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ABSTRACT Accurate modeling of travel speeds is crucial for optimizing roadway management, yet
traditional methods overlook a key factor the influence of vehicle dwell times in service areas. This
oversight introduces bias into speed measurements, impairing their utility for fine-grained traffic monitoring.
To address this problem, we propose an innovative framework that integrates machine learning prediction of
service area dwell times into travel speed calculation. We focus on a 9.3 km segment of a major highway in
Fujian Province, China that includes the Qingyunshan service area. A Gradient Boosting Decision Tree
model identifies vehicles entering the service area, while a Bayesian Backpropagation Neural Network
predicts their dwell time. By adjusting the overall travel times using these predicted dwell times, our approach
recovers normal driving behavior outside service areas. Experiments on electronic toll collection data from
over 17 million transactions validate the framework’s effectiveness. The corrected travel speeds better reflect
typical highway conditions and enable more precise assessment of traffic state across multiple time horizons.
This study highlights the vital role of service area dwell time in travel speed modeling. Our solution provides
a promising direction to enhance the fidelity of current prediction practices.

INDEX TERMS Travel speed, machine learning, service area, dwell time, traffic state.

I. INTRODUCTION
Travel speed is a critical metric in road traffic analysis [1],
commonly used to quantify the average velocity of vehicles
over specific roadway segments. This metric serves multiple
functions: it can gauge a driver’s behavior, such as speeding
or slow driving [2], [3], thereby evaluating the safety of their
actions [4], [5]. Additionally, it can indicate the overall state
of traffic higher speeds often suggest smoother traffic flow,
whereas lower speeds typically denote congestion [6], [7].
Thus, travel speed is an indispensable factor in the realm of
transportation studies.

Accurate prediction of travel speed stands as a cornerstone
for an array of applications in the realm of transportation
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studies [8], [9], as highlighted in the preceding paragraph.
Traditional methods primarily focus on sections of roads
equipped with Interval Speed Enforcement System (ISES),
leaving vast stretches of roadways unmonitored. However,
the proliferation of Electronic Toll Collection (ETC) gantries
across highways offers an unprecedented opportunity to
bridge this gap. By leveraging the ubiquity of ETC devices,
we can glean insights into traffic conditions on hitherto
unmonitored sections, facilitating a holistic management
of the entire highway network rather than isolated seg-
ments [12]. This granularity in data not only advances
road safety by offering drivers precise road conditions
but also empowers highway authorities with actionable
intelligence [10]. They can pinpoint and rectify anomalies in
specific road sections, paving the way for enhanced traffic
flow and highway service quality [11].
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The field of travel speed prediction has a long history
and has seen substantial advancements recently, largely
propelled by innovations in big data and machine learning
technologies [13], [14]. Generally, travel speed prediction
methodologies fall into two primary categories [15]. The
first involves traditional methods, which rely on empirical
models, statistical analyses, and traffic flow theories. These
approaches often demand extensive domain knowledge and
might be less suited for complex or large-scale data sets.
The second category encompassesmachine learning and deep
learning techniques, which have gained prominence owing
to enhanced computational capabilities and burgeoning data
volumes. These methodologies are adept at handling large
and varied data sets and can capture complex, nonlinear
relationships [16], [17]. Due to their ease of implementation
and broad applicability, we have chosen these as our
foundational tools for travel speed prediction.

However, travel speed prediction is not without its
complexities [18]. One particular challenge that remains
underexplored is the impact of service areas on travel speeds,
especially on highways. These areas allow drivers to rest,
eat, and refuel, potentially leading to extended stops and
consequently affecting the speed measurements of vehicles
that enter these areas. This is an important aspect that has
been overlooked in previous studies. Accurately modeling
the fluctuations in speed across space and time is crucial
for various transportation applications, from route planning
to infrastructure improvements. However, overlooking dwell
times can obscure the true underlying patterns [19]. For
instance, speeds may appear consistently low near a service
area simply due to long dwell times, even if traffic is
actually flowing smoothly outside the service zone. Without
adjusting for dwell times, issues like congestion hotspots
could be masked. Likewise, the timing and duration of
speed reductions may be skewed if dwell times are not
considered. By integrating dwell time estimation into speed
predictions, we can effectively filter out this influence to
reveal authentic spatiotemporal trends. The corrected speeds
should thus better expose where and when traffic speeds
change, enhancing monitoring and planning.

In light of this, our study introduces a tailored framework
to address this often-overlooked factor. We centered our
analysis on a designated road segment featuring a service
area, gleaning transaction data for all transiting vehicles.
In our methodology, a Gradient Boosting Decision Tree
(GBDT) model discerns vehicles that enter the service area.
Concurrently, a Bayesian Backpropagation Neural Network
(Bayes-BPNN) predicts the duration of their dwell time.
We then refine travel speed metrics: the dwell time is
subtracted from the total travel time, yielding an adjusted
travel duration. This novel speed calculation method offers a
more accurate reflection of actual driving speeds, considering
the influence of dwell times. Our empirical validation is
rooted in data from the Qingyunshan service area in Fujian
Province. The analysis delves deep into the recalibrated
speeds and their implications for traffic condition evaluations.

