charger (Icharger) is modelled based on the Pcharger and
Vbat of the battery [170] as seen in equation 52.

Pcharger =
Pbat
tch

(52)

Icharger =
Pcharger
Vbat

(53)

2) BATTERY ENERGY
The battery energy consumption acts as an indicator of how
efficiently energy is converted through the powertrain com-
ponents of EVs. The required battery energy (EBat) of EVs
is estimated by integrating the battery power (PBat) as stated
in equation 53. The total battery energy required per km
(B.EKm) is calculated by using EBat and DC distance. With
EBat, the DR of the EV is estimated with the total battery
energy (T.EBat) [171] as stated in equations 54 and 55.

EBat =

∫
PBatdt (54)

B.EKm =

(
EBat(

3.6 ∗ 103 ∗ Drive cycle distance
)) (55)

(DR)Desired = T .EBat/B.EKm (56)
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FIGURE 13. Outline of battery sub-model with its inputs and outputs.

3) BATTERY CAPACITY OR RATINGS AND SIZE
The battery pack rating is the most vital parameter of a
power source which influences the weight, DR and cost
of the vehicle. The total current capacity of the battery
(C_Bat) is calculated by using the T.EBat and VBat as given in
equation 56.

CBat =
T .EBat
VBat

(57)

Based on the requirement of battery capacity and voltage in
EVs, the number of cells arranged in series (NS) and parallel
(Np) in the battery are defined by using equations 57 and 58.
Also, the arrangements of cells in a battery pack should meet
the requirement of mechanical, thermal and electrical design
considerations [172], [173].

NS =
VBat
VCell

(58)

Np =
CBat
CCell

(59)

Here, VCell and CCell are cell voltage and current capacity.

4) BATTERY CURRENT AND VOLTAGE
The amount of current supplied by the battery or flow into the
battery is based on the battery capacity, the power require-
ment of EM and the efficiency of regenerative braking [174].
Further, the amount of current drawn from the battery dur-
ing traction and supplied to the battery during regeneration
is defined by equations 59 and 60. The battery C-rate is
characterized based on the amount of current discharged and

charged during traction and regeneration or charging [175],
[176] as shown in equation 61.

Ibat_Trac =

VOC −

√
V 2
OC − 4RiPbat

2Ri
(60)

Ibat_Regen =

−VOC +

√
V 2
OC + 4RiPbat

2Ri
(61)

Battery C-rate =
IchorIdisch
Cbat

(62)

Here, Ich or Idisch, Riand VOC are the charge or discharge
current, internal resistance and open circuit voltage. Also, the
amount of current supplied to the auxiliary systems (Iaux.sys)
is calculated [26] using equation 62.

Iaux.sys =

(
Paux.sys(

Vbat ∗ ηconv
)) (63)

Also, the VBat_0/p depends on the Coulombic Efficiency (ηcl)
of the battery as given in equation 63. Normally, η_cl is about
100 % for Li-ion batteries [106], [177].

5) BATTERY SOC
The SOC of the battery designates the amount of charge
capacity in the battery, which is normally defined by the range
of 0 to 100%. Also, it is recommended by the manufacturer
to maintain the battery SOC from 10 to 90 % to ensure
better battery performance [178]. As shown in equation 64,
the SOC of the battery at the moment (SOC(t)) is calculated
by using an equivalent circuit model based on the ratio of
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current battery capacity (Cbat) and maximum battery capacity
(Cmax). Also, the sign is negative during traction and positive
during regeneration and charging [179]. Further, the depth-
of-discharge (DOD) is estimated based on SOC(t) as shown
in equation 65.

SOC (t) = 1 −

(
Cbat

/
Cmax

)
= SOC i ±

[(
1/
3600 ∗ Cbat

)
∗

∫ t

0
Ibatdt

]
(64)

DOD = 1 − SOC (t) (65)

Here, SOCi is the initial SOC of the battery. Also, the
VBat varies with the amount of Ibat and SOC. Through
the above equations in the battery sub-model, the maxi-
mum required battery capacity and power, cell configuration,
DR and charger rating can be calculated throughout the DC
duration. Also, dynamic parameters of batteries such as bat-
tery current, voltage, SOC and DOD are calculated during
different driving conditions.

