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ABSTRACT Progress in Deep Learning (DL) has introduced alternative methods for tackling complex
challenges, such as the steganalysis of spatial domain images, where Convolutional Neural Networks (CNNs)
are employed. In recent years, various CNN architectures have emerged, enhancing the precision of detecting
steganographic images. Nevertheless, current CNNs encounter challenges related to the inadequate quality
and quantity of available datasets, high imperceptibility of low payload capacities, and suboptimal feature
learning processes. This paper proposes an enhanced secret data detection approach with a CNN architecture
that includes convolutional, depth-wise, separable, pooling, and spatial dropout layers. An improved fuzzy
Prewitt approach is employed for pre-processing the images prior to being fed into CNN to address the
issues of low payload capacity detection and dataset quality and quantity in learnability of the image
features. Experimental results, which achieved an overall accuracy and F1-score of 99.6 and 99.3 per cent,
respectively, to detect a steganographic payload of 0.5 bpp hidden with Wavelet Obtained Weights (WOW),
show a significant outperformance over the state-of-the-art methods.

INDEX TERMS Convolutional neural networks, fuzzy logic, information security, network infrastructure,
network security, spatial domain, steganalysis.

I. INTRODUCTION
Steganography stands as both a method and an artis-
tic endeavour to conceal confidential communication
within seemingly ordinary digital content such as digital
images [1], [2], audio [3], [4] and video [5]. Unlike steganog-
raphy, steganalysis is counter-art aiming to identify whether
concealed messages are present within publicly transmit-
ted media [6]. Over the last few decades, steganalysis and
steganography have maintained a symbiotic relationship,
being interchangeably employed and mutually fostering
each other’s advancement. Steganography within digital
images has recently garnered significant attention due to
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its widespread adoption across various social media plat-
forms [7].

Steganalysts use two distinct methodologies: targeted and
universal steganalysis. Targeted steganalysis focuses on pre-
emptively identifying stego images, resulting in specific
steganographic techniques [8], and universal steganalysis
focuses on detecting the stego images generated through
various steganographic methods without prior knowledge of
the exact algorithms employed [9]. In any steganographic
strategy, the primary objective is to optimize the imper-
ceptibility of the secret information into the content of an
image, thereby preserving the integrity of the original cover
image. The high imperceptibility of a stego image makes it
hard and mainly impossible to discern the presence of the
secret bits. Therefore, the primary endeavor of a steganalyst
revolves around discriminating between these two states:
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FIGURE 1. The general paradigm of steganography and steganalysis.

determining whether an image is an original cover or a stego
image [10].

The general concept of steganography and steganalysis
in images is illustrated in Fig. 1, with two main parts,
one representing steganography, highlighted in blue, and
another representing steganalysis, highlighted in orange.
In the steganography part, the cover represents the original
input image used as a carrier of the secret data. The output
of the steganography part is the stego image, equivalent to
a combination of the cover and the secret message. In the
steganalysis part, the stego images resulting from the stegano-
graphic scheme are labeled as stego, and the cover images
are labeled as cover to be considered as the inputs of a ste-
ganalysis scheme (as encircled in pink dashes). Based on the
main objective of a steganalysis scheme of binary classifying
images as cover or stego, a steganalysis scheme classifies
images as cover or stego images.

The categorization of steganalysis predominantly hinges
on the resulting outcomes of the procedure, which can be
classified into four primary classes. Steganalysis, encompass-
ing an image classification outcome, distinguishing between
a cover and stego, is referred to as detective steganalysis [9];
a steganalysis approach aimed at revealing the concealed
data’s positions is recognized as locative steganalysis [11].
A steganalysis strategy that seeks to identify the payload
size is referred to as quantitative steganalysis [8], and foren-
sic steganalysis denotes a steganalysis procedure to extract
the concealed bits of a confidential message [12]. In line
with steganalysis to detect the existence of secret data, sev-
eral machine learning (ML) methods have been suggested
in the field of steganalysis [13], [14]. These approaches
involve a two-step process comprising feature extraction and
classification. Importantly, there is no form of backward com-
munication between these two stages.

Nevertheless, the steganalysis methodologies developed
using ML algorithms yielded unsatisfactory outcomes for the
complete spectrum of steganalysis duties, primarily attributed
to the fundamental logic inherent in these ML techniques.
Lately, researchers have turned to DL models to enhance
the overall efficacy of steganalysis outcomes. In contrast

to conventional ML models, DL models facilitate bidirec-
tional communication between the feature extraction and
classification phases, enabling the conception of novel strate-
gies to execute steganalysis operations on digital images.
DL-based steganalysis models encompass architectures such
as deep neural networks (DNN) and convolutional neu-
ral networks (CNN). These architectures link the processes
of feature extraction and classification through backward
communication into a unified phase [9], [10], [15]. The
methods based on CNNs showcased that enhancing the fea-
ture extraction phase significantly augmented the efficacy of
model generation for image classification. This substantial
enhancement played a crucial role in elevating the quality of
steganalysis performance.

Moreover, several other researchers proposed methods
to combine the CNNs with other approaches [16], [17]
that preprocess the images used in the binary classification
to improve the results in steganalysis tasks. However, the
proposed methods exhibit certain drawbacks regarding clas-
sification accuracy due to several problems, which include
the lack of quality dataset and extensive training dataset, the
inconsistency of the feature learning process, and the use
of low payload by steganography practitioners, showing the
need for further enhancement to effectively mitigate the risk
of undetected secret communication, which could potentially
have detrimental implications for companies, governmen-
tal institutions, and the community in general. This aspect
assumes paramount significance within the realm of image
digital forensics.