The outcomes not only underscore the efficacy of our
approach but also spotlight the pivotal role of dwell time in
shaping travel speed metrics.

The principal contributions of this paper are as follows:
1) Demonstrates the vital role of service area dwell time as

a determinant of vehicle travel speed.
2) Provides a solution to recover authentic speeds by

adjusting for estimated dwell times.
3) Enables more accurate assessment of traffic conditions

using corrected speed metrics.
4) Introduces an innovative framework to significantly

improve current speed prediction practices.
The rest of the paper is organized as follows: Section II

reviews related studies on trip speed prediction and provides
a comprehensive overview of related studies on service
area approach and dwell time. Section III describes our
methodology and model in detail. Section IV outlines our
experimental design and execution. In Section V, we analyze
the experimental results and provide an in-depth discussion.
Finally, Section VI summarizes our study and suggests future
research directions.

II. LITERATURE REVIEW
Travel speed prediction is crucial for understanding vehicle
driving behavior and evaluating road traffic conditions.
Prior studies have sought to enhance the accuracy of
such predictions by considering a multitude of factors. For
instance, Weng et al. [20] examined the relationship between
the speeds of different vehicle types and the volume of
data. Zahid [21] investigated the influence of various time
domains on traffic speed prediction. Ambrose Wei [22]
employed Pearson’s correlation coefficient to demonstrate a
strong relationship between the average speeds of vehicles in
different sections of a service area. Malek et al. [23] focused
on key factors such as road speed limits, gradients, and
curve curvatures. Wang et al. [24] quantitatively assessed the
impact of rainfall intensity and traffic flow on travel speed.
Meanwhile, Xu et al. [25] studied the speed distribution
of different vehicle models on identical road segments and
used statistical characteristics to predict speeds within those
segments.

While prior research has integrated various elements,
such as sample size, vehicle attributes, time domains, road
characteristics, and weather conditions, into their predictive
models, there remains a noticeable gap: the neglect of dwell
time in service areas as a contributing factor. This oversight is
particularly significant given that dwell time is a key variable
affecting travel speed.

The first step in acquiring dwell time data is to predict
whether a vehicle will enter a service area. Historically,
research in this domain has aimed to optimize both the scale
and operational efficiency of service areas. Various studies
have deployed diverse methods and focused on a range of
influencing factors to make this prediction. For instance, Cui
and Liu [26] conducted a quantitative analysis on the link
between continuous vehicle travel time and the likelihood of
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entering a service area. Wang and Tang [27] formulated a
potential trafficmodel that accounts for cross-sectional traffic
flow, location variables, and access characteristics to predict
vehicle entry into highway service areas.

In a similar vein, Liu et al. [28] considered an array
of factors such as the distance between service areas,
cross-sectional traffic flow, and attributes of the service
areas themselves, including the number of parking spaces,
restaurant size, and the regional economy. Liu [29] intro-
duced an elasticity factor method aimed at predicting
the current drive-in rate for service areas. Additionally,
Ou [30] employed an enhanced case-based inference model,
which incorporated traffic volume, roadway network lev-
els, the spacing between neighboring service areas, and
urban characteristics to forecast vehicle entry into service
areas.

Most existing research on dwell time prediction con-
centrates on public transportation systems. For example,
in the realm of high-speed rail, Hou et al. [31] developed
a delay recovery model and employed a gradient-enhanced
tree algorithm for accurate train dwell time prediction. In the
subway sector, Arlovski et al. [32] applied logarithmic
transformations to dwell time data to account for its
nonlinearity. In the context of bus transportation, Huo [33]
crafted a prediction model based on nearest neighbor and
support vector machine techniques, while Isukapati et al. [34]
utilized a Bayesian hierarchical approach to derive dwell time
distributions from historical data.

However, these models, tailored for public transportation,
may not readily apply to passenger vehicles, which are
primarily privately owned and thus exhibit different dwell
characteristics. A thorough review of the literature reveals a
noticeable gap: no existing studies have explored the dwell
time characteristics of passenger vehicles in service areas.
Our research aims to fill this gap by being the first to
investigate the dwell time features of passenger vehicles
in service areas. Additionally, we provide a qualitative
analysis of how dwell time in these areas impacts travel
speed.

III. METHODOLOGY
Travel speed prediction is critical for evaluating road traffic
conditions. To enhance the accuracy of these predictions, this
study investigates the impact of dwell time in service areas
on travel speed. One challenge we faced is the disparate data
systems for Electronic Toll Collection (ETC) and service
areas; the current ETC data fields alone do not indicate
whether a vehicle has entered a service area, nor can the
service area data confirm if a vehicle is part of the ETC
system. To overcome this limitation, we merged the two
datasets, creating a labeled set that can facilitate the use
of supervised machine learning algorithms for both training
and prediction of unknown instances. This fusion of datasets
allows us to better understand the traffic characteristics of
vehicles entering service areas and their subsequent impact
on travel speed.