VII. SIMULATION PROCESS AND TOOLS USED TO
ESTIMATE THE EV POWERTRAIN PERFORMANCE
CHARACTERISTICS
Most commonly, the performance of the EV powertrain is
demarcated by the EC and DR [180], [181], [182]. Also, pow-
ertrain operating regions or efficiency, EV acceleration and
gradeability performances need to be cautiously considered
to evaluate the capability of powertrain components [183],
[184]. During the design and development process of the EV
powertrain, simulation is the most essential process to meet
the trustworthy or effective system-level design. Initially, the
simulation process of the EV powertrain involves the collec-
tion of data related to DC, vehicle dynamic and datasheet
parameters, efficiency map and ambient conditions [185].
Further, the simulation can be done with the existing EV
model in the simulation tools, which has all the sub-models
associated with the appropriate mathematical equations to
evaluate the performance of EVs as discussed in sections V
to VIII. In certain cases, the model is customized accord-
ing to the variations in powertrain configurations and input
parameters. Further, these tools are focused on evaluating
the different performance features of EVs such as EC and
DR, powertrain capability, and integration of EVs with grid
systems under different scenarios [186]. The simulation tools
are chosen based on certain criteria like ability to customize
the model, accuracy, user-friendliness, time consumption and
system requirements. As this review article is intended to
guide the researchers towards an estimation of EC, DR and
other powertrain performance parameters of EVs. The most
common simulation tool used for evaluating the aforemen-
tioned parameters is Simulink with MATLAB [96], [174],
[187], [188], [189], [190], [191], [192]. Other than this, there
are several tools used to evaluate the EV powertrain perfor-
mance which are elaborated in Fig. 14 with its key features,
merits and demerits [193].

VIII. EFFECT OF DIFFERENT INPUT VARIABLES ON EV
POWERTRAIN PERFORMANCE
The influential parameters on EV performances are catego-
rized into internal and external factors as shown in Fig. 15.
Further, Table. 2. elaborates on the simulation studies based
on the estimation of performance factors for electric-2-
wheelers (E2W) and electric-3-wheelers (E3W) at different
DCs. Mostly, IDC is used as a DC for evaluating perfor-
mance other than WLTC, NEDC, etc. Similarly, simulation
is done for electric-4-wheelers (E4W) in most cases with
standard DCs such as NEDC, WLTC, HWEFT, FTP, EPA,
etc., Table 3 reviews the simulation studies carried out for
E4Ws to evaluate the EC and DR. The effect of influential
variables or parameters on different EV performance aspects
(EC and DR, acceleration and gradeability, powertrain effi-
ciency, maximum vehicle torque and power) is illustrated in
Fig. 16 and discussed from different simulation studies below.

A. ENERGY CONSUMPTION AND DRIVING RANGE
The key performance characteristics such as EC and DR have
given a clear indication of EV on-road performance to the
user. From simulation studies, it is evident that vehicle-related
parameters such as Mv, fr, Cd, Af and Paux.sys are primarily
impacting the EC of EVs [211]. Moreover, an increase in Mv
significantly shows a negative trend on the EC and DR as it
notably increases the rolling resistive force (Fro) of EVs and
leads to inefficient operating regions of powertrain compo-
nents. Also, the DR is reduced as an increase in Mv leads
to lower regeneration capability because of the increase in
the usage ofmechanical brakes [212]. Similarly, aerodynamic
force parameters related to the vehicle like Cd and Af have
significantly affected the EC and DR at high speeds than low
speeds [213]. Further, the design of these parameters plays a
vital role when increasing the DR of EVs on highways where
they travel at maximum speed. Contrary, an increase in fr
with inappropriate tire size or material used and a slippery
road surface causes higher EC as the vehicle requires more
Tt during low-speed conditions [37]. Further, an increase in
Paux.sys, frequent acceleration and deceleration leads to higher
total EC with a lesser DR because of the inefficient operating
conditions and higher power losses in EV powertrain [214].
The size and speciation of powertrain components in EVs

influence the EC and DR significantly. The use of lower
energy and power density battery and motor in the EV results
in a lower DR with the same vehicle specification. Also,
the increased size of drivetrain components increases the Mv
and results in higher energy required to overcome the large
resistive force [215]. Further, the use of multi-speed and con-
tinuously variable transmission (CVT) affects EC and DR as
it has lower efficiency and higher transmission losses [216].
Like the vehicle parameters, atmosphere and driving condi-
tions such as air temperature, density, road topography and
driving behaviour have influenced the EC and DR at simu-
lation and real-time testing. Moreover, the low atmospheric
temperature with higher humidity and density of air increases
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FIGURE 14. Features, merits and demerits of simulation tools used for EV energy consumption estimation.