The research gaps identified in the existing steganaly-
sis models are mainly founded on the risk of the inability
to reveal all possible covert communication within digital
images with certainty. Explicitly, this research addresses two
main research problems, namely, the high imperceptibility
of stego images resulting from low payload capacities and
the issue of low learnability for features of the stego images.
This paper proposes a solution based on combining CNNwith
a mathematical paradigm known as fuzzy logic to address
the current research gaps. Benefiting from the ability of
fuzzy logic to optimistically contribute to the classification
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problems [18], [19], [20], [21], [22], [23], we pre-process
the cover images to make them the best version of images
for classification because we remove the unwanted regions.
In our CNN, we refer to [6] and [24] to integrate the
depth-wise separable convolutions combined with other
functions to design a new CNN with reduced dimen-
sionality, which showed outperformance in stego image
detection.

The contributions and the novelty of our work, which
make it outperform the existing works, are summarized in the
following points:

1) Enhancing low payload detection: By operating on the
edge levels of the inquiry images, we achieve improved
detection of low payload steganography based on the
contribution of the training samples selection and
approaches used in learning for the performance of
a steganalysis algorithm. Most state-of-the-art models
yield low payloads such as 0.2 bpp and 0.4 bpp; we
evaluate our model with payload capacities from the
lowest payload of 0.05 bpp.

2) Improving feature learning: Using convolutional struc-
tures in DL frameworks proves advantageous in cap-
turing the relationships between adjacent pixel values
within an inquiry image. Nevertheless, CNNs typically
amalgamate local layer data through techniques like
pooling operations or convolutional layer scaling when
incorporating global features. Therefore, in this work,
we develop an algorithm that handles global informa-
tion in the process, enhancing the effectiveness of the
feature learning process.

The structure of the next parts of this article is out-
lined as follows: Section II introduces the pertinent existing
research. In Section III, we elaborate on our methodology.
Section IV presents a comprehensive set of experimental
results to substantiate the efficacy and efficiency of our pro-
posed approach. Finally, Section V serves as the conclusion
of this article.

II. RELATED WORKS
A. FUZZY-BASED EDGE DETECTION ALGORITHMS
Fuzzy logic is a mathematical paradigm that addresses clas-
sification issues resulting in impreciseness and uncertainties
with data. Fuzzy consists of intricate and ever-changing
situations that find better characterization through descrip-
tive language and nuanced interpretations rather than strict
mathematical representations. Fuzzy logic has found its pri-
mary practical application as process controllers in numerous
fields, particularly in Japan and Europe [18]. In recent appli-
cations, fuzzy logic has been widely applied in metaheuristic
tasks [25], [26], regularizing the environment for smart
agriculture [27], [28], covering preprocessing for enhanced
payload capacity in steganographic applications [29], [30].
Unlike classical logic, which is based on sharp true-false
differentiations, fuzzy logic aims to emulate human logic
by performing representations in non-linear ways. Fuzzy
logic frequently employs linguistic terms that deviate from

conventional binary logic. Unlike the binary approach, fuzzy
logic enables gradual representations within a continuous
environment, facilitating the expression of varying levels of
impreciseness.

Zadeh [19] invented fuzzy sets to address dissatisfaction
with classical (crisp sets) sets. Fuzzy logic permits the uti-
lization of set membership, allowing their elements to belong
to one or more classes simultaneously based on the degree of
membership. The scope of these sets is influenced by human
reasoning, as it hinges on the concept or user implementing
them. The fuzzy logic type 1 (FT1), which is selected in this
work based on state-of-the-art works such as [21], consists of
a set B from the universeU ranging from 0 to 1, which belongs
to a function that is continuous mathematically expressed as
µB:U → [0, 1]. Let B, the fuzzy membership function noted
as µB(u), we mathematically express the function B as of (1).

B = {(u, µB(u))| uϵU} (1)

The representation of a fuzzy set primarily uses one of
the three membership functions (MFs), such as the Gaussian
membership function (GMF), trapezoidal membership func-
tion (TraMF), and triangular membership function (TriMF).
In this work, we use GMF to detect the edges of images
with {a and ∂} the parameters used to explain our relation
in (2) mathematically. a is used to represent the average
membership function and ∂ represents the amplitude.

Gaussian (u; a, ∂) = e
−

1
2
( u−a

∂
)2

(2)

Moreover, the logic of the fuzzy inference system is
founded on the if-then rules based on fuzzy reasoning [23]
implemented with fuzzy sets. A Fuzzy Inference Sys-
tem (FIS) comprises a database alongside a reasoning process
that deduces a logical conclusion based on the inputs, out-
puts, and knowledge stored within the database. Well-known
fuzzy inference systems include Tsukamoto, Takagi and
Sugeno [31], and Mamdani [20].
Techniques for image processing encompass a range of

digital image manipulations aimed at concealing or empha-
sizing details and targeted patterns, improving image light,
and eliminating noise resulting from external factors such
as camera sensor artefacts or motion during image capture.
This process involves applying an operation within a pixel
window (kernel) that traverses the images, uniformly altering
their content to generate a new image [32]. Considering the
variable f as an input image, for the edge’s detection function
in (3), k is a kernel with n rows and m columns.

g (u, y) =

∑i

m=−i

∑j

c=−j
k(n,m) f (u+ n, y+ m) (3)

Tasks like edge detection are executed to decrease the vol-
ume of data within an image. Techniques for edge detection
are employed to recognize abrupt shifts in the brightness
gradations of the image, enabling the detection of boundaries.
The Roberts, Sobel, and Prewitt operators [33], [34], [35]
stand out as widely used methods for edge detection.
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TABLE 1. Inputs to the function f to compute for edges in an iimage.

TABLE 2. Slopes (coefficients) associated with each matrix position.

These operators concentrate on computing the gradient of
an image using the initial derivative. This is achieved by
applying a convolution operation that estimates the gradient
and provides the first derivative along the horizontal and
vertical axes.

The conventional Sobel and Prewitt operators operate sim-
ilarly. Each utilizes a 3 × 3 gradient operator within a local
neighbourhood, as adapted from [36]. However, their dis-
tinction lies in the convolutional process, where they employ
different masks. In (4) and (5), we establish the masks for
the Prewitt operator in a convoluted manner applied to a
grayscale image. These equations pertain to Prewittu and
Prewittv, respectively. In comparison, the masks utilized
within the Sobel operator are presented in (6) for Sobelu
and (7) for Sobelv.

