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ABSTRACT This paper introduces EU-Net, an efficient and enhanced U-Net-like architecture designed for
medical image segmentation. It comprises a lightweight encoder and decoder connected through dense skip-
connections. To further improve the robustness of the EU-Net, chain EU-Net is proposed. Chain EU-Net is
based on a streamlined architecture that uses multiple EU-Net to build light weight deep neural networks by
dense skip-connection. Compared to traditional segmentation algorithms such as U-Net and its variants, our
neural network structure possesses both lightweight and stability simultaneously. EU-Net and chain EU-Net
are evaluated on three typical medical image segmentation tasks: GLAS (Gland segmentation) dataset, RITE
(Retinal Images Vessel Tree Extraction) dataset and LiTS (Liver Tumor Segmentation Challenge) dataset.
In addition, we used PUFH (Peking University First Hospital) dataset. Experimental results show that the
proposed methods achieve state-of-the-art performance with very few parameters.

INDEX TERMS Medical image segmentation, deep learning, dense skip-connection, efficiency.

I. INTRODUCTION
Medical image segmentation is a significant work, which
provides the shape contour and range of organ regions,
to help doctors make better clinical decisions in many areas,
e.g., vessel detection, gland disease segmentation and tumour
diagnosis.

Different to common RGB image, medical images usually
suffer from high noise, weak contrast and blurred boundaries,
making it difficult to extract discriminative features. Early
methods often based on edge detection [1], [2], activate
contours [3], [4] and graph theory [5], [6], etc. Recently,
convolutional neural networks (CNN) appeal more research
attraction due to its excellent discriminating feature extrac-
tion, such as U-Net [7], Res-UNet [8], UNet ++ [9] and
so on. Among those CNN methods, U-Net and its variants
achieved outstanding results by applying the encoder-decoder

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhan-Li Sun .

architecture and skip-connection structure in medical image
segmentation. CNN’s methods are successful for two main
reasons. The first is that multiple encoder-decoder structures
are adopted to extract different levels of features by down
sampling. Specifically, the initial layers of encoder in U-Net
capture low level features, such as edges and small anatomical
structures, while deeper layers extract semantic features. The
second is that U-Net and its variants use skip connection to
fusion different level of features among adjacent layers or
even all layers. The structure of skip-connection plays an
important role in preventing the loss of semantic information
and gradient information.

Medical image segmentation still faces great challenges
in practical application. First, U-Nets and its variants are
susceptible to noise, especially in some complex contexts.
Second, the skip-connection causes the large semantic gap
between low-feature map and high-feature map, leading
information loss. Third, U-Net and its variants have millions
of parameters, which makes them hard to embed into
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micro hardware. Striking a balance between performance and
lightweight is an important challenge. In addition, acquiring
medical image data typically requires a significant amount
of time and financial resources, along with specialized
knowledge for accurately annotating structures within the
images. Therefore, many medical image datasets are rela-
tively small, posing challenges for training deep learning
models. In medical images, different structures may appear at
varying frequencies. For example, in tumor segmentation, the
frequency of positive samples (tumor regions) is often much
lower than that of negative samples (non-tumor regions). This
leads to class imbalance issues that require special attention
and handling. In medical applications, there is often a need to
deploy models on embedded devices such as mobile devices
or medical instruments.

In this paper, in order to overcome the above problems,
we propose EU-Net, a lightweight dense skip-connected sim-
ilar U-Net architecture for medical semantic segmentation,
which explicitly exploits the inception and dense skip-
connected encoder-decoder structures to reduce semantic
loss between low features and high features. To future
enhance discriminating feature extraction, we cascade mul-
tiple EU-Net for segmentation which is called chain EU-Net.
To verify the effectiveness of our approach, we con-
duct extensive experiments on GLAS datasets and RITE
datasets respectively, whose results show that our methods
achieve state-of-the-art performance with few parameters.
In conclusion, the main contributions of this paper are as
follows:

1) An efficient and dense skip-connected autoencoder
called EU-Net is proposed for medical image segmen-
tation, which embraces efficient to extract features.

2) We propose a chain EU-Net to enhance the robustness,
which consists of multiple lightweight dense skip-
connected autoencoder.

3) We conduct extensive experiments to empirically
analyses the proposed methods. The results on four
dataset show the effectiveness of the methods.