the EC of EVs. Thus, Paux.sys is increased for improving the
battery performance, cabin comfort and drivability. Also, the
energy required to overcome the fr and Cd is predominantly
higher at the above-mentioned atmosphere conditions and
results in lowerDR of EVs [217], [218]. Likewise, an increase
in headwind consequences higher EC at high speeds inmotor-
ways and reduces the DR of EVs. In fact, road surfaces with
a higher slope require higher torque at the wheel to overcome
the Fgr. In such cases, battery energy reduces rapidly with the
supply of higher Ibat which results in lowerDR [219]. Aswell,
driving modes like eco and aggressive play a critical role in
EC and DR based on vehicle speeds. The eco-driving mode
at low speeds in urban causes higher EC due to long travel
time. Meanwhile, the aggressive driving mode at high speeds
on the motorway causes higher EC with the greater influence
of aerodynamic resistive force on EVs [220].

B. ACCELERATION AND GRADEABILITY
The tractive capability, vehicle longitudinal performance,
and ability of interaction between tire and road surface are
well-defined with acceleration and gradeability performance
of EV which are quantified with the tractive torque available
in the wheel during the acceleration and climbing uphill.
Several factors related to vehicle and road conditions have
a greater influence on the acceleration and gradeability of
EVs. An increase in Mv extremely limits the capability of
acceleration and gradeability owing to the requirement for
higher Ft at lower speeds [221]. Also, the decrease in acceler-
ation and gradeability performance is found with an increase
of fr between tire and road surface due to a slippery surface
and high friction coefficient. Similarly, the increase in Paux.sys
reduces the power share of powertrain components from the
battery which is reflected in the tractive torque available on
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FIGURE 15. Different internal and external factors affecting EV energy consumption [37], [194], [195].

FIGURE 16. Effect of influential parameters on EV performance characteristics.

the wheel and results in an extension of the acceleration
duration along with lower gradeability.

Moreover, an increase in battery size increases the capa-
bility of acceleration and climbing uphill as it provides
more energy and power to the drivetrain components.

Particularly, the inertia mass is increased with an increase
in the size of drivetrain components such as the motor and
transmission which extends the acceleration time and limits
the maximum acceleration and gradeability [222]. Though
the use of single-speed transmission with higher G and
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TABLE 2. Drive cycle performance simulation studies on different E2W and E3W configurations.

TABLE 3. Drive cycle performance simulation studies on different E4W configurations.
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multi-speed transmission increases the Mv, the acceleration
and gradeability performance is better than fixed single-speed
transmission due to the extensive range of vehicle load [223].
Climatic conditions such as low atmosphere temperature with
higher humidity and headwind prominently affect the accel-
eration and gradeability performance. Also, it minimizes the
capability of the maximum acceleration and gradeability of
the EVs as it increases fr and wheel slip with the above-stated
climatic conditions in most of the simulation studies. Simi-
larly, the gradeability and maximum acceleration of EV are
suppressed with higher θ due to the requirement of higher
torque than flat road surface [224].

C. POWERTRAIN EFFICIENCY
In the simulation studies, the powertrain efficiency
(ηpowertrain) of the EV has purely relied on the operating
region of powertrain components, torque and power require-
ment at the wheel [225]. Moreover, the ηpowertrain is affected
by several vehicle parameters, atmosphere and driving condi-
tions. An increase in vehicle Mv leads to the requirement of
higher power and torque at the wheel with the same pow-
ertrain configurations. This scenario drives the powertrain
components to operate in inefficient regions thus lowering
the ηpowertrain. Likewise, the aerodynamic parameters such as
Cd and Af have a substantial influence on ηpowertrain as the
requirement of Pt at the wheel is high at higher speeds than
lower speeds. However, an increase in fr between tire and road
surface with inappropriate tire and road parameters lowers the
ηpowertrain at low speeds. Also, it drives the battery to deliver
high current for operating the motor at peak torque region,
which normally causes higher power losses and results in
lower efficiency [226].