P1 =

 −1 − 1 − 1
0 0 0
1 1 1

 (4)

P2 =

 −1 0 1
−1 0 1
−1 0 1

 (5)

S1 =

 −1 − 2 − 1
0 0 0
1 2 1

 (6)

S2 =

 −1 0 1
−2 0 2
−1 0 1

 (7)

The filter employs a pair of distinct kernels on an image to
produce gradients. This leads to the gradient along the x-axis
represented as gu stated in (8) for horizontal orientation and
the gradient along the y-axis noted as gv stated in (9) for the
vertical orientation. Table 1 shows the cartesian coordinates
of the inputs to the function f to compute edges in an image.
The coordinates in u represent the horizontal axis coordinates,
and v represents the vertical axis coordinates. To compute for
gradients in all axes, kernelu stands for the mask sobelu or

prewittu and kernelv represents the mask sobelv or prewittv.

gu =

∑i=3

i=1

∑j=3

j=1
kernelui,j ∗ fu+i−2,v+j−2 (8)

gv =

∑i=3

i=1

∑j=3

j=1
kernelvi,j ∗ fu+i−2,v+j−2 (9)

To derive the magnitude of gradients G[f(u,v)], we use the
relation in (10), which encompasses the outcomes of compu-
tations involving gu and gv, which stem from the input to f
via (8) and (9).

The Morphological Gradient stands as an edge-detection
method that evaluates the initial derivative of an image across
its four orientations: vertical, the diagonals (0◦, 45◦, 90◦,
and 135◦), and horizontal. Illustrated in Fig. 2, the gradients
are denoted by the variables G1, G2, G3 and G4. The proce-
dure for computing these gradients is as follows: Gi (with i
ranging from 1 to 4) signifies the edge’s direction (gradient).
This computation is executed using a 3 × 3 kernel following
(11), (12), (13), and (14). In the (15), µi corresponds to the
slope (coefficient) associated with each matrix position as
depicted in Table 2, with f symbolizing the input representa-
tion, utilizing the x-axis for columns and the y-axis for rows.
The value of the edge is denoted by the variable ‘‘MG,’’ and
it is computed following (16) [22].

G[f(u,v)] =

√
g2u + g2v (10)

G1 =

√
(µ5 − µ2)2 + (µ5−µ8)

2 (11)

G2 =

√
(µ5 − µ4)2 + (µ5−µ6)

2 (12)

G3 =

√
(µ5 − µ1)2 + (µ5−µ9)

2 (13)

G4 =

√
(µ5 − µ3)2 + (µ5−µ7)

2 (14)

µi =



µ1=f (u−1,v−1)
µ2 = f (u, v− 1)
µ3 = f (u+ 1, v− 1)
µ4 = f (u− 1, v)
µ5 = f (u, v)
µ6 = f (u+ 1, v)
µ7 = f (u− 1, v+ 1)
µ8 = f (u, v+ 1)
µ9 = f (u+ 1, v+ 1)

(15)

GM = G1 + G2 + G3 + G4 (16)

B. STATE-OF-THE-ART IN SPATIAL DOMAIN
IMAGE STEGANALYSIS
Tan and Li [37] introduced the initial instance of employing
deep learning in steganalysis in 2014. Their method involved
unsupervised learning using a series of Auto-Encoders to
train a Convolutional Neural Network (CNN). Subsequently,
supervised learning was applied by first employing a High
Pass Filter (HPF) to preprocess the image. This step aimed to
amplify the steganographic noise power introduced through
the data concealment steps. The detection rates for stego
images exhibited a reduction of around 17% compared to the
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FIGURE 2. Directions for the considered gradients, G1 represents the
vertical gradient, G2 represents the horizontal gradient, and both
G3 and G4 represent the diagonal gradients.

results achieved through Spatial Rich Models (SRM) [38].
The rates were roughly 11% greater than those obtained
using the Subtractive Pixel Adjacency Matrix (SPAM) [39].
Later, in 2015, Qian et al. [10] introduced the inaugural CNN
utilizing a supervised learningmethodology. This CNN archi-
tecture comprised five convolutional layers and featured a
distinctive activation function called Gaussian Activation.
The identification rates for steganographic images decreased
by around 4% compared to the findings from SRM [38].
Moreover, these rates were approximately 10% higher than
the results of utilizing the Subtractive Pixel Adjacency
Matrix (SPAM) [39].
In 2016, Pibre et al. [40] built upon the groundwork laid

by Qian, introducing two novel neural network architectures.
The initial architecture featured a 2-layer CNN, while the
second model consisted of a Fully Connected Neural Net-
work (FNN) comprising two layers. Xu et al. [41] introduced
a CNN architecture akin to Qian’s, incorporating five con-
volutional layers. In contrast to the former model, Xu et al.
introduced an additional absolute value layer (ABS) and
employed a 1 × 1 convolutional kernel to enhance statisti-
cal modeling, resulting in improved outcomes. Taking their
proposed CNN as a foundation, Xu et al. employed it as a
foundation [42] to train datasets of CNNs. This approach
aimed to attain enhanced training parameters and refine
their detection outcomes. During that same year, Qian et al.
explored Transfer Learning [43], involving the transfer of
parameters from one CNN model, initially trained on stego
images with substantial payload, to another network tailored
for detecting stego images with small payloads. Although
this approach yielded enhanced results compared to the pre-
vious models without Transfer Learning, it still fell short of
outperforming conventional algorithms. These advancements
were predominantly executed within the spatial domain. Fol-
lowing this, researchers shifted their attention to performing
steganalysis using Deep Learning techniques within the fre-
quency domain, explicitly focusing on the JPEG format.

In 2017, Zeng et al. [44] introduced a CNN-based model
to conduct steganalysis on images in the JPEG format.