4) We collect a new dataset for liver occupying lesions
based on clinical data from Peking University First
Hospital.

The rest of the paper is organized as follows. Section II
reviews the related works on deep learning for medical
semantic segmentation. Section III describes the basic
ideal of proposed EU-Net and chain EU-Net in this
study. The detailed results are presented and discussed
in Section IV and Section V. We conducted ablation exper-
iments in Section VI. Section VII studied the combination
of EU-Net and attention. Finally, we conclude our work
in Section VIII.
This study was approved by the Ethics Committees of

Peking University First Hospital.

II. RELATED WORK
The main goal of medical image segmentation is to obtain
the pixel level prediction of human tissue. Medical image

segmentation is a very challenging task because of the high
noise, low contrast and blurred boundary of medical image.
In this section, we briefly demonstrated methods based
deep learning for medical image segmentation and structures
related to our model.

Long et al. [10] proposed fully convolutional net-
works (FCN) to view semantic segmentation tasks as per-
pixel classification. U-Net [7], derived from FCN, is a
groundbreaking structure as it uses skip connections to
concatenate encoders and decoders to make low semantic
features to be learned in deeper layers. At the same time, the
2 × 2 pooling or 2×2 interpolate makes U-Net learn different
levels of features. After U-Net came out, the researchers
make great effort to modify U-Net-based structure for better
performance. Inspired by the ResNet [11], Res-UNet [8]
replaces each submodule of U-Net with a residual structure.
UNet++ [9], proposed by Zhou et al., consists of an
encoder and decoder that are connected through a series
of nested dense convolutional blocks. Taking advantage of
full-scale skip connections and deep supervisions, Huang et
al. proposed UNet 3+ [12]. UXNet [13] proposes a novel
architecture, which makes model have the ability to search
for the best feature aggregation strategy; DeepLabV3 [14]
uses Res-Net as encoders and uses depth-wise separable
convolution to decoder modules; V-Net [15] improves U-Net
to be able to recognize 3D medical scans; KiU-Net [16], [17]
developed a structure that was good at detecting small
edges with fewer parameters. Although those structures have
excellent performance, it is difficult for them to maintain
the generalization ability and robustness of the model, while
further reduce the number of parameters. Inception [18] con-
structs are an important way to improve network performance
by fuse multiple scales feature information. In inception,
firstly, the number of channels is reduced by 1×1 convolution
to aggregate the information, and then feature extraction
and pooling of different scales are carried out to obtain
information of multiple scales. Finally, the features are
superimposed and output.

III. METHODS
Fig.1 shows a general overview of the chain EU-Net. The
method is composed of four lightweight EU-Net blocks
by dense skip connection. All EU-Net blocks have same
structure which is a lightweight and dense skip-connected
encoder-decoder. In this section, we start by describing the
proposed EU-Net block. Then, the method of chain EU-Net
is presented.

A. EU-Net: AN EFFICIENT U-Net-LIKE STRUCTURES
As illustrated in Fig.2, the EU-Net is an encoder-decoder
model that is similar with U-net. Compared to U-net, the
EU-Net has three aspects of transformation. First, inspired
by inception, five-parallel inceptions were applied to extract
2,3,4,5 and 6 channel feature maps respectively from a
medical image. Then concatenate them to a 20-channel
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FIGURE 1. The overview of the chain EU-Net.

FIGURE 2. Lightweight and dense skip-connected EU-Net.

feature map. The 20-channel feature map contains abundant
low-level features. All five-parallel inception blocks output
2,3,4,5 and 6 feature maps respectively by a convolution
operation.

Second, a lightweight and dense skip-connected encoder-
decoder structure was cascaded after concatenating the
20-channel feature map. The encoder structure consists
of three encoder layers and corresponding max-pooling
operators. Each encoder operator includes convolution, batch
normalization [15] and mish activation function [16].
The size of convolutional filter is 1×1 in first encoder layer

and 3× 3 in other encoder layers. Mish activation function is
a novel smooth and non-monotonic neural activation function
which can be defined as (1), where x represents the input to
the activation function.

f (x) = x · tanh(ln(1 + ex)) (1)

The spatial dimension of the feature maps is reduced via
a max-pooling operator. On decoder structure, it consists
of three decoder layers and corresponding upsampling
operators. Each decoder includes concatenation, convolu-
tion, batch normalization and mish activation. The con-
catenation means that the last layer feature maps are
concatenated channel-wisely with feature maps of simi-
lar size from first and second encoder layer by global
pooling.