A. PROBLEM DEFINITION
1) SECTION
A large number of ETC gantries are laid along the highway
network, each ETC gantry is regarded as a node, and a zone
is defined between two nodes, i.e., between two gantries
Sec = {Q,Dis},Q = (Node1,Node2), Where Node1 is the
starting node, Node2 is the end node, and Q represents a zone
consisting of two nodes, Node1 andNode2, Dis is themileage
of the zone.

2) TRAVEL TIME
From the time the vehicle enters the zone to the time the
vehicle leaves the zone, the time the vehicle passes through
the entire zone is defined as the travel time Ttraj,which can
be calculated from the transaction time recorded by the ETC
front and rear gantries: Ttraj = tNode2 − tNode1

3) DWELL TIME
From the time the vehicle enters the service area to the time
the vehicle leaves the service area, the time the vehicle passes
in the service area is defined as the dwell time Tdwell

4) TRAVELLING TIME
The vehicle in the non-service area section is in the driving
state, the time the vehicle is in the driving state, defined as
the travelling time Ttrav

5) DEFINITION OF TRAVEL SPEED PROBLEM
In the past, travel speed took into account the time the vehicle
spent in the entire zone, which is obviously fine for most
roads. However, this is not the case for roads containing
service areas, where the vehicle is likely not to be in a driving
state when it enters the service area. Therefore, if the dwell
time in the service area is also taken into account, there is a
great error. We define a new formula for calculating travel
speed, which is determined by Equation 1.

Ttraj = Ttrav + Tdwell (1)

where,Ttrav is the time spent in the driving state and Tdwell is
the dwell time in the service area. Hence, the travel speed for
a single vehicle is defined as:

Vij =
Dis

T ijtrav
=

Dis

T ijtraj − T ijdwell
(2)

whereDis is the mileage of the road segment, i represents the
vehicle type, and j represents the vehicle serial number.

B. TRAVEL SPEED PREDICTION FRAMEWORK
The framework for travel speed prediction in this study
is depicted in Figure 1 and consists of three main stages,
in addition to the data fusion process previously described.
First, a feature engineering process is conducted using the
fused dataset, which includes attributes such as vehicle type,
time domain, road characteristics, and continuous driving
time. Second, a supervised machine learning algorithm
is employed to construct a predictive model for vehicles
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entering the service area. The output of this model, namely
the identification of vehicles entering the service area, serves
as input for a subsequent dwell time prediction model.
Finally, the corrected travel speed is calculated using our
newly-defined methods, as outlined in equations 1 and 2.

FIGURE 1. Travel speed prediction framework inclusive of service area
dwell times.

C. SERVICE AREA DRIVE-IN RECOGNITION
The behavior of highway vehicles driving into service areas
is a typical binary classification problem, and both traditional
machine learning methods and deep learning methods can
effectively solve the binary classification problem. However,
traditional machine learning methods have the advantages
of high interpretability, mature technology, and fast training
speed, while deep learning methods require more computa-
tional resources in addition to weak interpretability. As the
most dominant machine learning method in tabular data,
gradient-boosting decision tree (GBDT) has the advantages
of high interpretability and fast training speed. It also has a
decision manifold with approximate hyperplane boundaries,
which is very effective for tabular data.

It is an iterative decision tree algorithm [35], which is
based on the categorical regression tree algorithm. GBDT
is based on the idea of boosting iteration, except the first
decision tree is generated by the original predictor, the goal
of each iteration is to minimize the loss function of the
current learner, i.e., the loss function continuously decreases
along its gradient direction, and the final residual converges
to 0 through continuous iterations. the algorithm can be
regarded as an additive model composed of M trees, and its
corresponding equation is as follows. As shown in equation 3.

F(x, ω) =

M∑
m=1

αmhm (x, ωm) =

M∑
m=1

fm (x, ωm) (3)

where x is the input sample, ω is the model parameter, h is
the classification regression tree, and α is the weight of each
tree. F(x,w) represents the GBDT model, which is a sum of
M trees. Each tree, hm(x, ωm) or fm(x, ωm), has its own model
parameter ωm optimized during training.
The weights αm are not arbitrarily assigned; they are

learned during the training process. In the gradient boosting
framework, each tree’s weight, αm, is determined by solving
the following optimization problem:

αm = argmin
α

n∑
i=1

L (yi,Fm−1 (xi) + αhm (xi)) (4)

Here, L(yi,Fm−1(xi)+αhm(xi)) is the loss function, and the
goal is to find the αm that minimizes this loss. This process is
done iteratively for each tree in the ensemble.