They employed an approach influenced by RM for prepro-
cessing, which was applied to extensive image collections
sourced from ImageNet [45]. The results achieved closely
paralleled the findings documented in the existing literature.
Concurrently, Chen, Fridrich, and their team developed a
fresh network utilizing Phase Split, drawing inspiration from
the JPEG compression procedure [46]. Employing a CNN
assembler, they achieved notably superior results compared
to the prevailing state-of-the-art methods. Another notewor-
thy advancement involved the incorporation of transitions
between distinct convolutional layers, drawing inspiration
frommodels like ResNet [47], [48]. This technique facilitated
the creation of more intricate CNN architectures, enhanc-
ing the convergence of networks and subsequently elevating
detection precision. This progression led to an approxi-
mate 10% enhancement in detection outcomes compared to
previously documented results.

In 2018, a novel CNN was introduced within the spa-
tial domain by Yedroudj et al. [49]. CNN amalgamated the
most favorable attributes of its predecessors. It integrated
an array of input filters for preliminary processing, drawing
inspiration from SRM’s feature extraction. Furthermore, the
model encompassed five convolutional layers, incorporated
Batch Normalization, featured Truncation Linear Unit (TLU)
activation units and expanded the training dataset’s scale.
These combined improvements yielded superior outcomes
than those documented in the existing literature. In a subse-
quent work [50], Tsang et al. took Ye’s CNN as a foundation
and adapted it to facilitate the classification of high-resolution
steganographic images. This adaptation involved training the
network with low-resolution images. Boroumand et al. [47]
introduced a novel CNN design to minimize the reliance on
techniques like SRM filters in the preprocessing stage. CNN
operates effectively in both the spatial and JPEG domains.

Similarly, Zhang et al. [51] proposed an innovative CNN
architecture that optimizes the filters’ weights in the pre-
processing layer. This optimization strategy aims to enhance
the strength of steganographic noise while concurrently
diminishing the impact of the content in an image. The
network employs distinct convolutions to independently cap-
ture residue channels and spatial correlations for improved
feature representation. Additionally, the approach incorpo-
rates Spatial Pyramid Pooling (SPP) [52] to introduce local
features. This augmentation enhances feature representation
capabilities and enables accommodation for diverse image
sizes.

In the recent five years, since 2019, several works have
been proposed to improve the results of steganalysis in digital
images, taking foundation in those primary works that have
been done since 2014. Boroumand et al. [47] 2019 proposed
a method to address the issue of hand-designed elements
such as utilization of predetermined or limited convolu-
tional kernels, heuristic initialization for kernel parameters,
employment of threshold linear units to emulate truncation
found in rich models, feature map quantization, and consider-
ation of JPEG phase. Their work presents a profound residual
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structure crafted to mitigate the reliance on ad hoc techniques
and externally imposed components. This comprehensive
architecture delivers cutting-edge detection precision for both
spatial-domain and JPEG-based steganography. The pivotal
element of this devised architecture involves an extensively
extended initial segment of the detector. This segment spe-
cializes in ‘‘computing noise residuals,’’ where the pooling
mechanism has been deactivated to avert the attenuation of
the stego signal. Extensive experimental assessments under-
score the exceptional prowess of this network, exhibiting
remarkable enhancement, particularly within the realm of
JPEG processing.

A further elevation in performance is noted by introducing
the selection channel as an additional channel. This same
year, Hu et al. [53] also proposed an innovative approach
for self-directed steganalysis, leveraging visual attention and
deep reinforcement learning to discern adaptive steganogra-
phy within JPEG images. Initially, a visual attention mech-
anism was employed to designate a specific region within
the image. Subsequently, through reinforcement learning,
a continuous decision-making process is executed, creating
a summarized region. This sequential methodology guides
the deep learning model to concentrate on regions conducive
to effective steganalysis while disregarding less informative
regions. The outcomes encompass an enhanced quality of
the training dataset and an augmented steganalysis detec-
tion capacity, achieved by substituting misclassified train-
ing images with their corresponding summarized regions.
In 2020, Zhang introduced a new method based on learning
selection channels one year later. Their method involves the
holistic learning of selection channels in an integrated fash-
ion. Their steganalysis framework encompasses two main
components: the selection channel and the steganographic
data detection networks. These two components are cohe-
sively trained. The selection channel undertakes the task of
identifying and outputting the selection channels employed
by the steganalysis network. The latter, equipped with these
learned selection channels, predicts the ultimate steganal-
ysis outcomes. Through diverse experimental scenarios,
their results illustrate a noteworthy enhancement in detec-
tion accuracy achieved by the acquired selection channels.

This improvement is significantly pronounced when dealing
with content-adaptive confidential data concealment.

In 2021, several steganalysis methods were proposed;
among them, we can cite a model for the detection of
spatial content-independent and content-adaptive stegano-
graphic algorithms through universal steganalysis, employ-
ing normalized features obtained from components derived
via empirical mode decomposition has been proposed by
Arivazhagan et al. [54]. Moreover, in 2022, in line with
improving the results in the steganalysis of digital images
using machine and deep learning methods, it continued to be
much more interesting to researchers in information security.
Fu et al. [55] proposed a novel CNN meticulously designed
to amplify the potency of pertinent features, thereby aug-
menting the precision of detection within spatial domain
steganalysis. The formulated model encompasses a triad of
distinct modules: noise extraction, analysis, and classifi-
cation. A pivotal element within the noise extraction and
analysis modules is integrating a channel attention mecha-
nism by incorporating SE (Squeeze-and-Excitation) modules
into the residual blocks. Convolutional pooling is adopted
instead of average pooling to refine feature aggregation
further. Comprehensive empirical findings substantiate the
pronounced efficacy of their model, surpassing the previously
established counterparts like [6], [24], and [56] in stegano-
graphic payload detection accuracy.