Third, in order to reduce the large semantic gap between
low-feature map and high-feature map, at the end of encoder-
decoder, a decoder layer was attached and transferred the
concatenated feature maps to 2-channel feature maps.

B. CHAIN EU-NET
In order to extract more discriminating features from medical
images, we concatenate multiple lightweight and dense
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skip-connected EU-Net to the deeper network by dense skip
connection, as shown in Fig.1. The deeper network named
chain EU-Net whose shapes just like a chain. Specifically,
we regard a single EU-Net as a block and concatenate
the origin image with all outputs of the block as a new
input for the next block. By repeating this operation, the
network becomes deeper and acquires better discriminating
feature extraction ability. Since each autoencoder block
contains extremely small number of parameters, the total
number of parameters of the network still remain relatively
small.

C. LOSS
Each lightweight EU-Net get an output and has a binary
cross-entropy loss. In our chain EU-Net, the final loss is the
sum of all lightweight EU-Net loss. So, the final loss for our
chain EU-Net can be defined as (2):

Loss =

N∑
i=1

li (2)

li is a the binary-cross entropy loss which represent difference
between the prediction of i-th lightweight EU-Net and
the ground truth. N means that the chain EU-Net have
N lightweight EU-Net. The loss of the lightweight EU-Net
shows as follows:

l = −
1
wh

w−1∑
x=0

h−1∑
y=0

(p(x, y) log(p̂((x, y)))

+ (1 − p(x, y)) log(1 − p̂(x, y)) (3)

where w and h are the dimensions of image, p(x, y)
corresponds to the image and p̂(x, y) represents the output
prediction at specific pixel location (x, y).

IV. EXPERIMENTS
In this section, to evaluate the effectiveness of the proposed
lightweight EU-Net and chain EU-Net, several experiments
were conducted on the GLAS, RITE, LiTS and PUFH
datasets.

A. DATASET
Gland Segmentation (GLAS) dataset [19] contains
165 images of different sizes derived from 16 H&E-
stained histological sections of stage T3 or T4 colorectal
adenocarcinoma. Because each section comes from different
patients and is processed on different occasions, the data
exhibits high level of inter-subject variability. The pictures of
GLAS are divided into 80 train images, 5 validation images,
and 80 test images.

Retinal Images vessel Tree Extraction (RITE) dataset [20]
contains 40 images for retinal nerve segmentation. Retinal
nerve segmentation has great effects on diagnosis and
treatment of various ophthalmic diseases. RITE dataset was
split into 18 for training, 2 for validating and 20 for testing.
To fit the model, we converted the label images of the RITE

dataset from grayscale images to binary images, converting
pixels with grayscale values greater than 32 to 1, and pixels
with grayscale values less than 32 to 0.

Liver Tumor Segmentation(LiTS) datasets contains
131 contrast-enhanced 3D abdominal training CT scans.
The tumor segmentation in LiTS is very challenging
because of tumor’s heterogeneous and diffuse shape.
In LiTS, the ground truth segmentation provides three
different labels: liver, tumor and background. In LiTS,
liver segmentation task consider background as negative
class and others as positive class. Tumor segmentation task
consider tumor as positive class and others as negative
class. We split these CT scans at 8:1:1 ratio into train set,
validation set and test set respectively. In the same time,
we remove irrelevant useless details which don’t contain
tumor.

Peking University First Hospital(PUFH) datasets contain
200 3D abdominal CT scans. In PUFH, the ground truth
segmentation provides three different labels: liver, liver
space-occupying lesions and background. We split these
CT scans at 8:1:1 ratio into train set, validation set
and test set respectively and remove irrelevant useless
details.

B. EVALUATION METRICS
The Dice [21] and Jaccard [22] coefficient was used as
the evaluation metric for each segmentation result, which is
expressed as follows:

Dice =
2TP

2TP+ FP+ FN

Jaccard =
TP

TP+ FP+ FN

where TP represents the true positives; FP represents the false
positives; FN represents the false negatives.