The types and sizes of powertrain components along
with their configuration predominantly affect the η_powertrain.
A lower C-rate and inappropriate capacity battery cause
higher power losses during the requirement of high power
and torque at the wheel. Similarly, motor types and their
operating regions play a vital role in variations in η_powertrain.
Whereas the change in the efficiency of other powertrain
components is too low for the entire DC period during
simulation [227]. Furthermore, the in-wheel drive EV has
more ηpowertrain than EM with different transmission con-
figurations. Eventually, the addition of the final drive in
the powertrain causes additional transmission losses and
results in a reduction of ηpowertrain [223]. Due to low
atmospheric temperatures with higher humidity, the Paux.sys
is higher, especially during acceleration at higher grades.
As the battery efficiency is highly correlated with its oper-
ating temperature, a higher amount of power is utilized
to heat the battery and motor to improve its operating
characteristics which causes some additional power losses
and lowers the ηpowertrain [228]. Also, the frequent accel-
eration and deceleration significantly affect the ηpowertrain
in urban driving conditions owing to the highly frequent
switching of motor operating regions and the increase in

switching and power losses of the power converter and
battery [229].

D. VEHICLE TORQUE AND POWER
The requirement of vehicle torque and power relies on the
vehicle parameters, atmosphere and driving conditions. Trac-
tive torque and power requirement at the wheel are increased
to maintain the same speed and acceleration time with an
increase in Mv as the Ft is increased. Especially, higher
Tt is required at low speeds and maintaining higher Pt in
the wheel at higher speeds is essential to meet the vehi-
cle’s performance. Further, the increase in Cd and Af causes
higher Pt at higher speeds than lower speeds. However, the
increase in fr of tire and wheel slip is more significant at low
speeds and requiresmore Tt tomaintain the same acceleration
performances [230]. Further, an increase in Paux.sys in cold
weather diminishes the capability of powertrain components
thus reducing the vehicle’s maximum power and torque. The
maximum torque and power of an EV also depend on the
size and configuration of powertrain components. In the case
of the battery, the maximum vehicle torque and power are
increased with the use of a higher-capacity battery as it sup-
plies more energy and power to the drivetrain components.
Also, the increase in the size of themotor causes higher torque
and power at the wheel though the power losses are higher.
Additionally, the in-wheelmotor drive produces higher power
and torque in the wheel due to the absence of a transmission
system [231]. Further, the multi-speed transmission increases
the maximum wheel torque due to the wide operating ranges
of powertrain components but the maximum wheel power is
reduced as has lower efficiency than single-speed transmis-
sion [223]. The driving conditions and road topography play
a critical role in the requirement of wheel torque and power in
real-time driving.Whereas the requirement of wheel torque is
higher at low speeds on urban DCs and higher wheel power is
required at high speeds at highway DCs during simulations.
Also, the road surface with a larger grade angle requires
higher wheel torque due to higher acceleration [183].

IX. PERFORMANCE ENHANCEMENT TECHNIQUES FOR
EV OUTPUT CHARACTERISTICS
Commonly, the EV performance characteristics are improved
by increasing the ηpowertrain with lowering torque and power
requirements at the wheel during different driving condi-
tions. This can be accomplished by adopting a suitable power
source, design and configuration of drivetrain components,
thermal management system and lightweight materials [232]
as shown in Fig. 17. The use of lightweight, good thermal
characteristics, higher current capability and energy density
batteries such as lithium-sulphur and lithium-air batteries
have improved the DR than li-ion batteries with conventional
materials [233]. Also, the use of high-power density and
current capability power sources such as super-capacitor and
fuel cells with an appropriate energy management strategy
improves the DR, acceleration and gradeability by mini-
mizing the EC and Mv. This can be justified by higher
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FIGURE 17. Improvisation methods for EV performance characteristics.