Recently, several works have tried to improve the perfor-
mance of steganalysis; nevertheless, few combine fuzzy logic
and CNN. Referring to Subsection A of Section II, among the
three main methods to identify the fuzzy edges in a digital
image, namely Prewitt, Sobel, and morphological gradients,
we chose to use the Prewitt method in this article because it
showed a superior performance as referred to [36]. In [11]
an algorithm has been proposed to detect the location of the
steganographic data in digital images based on fuzzy correla-
tionmaps for classification based on the results of this work to
detect steganography and also departing from the significance
of the results that fuzzy logic has yielded in digital images
classification [21], [36], [57], this work has been illuminated
to use fuzzy logic as a preprocessing operation for images
to be fed in the CNN for binary classification of images in

FIGURE 3. The general approach’s depiction, the ‘‘Input’’ part consists of input preprocessing which contributes to overcoming the issues of the
training dataset quality and quantity, and the remaining parts contribute in classification performance by mainly addressing the issues of both
the poor features’ learnability and the low payload detection.
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cover or steganography holding. The position of this work,
unlike [11], is to use Prewitt fuzzy edges identification to
preprocess the inquiry images that are then used for training,
validating, and testing our CNN.

III. PROPOSED METHOD
The main objective of this method is to provide a steganalysis
model that outperforms the existing steganalysis methods to
detect the presence of hidden data. This work combines fuzzy
logic and CNN to classify the inquiry images into cover
or stego images. Among our approaches, we include filters
that utilize fuzzy edge-detection principles. These (termed
edge-detection filters in this instance) enable assessing a
pixel’s association with an image’s boundary or a consistent
area while factoring in indistinctness. The general approach’s
depiction can be seen in Fig. 3 and is detailed in the subse-
quent description.

A. PREPROCESSING IMAGES WITH FUZZY LOGIC
This section explains the membership functions we use,
the fuzzy rules, and the strategy employed to execute the
approaches for fuzzy edge detection.

1) EDGE-DETECTION VIA FUZZY PREWITT APPROACH
The process of obtaining the fuzzy Prewitt edge-detection
technique resembles the Sobel approach, contingent upon the
chosen operator for application. This alteration only involves
the mask, as identified earlier in Subsection A of Section II
and denoted through the relations in (4) – (10). Nevertheless,
this study adopted the Prewitt method due to its superior
performance, demonstrated in [36]. Our inference system
comprises fuzzy type-I with Mamdani fuzzy inference (FIS),
featuring a pair of input and a single output membership
function with three fuzzy rules. The overall model for our
method is detailed by Algorithm 1 and elaborated in the
following steps, underscoring that the depicted numerical
outcomes, serving as an illustration, are computed utilizing
the fuzzy Prewitt technique.

1) Step 1: Getting an input image: The input images taken
by seven cameras are obtained from the commonly
used dataset adopted from [58]. Some sample images
are illustrated in Fig. 4 to showcase the various textures
of images from the source dataset.

2) Step 2: Acquire the data required as inputs for the
FIS: We consider fuzzy type -1 inference with two
input variables, namely, the gradient along the x-axis
(gu) got by (8), and the gradient along the y-axis
(gv) got by (9). The labels for the input membership
functions are Du and Dv for the gu and gv respec-
tively. The pair of inputs correspond to Gaussian
membership functions as formulated in (3). The Du
input is discretized into three membership functions,
each associated with the linguistic terms: ‘Low− Du’,
‘Mid − Du’, ‘High− Du’; similarly, the Dv input is
characterized by three membership functions denoted

TABLE 3. Rules knowledge base for the proposed model’s edges
detection.

as: ‘Low− Dv’, ‘Mid − Dv’, ‘High− Dv’. The param-
eters are established based on the gradients of each
image: lower values are computed through (17), higher
values are obtained via (18), intermediate values are
derived from (19), and σ values for the Du and Dv
gradients are determined using (20).

Low− value =

{
Low− Du = min (Du)
Low− Dv = min (Dv)

(17)

High− value =

{
High− Du = max (Du)
High− Dv = max(Dv)

(18)

Mid − value =



Mid − Du

=
(Low− Du + High− Du)

4
Mid − Dv

=
(Low− Dv + High− Dv)

4
(19)

σ =


σ − Du =

High− Du
4

σ − Dv =
High− Dv

4

(20)

The Gaussian membership function parameters related
to the gradient along the x-axis, namely, µLow − Du
(x),µMiddle− Du(x), andµHigh− Du(x) are obtained
through the formulae (21)–(23) and visually represen-
ted in Fig. 5. The specific values obtained are depend
on: Low− Du = 0, Mid − Du = 127.50, High −

Du = 255, and σ − Du = 127.50 for the Du input.

µLow− Du (x) = Exp

[
−
1
2
(
x − 0
127.50

)
2
]

(21)

µMiddle− Du (x) = Exp

[
−
1
2
(
x − 127.50
127.50

)
2
]

(22)

µHigh− Du (x) = Exp

[
−
1
2
(
x − 255
127.50

)
2
]

(23)

The Gaussian membership functions pertaining to
the gradient along the y-axis, namely, µLow− Dv(y),
µMiddle− Dv(y), and µHigh− Dv(y) are formulated
within (24)–(26) and visually depicted in Fig. 6. The
fundamental values used are as follows: Low−Dv = 0,
Mid − Dv = 127.50, High−Dv = 255, and σ −Dv =

127.50.

µLow− Dv (y) = Exp

[
−
1
2
(
y− 0
127.50

)
2
]

(24)
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µMiddle− Dv (y) = Exp

[
−
1
2
(
y− 127.50
127.50

)
2
]

(25)

µHigh− Dv (y) = Exp

[
−
1
2
(
y− 255
127.50

)
2
]

(26)

3) Step 3: Generating the output: The FIS comprises a
single output designated as ‘‘Edges,’’ which is split
into two linguistic designations: ‘‘Background’’ and
‘‘Edge.’’ In the context of this study, the output (Edges)
is subjected to normalization within a spectrum ranging

FIGURE 4. Sample input images with various textures got from the Break Our Steganographic System Base version 1. 01 [58].