C. IMPLEMENTATION DETAILS
The proposed method is implemented by pytorch-1.10 on
ubuntu 18.04 System with NVIDIA RTX 8000 GPUs.
To compare fairly with other methods, we pre-process the
images by resizing them to 128 × 128 pixels. In training
phase, the lightweight EU-Net is initialized with random
metric. We use the Adam optimizer to train the network with
parameters β1 = 0.9 and β2 = 0.999. The learning rate
is 0.01. The weight decay is 0.04. and the batch size is set as 8.
We use grid search to optimize hyperparameters. Training
stops when the network is converged.

V. DISCUSSION WITH FOUR DATASETS
We compare the results of the proposed method with that of
previous outstanding deep learning-basedmethods on the five
medical image segmentation tasks. Tabel.1 shows the results
of ligthweight EU-Net and Chain EU-Net on five image
segmentation tasks. It can be clearly seen that our lightweight
Chain EU-Net architectures achieve best performance with
fewer parameters than other networks. At the same time,
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TABLE 1. Comparison of our methods and other state-of-the-art methods on the four datasets mentioned above. Our results and other best results are
highlighted on bold. Where LiTS-T means tumour segmentation task on LiTS dataset, and LiTS-L means liver segmentation task on LiTS dataset.

EU-Net performs better than a considerable number of other
networks with the minimal parameters.

On the GLAS dataset, Chain EU-Net performs the best
among all networks, while U-Net excels among methods
other than ours. As Tabel.1 shows, Chain EU-Net uses
only 0.39% of the parameters of U-Net’s but still improves
performance slightly, and EU-Net, with only 0.1% of the
parameters, loses only 2.6% of its performance. Specifically,
compared to EU-Net, Chain EU-Net improves the Dice and
Jaccard accuracy on GLAS from 0.8547 to 0.8806, achieving
3.03% increase respectively.

Fig.3 shows the medical segmentation images of U-Net,
KiU-Net, our EU-Net and chain EU-Net. Among themethods
other than ours, KiU-Net has the fewest parameters, while
U-Net exhibits the best performance. It can be seen that
our results are more distinguishable than other networks.
Especially for the prediction of red block, our results are more
consistent with the original image, and there are fewer areas
of wrong prediction.

FIGURE 3. Comparison of qualitative results between SegNet, KiU-Net
and our method in GLAS dataset.

The RITE dataset exhibits highly complex textures,
making it exceptionally suitable for testing the network’s
generalization capability. As Tabel.1shows, the Attention
U-Net achieves the best performance among methods other

FIGURE 4. Comparison of qualitative results between Attention U-Net,
KiU-Net and our method in RITE dataset.

than ours on RITE dataset. Chain EU-Net, with only 0.35% of
the parameters of Attention U-Net, achieves superior results
compared to Attention U-Net. EU-Net achieves a 99.27%
performance with only 0.09% of the parameters of Attention
U-Net.

Fig.4 shows qualitative results between Attention U-Net,
KiU-Net and our method in RITE dataset. For the RITE
dataset, our results have better continuity and consistency in
the task of vascular segmentation. In addition, the prediction
results of our EU-Net and chain EU-Net have less breakpoints
and noise points.

The tasks of liver segmentation, tumor segmentation,
and liver space-occupying segmentation serve as invaluable
aids to medical professionals, enhancing their diagnostic
capabilities and delivering substantial practical utility. The
experimental results show that Chain EU-Net also has
excellent performance in these tasks. Excluding Chain EU-
Net, U-Net++, Attention U-Net, and ELU-Net excel in the
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FIGURE 5. The tumor segmentation result comparison with other
methods on LiTS dataset.

FIGURE 6. The liver segmention result comparsion with other methods on
LiTS dataset.

LiTS tumor segmentation task, LiTS liver segmentation task,
and liver space-occupying segmentation task, respectively.
Chain EU-Net achieves superior final results with parameter
counts of 1.33%, 0.35%, and 15%, respectively. It’s worth
mentioning that, on the PUFH dataset, EU-Net outperforms
any other method except for Chain EU-Net even with
significantly fewer parameters.