Thus, for a given training data set T = {(x1, y1) , · · ·

(xn, yn)} containing n samples, xi ∈ X , X is the input space,
yi ∈ Y and Y is the output space. Its GBDTmodeling process
is as follows, using supervised learning to give an estimation
function f̂ (x) for the true function f : x → y and minimizing
the loss function L = (y, f̂ (x))) to improve the accuracy of
prediction, as shown in equation 5.

f̂ (x) = argmin
f (x)

L(y, f̂ (x)) (5)

Equation 5 minimizes the expected loss form as shown in
equation 6:

f̂ (x) = argmin
f (x)

Ex
[
Ey[L(y, f̂ (x))] | x

]
(6)

To specify the target problem, the search space is now
restricted by the parameter θ , as shown in equation 7.

θ̂ = argmin
θ

Ex
[
Ey[L(y, f̂ (x, θ))] | x

]
(7)

So far, no specific formal assumptions have been made
about the estimated and true functions, and inmost cases there
is no closed form solution to the problem described by the
above equation, so recursive numerical process optimization
is usually used.

The loss functions used to perform optimization are
squared loss and exponential loss, such loss functions are
relatively simple and can be optimized by using the general
Boosting algorithm. But for general loss functions, it is
difficult if the usual optimization methods are used, and
for this problem, Freidman [36] used the value of the loss
function in the negative gradient direction of the current
model, as shown in equation 8.

rm,i = −

[
∂L (yi,F (xi))

∂F(x)

]
F(x)=Fm−1(x)

(8)

Optimization is continuously performed along the gradient
direction of the gradient loss function to achieve improved
prediction model performance.

GBDT is an algorithm for recursively solving the predic-
tive model, and at each stage m of the solution, one can start
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with an imperfect model Fm(x) and then obtain a better model
by adding an estimator h(x) to Fm(x), as shown in equation 9.

Fm+1(x) = Fm(x) + h(x) (9)

According to the empirical principle of minimization of
risk, it is obtained that:

F0(x) = argmin
γ

n∑
i=1

L (yi, γ ) (10)

Fm(x) = Fm−1(x) + argmin
h

n∑
i=1

L (yi,Fm−1 (xi) + hm (xi))

(11)

The gradient descent method is then used on the loss func-
tion minimization problem to update the model according to
equations 12 and 13.

Fm(x) = Fm−1(x) − γm

n∑
i=1

∇Fm−1L (yi,Fm−1 (xi)) (12)

γm=argmin
γ

n∑
i=1

L
(
yi,Fm−1 (xi)−∇Fm−1L (yi,Fm−1 (xi))

)
(13)

The above solution methods are subject to overfitting and
overprediction in some cases, we generally use regularization
technique to reduce the overfitting effect by controlling the
fitting process, so the update rule of the above algorithm is
modified as follows.

Fm(x) = Fm−1(x) + v · γmhm(x), 0 < v < 1 (14)

where ν is the learning rate, and a smaller learning rate
significantly improves the generalization ability of themodel,
but increases the number of iterations at the same time.

D. ESTIMATED SERVICE AREA DWELL TIME
In order to eliminate the effect of dwell time, after the
identification of vehicles entering the service area, it is
necessary to further predict the dwell time of these vehicles in
the service area, with the aim of obtaining information on the
dwell time of vehicles in the service area. Back Propagation
Neural Network (BPNN) is a multilayer feed-forward neural
network, which consists of an input layer, an output
layer and at least one hidden layer. Unlike polynomial
regression, which assumes a specific polynomial relationship
between input features and output, BPNN can model the
complex nonlinear relationship between input features and
target variables, and can effectively capture the complex
interactions between features. Therefore, BPNNs are well
suited for supervised learning problems that model input-
output relationships. On the other hand, deep reinforcement
learning is commonly used for decision and control tasks,
where agents learn to perform operations in the environment
to achieve specific goals while maximizing the cumulative
reward. Compared with the DRL algorithm, BPNN has

the advantages of relatively simple implementation and
training, lower computational cost, and higher computational
efficiency.

The main feature of this network is that the signal is trans-
mitted forward and the error is propagated backward [37].
In forward transmission, the input signal is processed from
the input layer through the implicit layer layer by layer
until the output layer. The neuron state in each layer only
affects the neuron state in the next layer, and if the desired
output is not obtained in the output layer, it is transferred to
back propagation, and the network weights and thresholds
are adjusted according to the prediction error, so that the
predicted output of the BP neural network continuously
approximates the desired output. Therefore, BP networks can
be regarded as tools for solving function approximation [38].
However, as with most deep learning or neural network

methods, the number of hidden layers and neuron nodes is
generally unknown. To address this problem, we first set the
network to have two hidden layers, and the number of neuron
nodes is determined by Bayesian optimization techniques.
The hyperparameter optimization method is described in
detail in the section IV-E, and this subsection focuses on the
computational steps of the network.