FIGURE 5. Du (Gradient along x-axis) input membership function.

FIGURE 6. Dv (Gradient along y-axis) input membership function.
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from 0 to 1. The pivotal value for the Backgroundmem-
bership function is indicated as α Background = 0,
while for the Edge membership function, it is deter-
mined as αEdge= 1. The σ value for both membership
functions is computed using (27).

σOutput =
abs(αBackground − αEdge)

2
(27)

The parameters pertaining to the output member-
ship function are expressed within the relations (28)
and (29), accounting for the specific values of
σBackground = 0, σEdge = 1, and σoutput = 1.

µ_Background (x) = Exp

[
−
1
2
(
× − (0)

1
)
2
]

(28)

µ_Edge(x) = Exp

[
−
1
2
(
× − 1)

1
)
2
]

(29)

4) Step 4: Generating our FIS’s fuzzy rules: The con-
ceptual framework is depicted using three fuzzy rules
(refer to Table 3).

B. CLASSIFICATION WITH CONVOLUTIONAL
NEURAL NETWORK
The architecture of the proposed CNN is summarized in
Appendix II. Our CNN is based on three stages: CNN’s
preprocessing stage, the stage for feature extraction, and the
classification stage. The following subsections describe the
three main parts of our CNN illustrated by Fig. 8 as presented
in the Appendix Section.

1) PREPROCESSING PART
In this phase, convolution is performed using 30 filters [6],
[38], [59], with dimensions (5, 5). These filters remain
unaltered during the training phase, rendering the layer non-
trainable. The arrangement of the convolutional layers during
this phase is as such: maintaining ‘‘same’’ padding and utiliz-
ing strides of (1, 1). This setup utilizes 30 filters, the details
of which are expounded upon later, and employs a 3 × TanH
activation function mathematically expressed in (30).

3 × TanH (a) = 3 ×
ea − e−a

ea + e−a
(30)

YE-Net’s [45] incorporation of 30 filters was employed for
image preprocessing within the structure. These filters have
showcased notable performance in priming the images for
ensuing feature extraction efficiency. Normalization of these
30 filters is carried out based on the highest absolute value
inherent to each filter.

Existing networks in [49] and [59] adopt the TLU activa-
tion function on their initial layer. Nonetheless, its efficacy
is not universal across all architectural setups, so the activa-
tion function was not used in [6] and [24]. Referring to the
experimentation for the tests involving the TLU, ReLU, and
TanH functions conducted in [56], where the best outcomes
were attained through the utilization of the TanH activation

function, we consider using this same function scaled by a
factor of three, coupled with the specification that the first
layer remains non-trainable. TLU and TanH exhibit anal-
ogous forms; nevertheless, TanH displays a more gradual
curve. The performance with the ReLU function lacked sig-
nificance. Consequently, during the preprocessing phase, the
selected activation function is 3TanH, operating within the
range of -3 to 3, which yields optimal performance.

2) FEATURE EXTRACTION PART
Within this phase, different layers used include 2-dimensional
convolutional layers (2D-Convs.), 2-dimensional separable
convolutional layers (2D Sep-Convs.), and 2-dimensional
depth-wise convolutional layers (2DDep-Convs.). Each layer
is flexible to fine-tune the parameters and filters to improve
the network’s performance. Moreover, this stage integrates
shortcuts employing addition, and following Batch Normal-
ization (BN), Average Pooling (Avg-pool) operations were
introduced to diminish dimensionality, structured with a pool
size of (2, 2) and strides set at (2, 2). We use six convolu-
tional layers with filters measuring (3, 3) while terminating
in this phase are two additional layers utilizing a kernel size
of (1, 1). We use the exponential linear unit (ELU) mathe-
matically expressed in (31) in all convolutional and separable
layers.

ELU (a) =

{
a if a > 0
α

(
ea − 1

)
if a ≤ 0

(31)

The hyperparameter of the ELU function (α) handles the sat-
uration values of the ELU to manipulate the negative inputs.
In this scenario, it was established at a value of 1. Specific
attributes of this activation function mitigate the vanishing
gradients and tend to approach negative saturation as the
argument diminishes. Strides of (1, 1) and the same padding
are applied across all convolutional operations. In this phase,
the initial pair of 2D-Convs employs 30 filters, followed by
four subsequent layers with 60 filters each.

Moreover, 2D Sep-Convs are embedded within the net-
work within the shortcuts, characterized by 30 and 60 filters,
a (3, 3) shaped kernel size, strides of (1, 1), uniform padding,
and a 3 × depth multiplier. Preceding each 2D Sep-Conv
layer is a 2D Dep-Conv layer characterized by a kernel size
of (1, 1). Upon the culmination of this stage, a global average
pool is executed to prime the features for the subsequent
classification process.

3) CLASSIFICATION PART
The classification phase simplifies the outcome derived from
the global average pooling layer. Moreover, streamlining this
phase involves omitting dense layers, a strategy that mitigates
the risk of overfitting. The ultimate Batch Normalization,
featuring dimensions of 16 × 16 × 2, is succeeded by a
2D global average pooling process that yields two values.
Subsequently, predictions are derived utilizing the SoftMax
function.
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IV. EXPERIMENTATION AND RESULTS
A. PREPROCESSING IMAGES WITH FUZZY LOGIC
We employ popular content-adaptive techniques, namely
Minimizing the Powerful Detector (MiPOD), Spatial
UNIversal WAvelet Relative Distortion (S-UNIWARD), and
Wavelet Obtained Weights (WOW), for embedding within
the spatial domain. We implement these methods using their
Matlab versions alongside Syndrome Trellis Codes (STCs).
Our simulation involves utilizing a distinct random key
for each embedding process, avoiding misuse of the C++