FIGURE 18. Future research direction in modelling and simulation of EV powertrain development.
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current capability, powertrain and charging efficiency of
super-capacitor and fuel cells [234], [235]. Further, the use
of control strategies like PWM, pulse amplitude modu-
lation (PAM) and bang-bang type current control with a
super-capacitor and fuel cell improves the DR of EV by
minimising the power converter losses [236], [237].
The smaller variation in drivetrain configuration has a

greater impact on the performance of EVs than the vary-
ing size of drivetrain components. Further, lightweight
distributed electric drive systems with adequate torque dis-
tribution strategies are improving the DR of EVs more than
single-motor drive systems [238]. Also, dual motor with
multi-mode coupling powertrain (DMMCP) delivers better
DR than other drivetrain configurations. The ηpowertrain and
dynamic performance factors like gradeability, acceleration
time and maximum speed are improved with the DMMCP
and different energy management strategies as it drives the
motor at higher efficiency region during different operating
conditions [239]. Besides, motor configurations such as a
v-type arrangement of permanent magnet and a lesser slot
opening with different modulation techniques such as PWM,
PAM, etc. have provided better DR and dynamic performance
with lower power losses [240], [241].
The use of regenerative braking with an ultra-capacitor in

the EV powertrain increases the regenerative efficiency and
DR of EVs [242]. Additionally, Weight reduction of EVs has
a greater potential to improve all the aspects of EV perfor-
mance such as DR, acceleration and gradeability by reducing
the EC, torque and power requirement in the wheel [243].
In recent days, Mv has been reduced by replacing conven-
tional materials and powertrain components with advanced
materials and powertrain technologies. Also, it is expected
to reduce the vehicle weight further to extend the DR and
improve the driveability in future [244], [245]. Especially, the
use of low-friction tyres and effective thermal management at
low-temperature operating conditions improve the ability to
accelerate and climb uphill with minimal EC and result in
higher DR [246], [247].

X. SUMMARY AND FUTURE SCOPE
This review designates to elaborate the summary of research
works in the field on the estimation of EV performance
characteristics such as EC,DR, acceleration, gradeability, etc.
by analytical method. A cohesive approach is followed in
this review to explore the different modelling methods which
consist of sub-models with required input data. Further,
this study enumerates the characterization of localized DCs
and simulation tools used for evaluating EV performance
through simulation. Also, a brief discussion has been done
on variations in EV performance entities with different input
parameters along with its improvisation methods. As a result
of the holistic review approach in this research domain, a few
major conclusions are highlighted along with possibilities of
future research direction as follows.

1) Among these modelling approaches, the analytical
model is uncomplicated to understand. However, the

accuracy of EC and DR estimation of EVs through an
analytical modelling approach is not matchedwith real-
time data.

2) To optimize the EV powertrain design and develop the
charging infrastructure in region-specific, the localised
DCs are developed for different vehicle classes by
many researchers and simulation results of localized
DCs have matched with the real-time EC of EVs.

3) In most of the studies, the zero-dimensional EV per-
formance model is developed with longitudinal forces
and simulation is commonly executed inMATLAB and
Simulink platforms. Further, the performance model
for different vehicle classes comprises sub-models with
different input conditions and data of EV powertrain
components, driving and atmospheric conditions. The
accuracy of EV range prediction by the analytical
model is solely based on the input data of the above-
mentioned sub-models.

4) The influence of different internal and external param-
eters on EV performance features is analysed with
the results of simulation studies for different vehicle
configurations, DCs and ambient conditions. In addi-
tion, the powertrain simulation studies with different
advanced technologies such as hybrid power source,
distributed electric drive systems, multi-speed trans-
mission, use of lightweight material and efficient
energy management exhibit better performance than
the simple electric powertrain.

However, numerous simulation studies are performed to
evaluate the EC and DR of EVs. Still, the accuracy of
the above-mentioned performance factors through simula-
tion is not matched with real-time data due to the limited
information available about powertrain configurations, road
and atmospheric conditions. Also, the performance of EVs
depends on numerous factors such as driver behaviour, vehi-
cle, atmosphere and road parameters. To eliminate the driver’s
anxiety about DR and extend the capability of the powertrain,
more research works should be focused on developing an
efficient electric powertrain with different advanced tech-
nologies as shown in Fig. 18. Also, to improve the reliability
and prediction accuracy of EV performance features through
modelling, the uncertainty on modelling of input data related
to vehicle, powertrain components, and atmospheric and
road conditions are cautiously considered in future research
work. Further, it is necessary to identify the most significant
uncertainty parameters with respect to the different EV oper-
ating conditions to match the real-time performance values
[248], [249]. Thereby, the authors recommend that the afore-
mentioned future research investigations can promote the
penetration of EVs in the transportation sector by extending
the overall performance.
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