Fig.5 and Fig.6 shows the tumour results and liver segmen-
tation results comparsionwith othermethods on LiTS dataset.
Fig.7 shows the results of liver sapce-occupying lesion
segmentation on PUFH dataset. It is abundantly clear that our

FIGURE 7. The liver space-occupying lesions segmentation result
comparsion with other methods on PUFH dataset.

methodology showcases outstanding performance across a
diverse array of segmentation tasks, encompassing the precise
delineation of small tumors, the intricate segmentation of
complex tumor structures, the precise mapping of liver space-
occupying lesions, and the comprehensive segmentation of
liver.

VI. ABLATION STUDY
We conduct an ablation study to analyze the effectiveness
of different innovation points in the proposed method
(EU-Net).

TABLE 2. Comparison of Chain EU-Net with different depth. The number
of depth means that Chain EU-Net is consisted of n EU-Nets.

A. DEPTH
The Chain EU-Net is composed of multiple lightweight
dense-connected EU-Nets blocks. To figure out how the
performance varies while we change the depth of our
chain EU-Net, we did global depth experiment. Specifically,
we kept the number of filters of each lightweight dense skip-
connected EU-Net block unchanged. Then we increased the
depth of our chain EU-Net by densely skip connecting from
one EU-Net block to two blocks, three blocks, four blocks,
five blocks respectively, which means we added or deleted
EU-Net blocks from chain EU-Net.
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Table.2 shows the result of our chain EU-Nets that have
different numbers of lightweight EU-Net blocks by dense
skip-connection on GLAS and RITE dataset. The number in
depth line indicates that the chain network is composed of n
EU-Net blocks by dense skip-connection. We can see that the
Chain EU-Net has the best performance when it contains four
EU-Net blocks.

TABLE 3. Performance of two methods on GLAS and RITE dataset. The
Convolution method in table means replacing the inception block in
EU-Net with a regular convolutional layer.

B. INCEPTION BLOCKS
We use an inception block to reduce parameter calculation
and alleviate the gradient vanishing issue. To validate
the effectiveness of the inception block, we replaced the
inception block in EU-Net with regular convolutional layers
and conducted experiments on the GLAS and RITE dataset.
We can clearly observe the effectiveness of the inception
block in the Table.3.

C. DENSE CONNECTIONS
To study the effectiveness of different dense connectiv-
ity in EU-Net, we removed some of the skip connec-
tions in EU-Net, resulting in four different structures as
shown in the Fig.8. The four structures in Fig.8 are
carefully chosen. The connectivity method in Fig.8-a is
similar to U-Net, where layers with the same size are
concatenated from the encoder to the decoder. The con-
nectivity method in Fig.8-b involves concatenating layers
with rich original image information into each layer of
the decoder. The connectivity method in Fig.8-c can be
combined with the connectivity method in Fig.8-b to form
a complete EU-Net. Fig.8-d does not contain any skip
connections.

For these experiments, we use GLAS and RITE dataset.
The experimental results are shown in Table.4. It can be
clearly observed that the performance of the complete
EU-Net is the best.

TABLE 4. Performance of EU-Net and other dense connections base on
EU-Net. FIGURE 8. The structures of four different dense connection.

VII. COMBINING WITH ATTENTION
Inspired by Attention U-Net [23], we add attention blocks
at the positions shows in Fig.9. As Tabel.5 shows, Attention
EU-Net achieve a significant improvement.
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FIGURE 9. The structure of attention EU-Net.

TABLE 5. Performance of EU-Net and Attention EU-Net on four datasets.

VIII. CONCLUSION
This paper shows the power of lightweight dense skip
EU-Net structure for medical segmentation area. Compared
to U-Net and its variants, EU-Net addresses the limitations
they face in terms of stability and efficiency, making
it particularly well-suited for deployment on embedded
devices. Experimental results on four datasets demon-
strate that EU-Net achieves robust performance with fewer
parameters. To further characterize the performance and
robustness of the network, we propose Chain EU-Net which
is consisted of multiple lightweight dense EU-Nets by
dense skip-connection. The Chain EU-Net achieves better
performance and robustness four datasets, with only few
parameters increase. Furthermore, we adjust the depth of
Chain EU-Net to analyze the performance and robustness,
study the effectiveness of inception blocks, skip connections,
and attention EU-Net. In the future, we plan to explore
suitable attention mechanisms to integrate with the chain EU-
Net, aiming to achieve superior and more stable performance.
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