codes. This approach prevents using a static and uniform
embedding key, as outlined in [40]. We evaluate our ste-
ganalysis model against existing cutting-edge techniques.
This includes a comparison with the results achieved in [6],
[24], and [56]. To ensure an equitable assessment, we con-
duct tests for all these steganalysis methodologies using
identical subsampled images sourced from the well-known
database Break Our Steganographic System Base version
1.01 (BOSSBase v.1.01) [58].
Because of the constraints posed by our GPU-based

computing infrastructure and the limited time available,
our experimentation was carried out on images sized
256 × 256 pixels. This approach aligns with the method-
ology followed in previous studies [9], [24]. We resized
all the original 512 × 512 images to the target size of
256 × 256 using the imresize() function within the Matlab
software suite, utilizing its default settings. Our resized
images are the ones we use in data embedding, and
after getting the stego images, we preprocess the inquiry
images comprising the cover and stego images with fuzzy
edge-detection using the Matlab fuzzy toolbox. The partition
of our 256 × 256 dataset is such that we use 50% of the
10000 pairs (covers/ stego pairs) for the training phase, 40%
for the testing phase, and 10% for the validation phase.

B. HYPER-PARAMETERS SETTING FOR THE CNN
We employ a batch size of 16 in CNN to optimize the
available resources, and the network’s training process neces-
sitates 50 epochs to learn from the provided payload effec-
tively. During this training, the chosen optimizer is Adam,
configured with specific parameters: a learning rate of 0.001,
a beta 1 value of 0.9, a beta 2 value of 0.999, a decay
rate of 0.0, and an epsilon value set at 1e-08. Besides the
initial preprocessing layer, the convolutional layers employ
a kernel initializer termed ‘‘glorot uniform.’’ Within the
CNN architecture, a categorical cross-entropy loss function is
applied to accommodate the classification of the two distinct
classes.

The Batch Normalization configuration incorporates spe-
cific settings: a momentum value of 0.2 and an epsilon
setting of 0.001. The parameters include a ‘center’ param-
eter set to True and a ‘scale’ parameter set to False, both
of which are trainable. The ‘fused’ parameter remains at
its default value of None, while ‘renorm’ is set to False,
without any renormalization clipping. The momentum for
renormalization is established at 0.4, and no adjustment is

TABLE 4. Recall rate results obtained with the proposed method.

TABLE 5. F1-score results obtained with the proposed method.

TABLE 6. Accuracy results obtained with the proposed method.

applied to this configuration. Each of the 30 high-pass SRM
filters undergoes normalization using the maximum absolute
value. A padding set to ‘same’ is employed across all layers
similarly.

C. EVALUATION METRICS
To comprehensively assess the effectiveness of our method,
we analyze three distinct metrics: The sensitivity (R(i))
otherwise called recall rate, the classification accuracy
(Accuracy(i)), and F1-score (F1 − score(i)), which provides
a balanced assessment of our CNN’s precision and recall for
the binary classification task.
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Defining True Positive (TP) as the count of stego images
correctly classified as stego, False Positive (FP) as the count
of cover images inaccurately classified as stego, True Neg-
ative (TN) as the count of cover images correctly classified
as covers, and False Negative (FN) as the count of stego
images inaccurately classified as covers, the R(i) is computed
following (32), the Accuracy(i) is computed from (33), and
the F1 − score(i) is got from the relation (34).

R(i) =
TP

TP+ FN
× 100% (32)

Accuracy(i) =
TP+ TN

TP+ FP+ TN + FN
× 100% (33)

F1 − score(i) =
2TP

2TP+ FP+ FN
(34)

D. RESULTS
To assess the effectiveness of the suggested models, we put
them into practice using Matlab for the fuzzy logic side and
Python for the CNN side, utilizing the TensorFlow frame-
work in conjunction with the Keras API. To evaluate our
approach against the state-of-the-art methods, we present out-
comes aligned with the metrics specified in Sub-section C of
Section IV. This enables us tomake a comparative assessment
and ascertain qualitative and quantitative enhancements.
In Table 4, we record the obtained results in terms of the
recall rate (R(i)) to detect the steganographic payloads with
sizes ranging from 0.05 bpp to 0.5 bpp under the adaptive
steganographic algorithms, namely, MiPOD, S-UNIWARD,
and WOW. Tables 5 and 6 contain the results obtained in
F1-score and accuracy, respectively. Based on the results
obtained regarding the recall rate, as reported in Table 4, it is
worth noting that our model effectively detects hidden data in
WOW, particularly at higher payload sizes. The detection of
the hidden data under MiPOD also performs well, especially
at higher payload sizes, while detection of the secret data
concealed with the S-UNIWARD is competitive at lower
payload sizes but becomes less effective as the payload size
increases.

Based on the data in Table 5, it is important to note
that with our method, detecting the steganographic payload
hidden under WOW outperforms those with both MiPOD
and S-UNIWARD across all payload sizes, as indicated by
its higher F1-Scores. MiPOD performs well, particularly at
higher payload sizes, while S-UNIWARD competes more
effectively as the payload size increases but lags WOW in
most cases. It is alsoworth noting that the data in Table 6 show
that our method achieves outperforming results in detecting
the data embedded using WOW by consistently outperform-
ing the detection of the data embedded using both MiPOD
and S-UNIWARD across all payload sizes, as indicated by
the achieved higher accuracy values. The detection ofMiPOD
performs reasonably well, particularly at larger payload sizes,
while detecting those hidden under S-UNIWARD competes
more effectively as the payload size increases but still lags
WOW in most cases.

TABLE 7. Accuracy results obtained with the proposed method under
different types of images.

TABLE 8. Comparison of our results to the ones reported from the
state-of-the-art methods.

To demonstrate the effectiveness of the fuzzy prepro-
cessing operation proposed in our method, we conduct
comparative experimentation to show the results obtained
with the proposed CNN when working with images with
and without fuzzy preprocessing. Table 7 contains the
obtained results in terms of accuracy for an ablation study
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FIGURE 7. Training and validation loss and accuracy graphs for detecting the payload of size 0.05 bpp under WOW steganographic algorithm.