The forward propagation process is only used to calculate
the output of the network and does not adjust the parameters
of the network, which is deduced as follows.

z[l] = W [l]a[l−1]
+ b[l] (15)

a[l] = g[l]
(
z[l]

)
(16)

Vectorized implementation:

Z [l]
= W [l]

· A[l−1]
+ b[l] (17)

A[l] = g[l]
(
Z [l]

)
(18)

where a[l] represents the output of the node in layer l and
a[l−1] is the output of the node in the previous layer and the
input of the node in the current layer.A[l] represents the output
of layer l, and b[l] represents the bias of layer l.

Cost function:

J (w, b) =
1
m

m∑
i=1

J
(
w, b; x(i), y(i)

)
(19)

The backward conduction process is used for the adjust-
ment of network weights and thresholds during training,
using the gradient descent algorithm to find theminimal value
of the cost function so that the error between the expected
value and the output is as small as possible. Thus, the core
process is as follows.

wij = wij − α
∂J
∂wij

(20)

bij = bij − α
∂J
∂bij

(21)

Vectorized implementation:

w(l)
= w(l)

− α
∂J

∂w(l) (22)
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b(l) = b(l) − α
∂J

∂b(l)
(23)

where α is the learning rate, ∂J
∂w(l) is the partial derivative with

respect to ω, ∂J
∂b(l)

is the partial derivative with respect to b.
Therefore, calculating the partial derivatives with respect

to ω and b allows iterative updating, which completes the
updating of the weights and the adjustment of the parameters,
thereby realizing the whole algorithm.

E. DRIVING BEHAVIOR REHABILITATION
After completing the above stages of computation, we will
recover the driving behavior of this part of the vehicles
driving into the service area, for which new formulas have
been given in the problem definition subsection. If the vehicle
does not enter the service area, i.e., Tdwell = 0, then
Equations 1 and 2 are updated as follows.

T ijtrav = T ijtraj − T ijdwell = t ijNode2 − t ijNode1, T ijdwell = 0 (24)

Vij =
Dis

T ijtrav
=

Dis

T ijtraj − T ijdwell
=

Dis

T ijtraj
, T ijdwell = 0 (25)

In terms of theoretical analysis, our proposed travel speed
calculation formula has stronger applicability. For vehicles
that have entered the service area, we eliminate the effect of
their service area dwell time by reconstructing the travel time;
for vehicles that have not entered the service area, the vehicle
travel time is equivalent to the driving time, which does not
affect the travel speed calculation.

IV. CASE STUDY
A. DATA PRESENTATION
The experimental dataset used in this study is supplied
by Fujian Highway Information Technology Co., Ltd.
It comprises a fusion of the Electronic Toll Collection (ETC)
gantry transaction dataset and the Qingyunshan service area
dataset. The ETC dataset contains approximately 17 million
transactions recorded from September 3 to September 5,
2020. This dataset includes various fields such as license
plate numbers, trip IDs, transaction times, gantry numbers,
and vehicle types, as detailed in Table 1. On the other hand,
the Qingyunshan service area dataset captures vehicle infor-
mation from September 3 to September 12, 2020. It includes
fields like license plate numbers, vehicle types, timestamps
for entry and exit, and more, amounting to a total of 38,675
data points. Some of this data is presented in Table 2.
It should be noted that due to data sensitivity concerns, all
privacy-sensitive information has been anonymized.

The service areas and road sections involved in this study
are shown in Figure 2, and we used three anchor points
to emphasize the study area. The front and rear anchor
points represent the distribution locations of the gantry
nodes, and the road section between them is the study
road section, totaling 9.328 km. the middle anchor point is
used to characterize the location of the Qingyunshan service
area, which is located within the road section. On average,
this segment sees a daily traffic flow of 3,000 vehicles,

experiencing peak hours between 9:00 a.m. and 11:00 a.m.
The vast majority of these vehicles are passenger cars.
Notably, 17% of the entire vehicle count opts to enter the
service area. On this road section, vehicles typically travel at
an average speed of 89 km/h, translating to an average travel
duration of about 479 seconds.

FIGURE 2. Study area of the QingYunShan service area.

B. DATA PREPROCESSING
Because the ETC transaction data and the service area
data come from different systems, we fused these datasets
using the unique identifier of the license plate number.
This fusion enables us to tag the vehicles entering the
service area, thereby creating a comprehensive training
dataset. However, the data fusion process introduces some
inconsistencies, including null values, outliers, and duplicate
entries. Strategies for handling these issues are discussed in
the following section.

Most null values in our dataset originate from the
service area data, as illustrated in Table 3. The data is
collected via image recognition, which can be compromised
by external factors like weather conditions, lighting, and
physical obstructions. Statistical analysis revealed that the
recognition rate at the entrance of the service area is around
69%, while at the exit, it improves to approximately 97%.
This discrepancy indicates that nearly one-third of entrance
data is missing. While the exit data enables us to identify
which vehicles have entered the service area, the absence of
corresponding entrance data poses a significant challenge for
subsequent dwell time prediction. To address this, we opted
to remove entries with missing values.