Algorithm 1 Algorithm to Detect the Edges With Our Model
1. Choosing the gradient calculating operator
2. Utilizing Prewitt kernels (Referring to (4) for Prewittu and (5) for Prewittv)
3. Getting the input inquiry image (here labeled as f )
4. Reading the dimensions (columns and rows) of the inquiry image f
5. [columns, rows] = size(f )
6. Computing the conventional gradient associated with the preferred fuzzy filter.
7. [Du,Dv] = zero(rows, columns)// Creating a matrix initialized with zeros, matching the //dimensions of’

f ’, to hold the gradient values.
8. for i = 0 to (the total number of rows);
9. for j = 0 to (the total number of columns);
10. Du [i, j] =

∑
kernelu × f [i : i+ 3, j : j+ 3] // Referring to (8)

11. Dv [i, j] =
∑
kernelv × f [i : i+ 3, j : j+ 3] // Referring to (9)

12. end
13. end
14. Formulating the necessary fuzzy controller by utilizing the fuzzy rules outlined in Table 3
15. Applying Gaussian membership functions (as described in (21)-(26)) to perform the fuzzification of the

pair of input gradients, Du and Dv
16. Deriving the output Edges using the chosen controller
17. Rendering the output of the controller crisp by removing fuzziness (Output Edges defuzzification)

of our method. The table contains the yielded results when
using the images without any preprocessing operation before
being fed to the CNN and the achieved results with images
preprocessed with our method based on the fuzzy Prewitt
paradigm. It is worth noting that, as generally proved by
the previously discussed results in the previous tables, the
detection of WOW is consistently superior to that of both
MiPOD and S-UNIWARD across both scenarios, demon-
strating its robustness. MiPOD and S-UNIWARD benefit
from the proposed fuzzy edge detection-based preprocessing
method, but WOW still exhibits the highest accuracy, which
justifies the efficiency of the proposed method to detect the
steganographic payload.

To compare our results with the results obtained in the
recent works in [6], [24], and [56] performance over the state-
of-the-art, we present in Table 8 a consolidation of the results

obtained with our method and the results reported in the
previous works under S-UNIWARD and WOW algorithms
with the payload capacities 0.2 and 0.4 bits per pixel. The
table data demonstrate that the results obtained with ‘‘our
method’’ consistently outperform the ones reported in the
state-of-the-art methods referenced in [6], [24], and [56]. This
suggests that ‘‘our method’’ is competitive and may repre-
sent an improvement in spatial domain image steganalysis
compared to the state-of-the-art methods mentioned in the
references.

V. CONCLUSION
Utilizing CNNs, rather than relying on traditional handcrafted
features and an ensemble classifier trained on the RichModel,
presents a notably superior performance for steganalysis
researchers.
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FIGURE 8. Architecture of the proposed CNN.

This paper focuses on designing a steganalysis model com-
bining the fuzzy Prewitt approach with CNN to improve the
detection accuracy of the steganalysis methods against the
steganographic algorithms. The advantageous contribution of
the proposed method focuses on (1) Improving the detection
of low payload steganography by working with the edges
of the inquiry images, which enhances performance through
refined training sample selection and learning approaches in

the steganalysis algorithm. We assess our model’s perfor-
mance at even lower payload capacities, such as 0.05 bpp.
(2) Enhancing feature learning by introducing an algorithm
that seamlessly incorporates global information into the pro-
cess, thereby improving the efficiency of feature learning.
(3) Mitigating the challenges posed by images of diverse data
complexities and enhancing the extraction of valuable data
from the dataset images by elevating the dataset’s quality
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through preprocessing using fuzzy logic. (4) Tackling the
challenge of an extensive training dataset by employing the
fuzzy Prewitt approach to preprocess the inquiry images
and obtain an efficient steganalysis framework capable of
performing effectively even when dealing with a restricted
number of training samples, such as employing just one
dataset.

The experimental results demonstrate that the proposed
method is promising in addressing the problems we aimed
at, namely the dataset quality and size, the feature learning
process, and the detection of low payload capacity (See Fig. 7,
where the accuracy of the model to detect the considered low-
est payload capacity, 0.05 bpp in WOW algorithm, achieves
a maximum of 52 %). To sum up, it is worth noting that
the proposed method outperforms the state-of-the-art meth-
ods in terms of a considered evaluation metric, accuracy,
as of Table 8.

In our future research endeavours, we intend to implement
the method we have put forth on alternative datasets, such
as those comprising real-time images and images of arbi-
trary size. This will enable us to investigate and assess the
performance of our model in addressing different image clas-
sification challenges. Furthermore, we aspire to enhance the
same model to pinpoint the exact altered pixels within stego
images by combining certain features from our approach with
techniques proposed in [11].

APPENDIX
In this Section, we present detailed information regarding the
two capital components of our research. Appendix I includes
a detailed description of the proposed algorithm to detect
the edges of an image. Appendix II comprises an architec-
ture of the proposed CNN with in-depth details of our new
architecture, which encompasses all the components of our
model to detect the images altered by the addition of any
steganographic payload.

A. APPENDIX I
Within this Subsection, we present a comprehensive descrip-
tion of our novel algorithm to detect the edges of images
entitled Algorithm 1. This algorithm, pertaining to our pre-
processing phase, plays one of the central roles in our
contribution by solving the two issues with the datasets,
namely, the quality and the quantity of the training
samples.

B. APPENDIX II
Within this Subsection, we illustrate a visual represen-
tation of the proposed method’s design and architecture
labeled as Fig. 8. Detailed explanations are provided in
Section III of this work entitled ‘Proposed Method.’ This
architecture showcases in depth all technical aspects that
contribute to realizing our contributions, namely, the feature
learning optimization and the ability to detect low pay-
load steganography, as evidenced in the results illustrated
in Fig. 7.
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