The majority of anomalous data originates from the
ETC gantry transaction records, as detailed in Table 4.
For this subset of data, the transaction time recorded at
the front gantry often lags behind that of the subsequent
gantry, resulting in a negative travel time. Such instances
are clearly inconsistent with actual travel patterns. The
reasons for these anomalies are multifaceted; they may arise
from non-compliance with traffic regulations by the drivers,
or be due to erroneous readings from the gantry equipment
interacting with on-board vehicle systems on adjacent roads.
To maintain the integrity of our dataset, we have elected to
remove these anomalous entries.
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TABLE 1. Partial ETC transaction data table fields.

TABLE 2. Partial service area data table fields.

TABLE 3. Service area partially without license plate data.

Duplicate entries primarily arise during the fusion of the
two datasets. To maintain data integrity, we retain only
one instance of each duplicate and remove all subsequent
repetitions.

C. EXPLORATORY ANALYSIS
According to China’s vehicle type classification standards,
it can be divided into four categories: passenger vehicles,
freight vehicles, special operation vehicles, and other vehi-
cles, of which the first three categories are divided into six
categories according to different rules. The ETC data set,
including four model categories, involves sixteen specific
types of vehicles. Among them, type I vehicles (passenger
vehicles) accounted for nearly 90%, type II vehicles (freight
vehicles) accounted for almost 10%, type III (special
operation vehicles) and type IV (other vehicles) vehicles
accounted for almost nothing, specific models accounted for
the distribution of Figure 3. can be seen, there is a severe
imbalance between the models, increasing the difficulty of
analysis of a smaller number of models.

FIGURE 3. Analysis of the composition of traffic flow.

To better understand the patterns of vehicles entering the
service area while in-transit on the highway, we undertook
a detailed count of all vehicles. Of these, 17.11% chose
to enter the service area. We then categorized the vehicles
into three predominant types found on the highway: private
cars, passenger vehicles, and freight vehicles. Our analysis
revealed that 18.23% of private cars, 4% of passenger
vehicles, and 10.31% of freight vehicles opted to enter the
service area. A visual representation of these findings can be
viewed in Figure 4.

FIGURE 4. Analysis of vehicle types entering the service area.

The percentage of each vehicle type entering the service
area determines what percentage of vehicles exhibit dwell
time behavior. By constructing a probability density function
(PDF) of dwell time for these vehicles, it is possible to
identify and infer dwell time patterns, especially when
sufficient historical data is available. The combined use of
the entry percentage and dwell time distribution helps provide
a clearer understanding of travel speeds between highway
zones containing service areas.

For this study, we focused on the three predominant cat-
egories of highway vehicles: private, passenger, and freight.
Using Kernel Density Estimation (KDE), we generated their
respective PDFs for dwell times. To confirm the robustness
of these PDFs, we employed quantile-quantile (Q-Q) plots,
comparing our data’s distribution against the standard normal
distribution. As visualized in Figure 5, dwell times across all
vehicle types exhibit a positive skew. This suggests that while
prolonged dwell times occur, they are infrequent. This aligns
with the understanding that traffic-related human behavior is
generally consistent, but exceptions do arise.
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TABLE 4. Partial abnormal data table fields.

FIGURE 5. PDF based on KDE of dwell time for different classes of
vehicles.

Based on the principles of travel speedmeasurement, travel
time serves as the determining factor affecting interval speed.
To analyze this, we compare the travel times of various
vehicle types, both those entering and not entering the service
areas within the same road segment. In Figure 6, a ’0’
denotes vehicles that do not enter the service area, while a ’1’
indicates those that do. The figure reveals that, for any given
vehicle type, those entering the service area generally exhibit
longer travel times compared to those that do not. Moreover,
freight vehicles (types 11, 12, 13, 14, and 16) typically have
longer travel times than passenger vehicles (types 0, 1, 2,
and 4). This is primarily attributed to the heavier loads and
correspondingly slower speeds of freight vehicles.

Figure 7 illustrates the travel speeds of various vehicle
types, segregating those that enter service areas from those
that do not. The numbers ‘‘0’’ and ‘‘1’’ color-coded on the
graph denote vehicles not entering and entering the service
areas, respectively. The vertical axis categorizes the different
vehicle types. The left-hand side of the graph represents
vehicles bypassing service areas, while the right-hand side
represents those that enter. A clear pattern emerges: regard-
less of vehicle type, those that avoid service areas travel at
significantly higher speeds than those that enter. Specifically,
the average travel speed for vehicles entering service areas
typically falls below 60 km/h, while vehicles bypassing these
areas average speeds greater than 60 km/h. Additionally,

FIGURE 6. Travel time for similar type of vehicles entering and not
entering the service area.

passenger vehicles (types 0, 1, 2, and 4) generally travel faster
than freight vehicles (types 11, 12, 13, 14, and 16).

FIGURE 7. Travel speed of similar type of vehicles entering and not
entering the service area.

D. COMPETITIVE ALGORITHM
In this study, we take a two-step approach tomodel the driving
behavior of vehicles entering service areas and to estimate
their realistic driving speeds. First, we construct a vehicle
identification model focused on determining whether or not a
vehicle will enter a service area. This is a binary classification
task. For this purpose, we employ a variety of popular
classification algorithms, including XGBoost, LightGBM,
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SVM, Naive Bayes, KNN, and AdaBoost, among others. It’s
worth noting that we used the default parameters for these
algorithms without hyperparameter tuning.

Second, we build a dwell time prediction model aimed
at estimating the length of time vehicles will spend in the
service area. This task is a regression prediction problem.
To address it, we use state-of-the-art learning models specif-
ically designed for tabular data, including TabNet, XGBoost,
LightGBM, aswell as ResNet (Residual Neural Network) and
polynomial regression models. While this summary briefly
outlines several models, it is not an exhaustive list.

TabNet [39] is a neural network architecture designed
for tabular data. It was proposed by Google researchers in
2019 for regression tasks and traditional categorization tasks.

LightGBM [40] is a gradient boosting framework proposed
by Microsoft researchers in 2017, using a histogram opti-
mization algorithm with efficient computational efficiency.

XGBoost [41] is suitable for a wide range of predictive
modeling and machine learning problems involving tabular
datasets, including classification, regression etc. It is widely
used by data scientists.

ResNet [42] is a convolutional neural network architecture.
It is widely used for regression predict. due to its ability to
train very deep networks accurately.

AdaBoost (Adaptive Boosting) is an ensemble machine
learning algorithm known for its ability to boost weak
learners into strong predictive models.

Polynomial regression is a form of linear regression that
models the relationship between independent variables x and
a dependent variable y using an nth degree polynomial.

The evaluation metrics for the classification task include
accuracy, recall, F1_Score, Roc_score, and the evaluation
metrics for the regression task include Root Mean Squared
Error (RMSE), Mean Absolute Error (MAE), and Coefficient
of Determination R2. The indicators chosen are the most
popular ones in the field to which they belong, so we will
not go into details.

E. HYPERPARAMETER TUNING
Hyperparameter optimization is crucial for enhancing the
performance of machine learning models. Various methods
such as grid search, random search, evolutionary algorithms,
and Bayesian optimization are widely used, each with
its own merits and limitations. Grid Search: Exhaustive
and computationally expensive, it is less suitable when
dealing with a large parameter search space and numerous
hyperparameters. Random Search and Bayesian Optimiza-
tion: These methods offer computational efficiency at the
potential expense of some accuracy, as they don’t evaluate all
possible hyperparameter combinations. Evolutionary Algo-
rithms: Though effective, these are complex to implement
and computationally demanding. Considering the trade-offs
between computational cost, accuracy, and complexity,
we opted for Bayesian optimization in this study. This
method strikes a balance between computational efficiency
and model accuracy, making it well-suited for our needs.

The optimal hyperparameter configuration obtained through
Bayesian optimization is detailed in Table 5.

TABLE 5. Optimal hyper-parameterized configuration.

V. EXPERIMENTAL RESULTS AND ANALYSIS
A. SERVICE AREA DRIVE-IN RECOGNITION RESULTS
In order to validate our constructed service area drive-in
vehicle recognition model GBDT, we evaluated a variety of
the most popular classification algorithms using the service
area dataset. The selectedmethods include both the integrated
methods XGBoost, LightGBM, AdaBoost, as well as the
clustering algorithm KNN and the probabilistic learning
algorithm Naive Bayes. These models were chosen based
on their widespread use, diversity of approaches, and ability
to handle tabular data. This extensive comparison provides
a comprehensive benchmark, and the performance of each
classifier is shown in Table 6, where the best results under
different metrics are shown in bold.

TABLE 6. Comparison of recognition models for vehicles driving into
service areas.

The experimental results indicate that our constructed
GBDTmodel achieves excellent performance across all eval-
uation metrics compared to the other methods. Specifically,
it attained over 98% accuracy, 94% recall, 94% F1-score and
96% Roc-Auc score. The GBDT model and other decision
tree-based algorithms generally surpass the other approaches.
This aligns with existing research showing decision trees
are well-suited for tabular data classification due to their
hierarchical structure and ability to capture interactions. The
poorer performance of algorithms like SVM, KNN, and
Naive Bayes suggests they may have more difficulty learning
complex feature relationships in this scenario.

B. SERVICE AREA DWELL TIME PREDICTION RESULTS
To obtain the dwell time of vehicles entering the service
area, we evaluated and compared several state-of-the-art
machine learning and deep learning models, including
TabNet, ResNet, XGBoost, LightGBM, Random Forest and
Polynomial Regression. These models were selected based
on their proven performance for regression tasks, ability to
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handle tabular data, and diversity of algorithms. We utilized
the most popular regression performance metrics - RMSE,
MAE, and Coefficient of Determination R2. RMSE indicates
model prediction accuracy, MAE measures error magnitude,
and R2 represents the degree of fit.

TABLE 7. Comparison of prediction models for vehicle dwell time in
service areas.

The experimental results in Table 7 demonstrate the
strengths of deep learning, especially ResNet, for modeling
the complex relationships between features that determine
dwell time patterns. However, the proposed Bayes-BPNN
model attained the lowest MAE of 25.3986421 and highest
R2 of 0.999338639, indicating it most accurately captured
the nuances of private vehicle dwell time characteristics.
The traditional machine learning models like Random
Forest, Xgboost, and Polynomial regression also performed
reasonably well. However, they are more difficult to map
nonlinear relationships between features in the context of
applications to large-scale datasets.

C. SINGLE-VEHICLE TRAFFIC STATUS DETECTION
The new method of travel speed calculation proposed in this
paper takes into account the dwell time of vehicles in the
service area, with the aim of restoring the normal driving
behavior of vehicles entering the service area for accurate
road traffic state monitoring. We categorized by vehicle type
and analyzed the travel time and speed of eight common
vehicle types - four passenger car types (0, 1, 2, 4) and four
van types (11, 12, 13, 14). The numerical results represent the
average across all vehicles of the same type due to the large
sample sizes.

We conducted experiments from two perspectives, travel
time and travel speed, respectively, and took significance
analysis and visualization of the experimental results.
Figure 8 shows the visualization of the experimental results
regarding travel time, with p_value = 0.004 at a set
significance level of α = 0.05. This indicates that under
the assumption that there is no significant difference between
the pre-correction and post-correction travel times, the
probability of obtaining such a significant difference is only
0.004. In other words, we can reject this hypothesis, i.e.,
we can consider that the post-correction travel times are
significantly different from the pre-correction travel times.

Figure 9 shows the visualization of the experimental
results of the pre-corrected and post-corrected travel speeds.
To further objectively illustrate the scientific validity of the

FIGURE 8. Comparison of corrected travel times for the same type of
vehicle.

corrected travel speeds, we use the travel speeds of the same
type of vehicles that did not enter the service area as a
standard reference. From the experimental results, it can be
seen that the corrected travel speed is closer to the travel speed
without driving into the service area, for the same type of
vehicle. Secondly, the corrected travel speed is more in line
with the realistic scenario of the highway. Specifically, the
travel speed of vehclass1 before correction is about 40km/h
which is a low speed driving behavior, and the travel speed
after correction is about 86km/h which is a normal driving
behavior. Finally, although the post-correction travel speeds
are closer to the travel speeds of the vehicles not entering the
service area, the post-correction travel speeds are all lower
than the travel speeds of the vehicles not entering the service
area. The reason for this may be that the vehicle entering the
service area decelerates early before entering the service area
and accelerates slowly after leaving the service area, and this
process reduces the vehicle’s travel speed.

FIGURE 9. Comparison of corrected travel speeds for the same type of
vehicle.
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D. SHORT-TIME ROAD TRAFFIC STATUS MONITORING
Accurate measurement of travel speeds is crucial for effective
road traffic monitoring. To gain a more nuanced under-
standing of road traffic conditions, we conducted further
analyses on both travel times and speeds, utilizing a one-hour
observation window. Since road traffic status is influenced
by all vehicles in transit, we calculated the average travel
time and speed across all vehicles. These averages serve
as representative metrics for the road’s overall transit time
and speed. The distribution of travel times is depicted in
Figure 10.

FIGURE 10. Comparison of hourly corrected passing times for the road
segment.

The pre-correction pass times for the given road seg-
ment predominantly exceed 400 seconds, averaging around
497 seconds, and exhibit significant fluctuations. Post-
correction times, however, gravitate around 350 seconds and
average 368 seconds, demonstrating a smoother pattern. This
lends credence to the notion that the corrected passing times
are more reflective of authentic highway conditions. For
instance, at 2:00 a.m., the pre-correction passing time was
918 seconds, which dropped dramatically to 414 seconds
post-correction–a reduction of 504 seconds. Excluding the
time slots of 1:00 a.m. and 3:00 a.m., where no vehicles
entered the service area and thus no corrections were
made, the passing times were universally reduced.

The corrected passing speeds are visualized in Figure 11.
The vertical axis represents time, and the horizontal axis
displays the range of passing speeds. A connecting line
between two data points serves as a visual cue for the
magnitude of change–the longer the line, the greater the
difference. Apart from the aforementioned time slots of
1:00 a.m. and 3:00 a.m., there is an observed increase in
passing speed across all time frames. The unadjusted speeds
primarily ranged between 80km/h and 95km/h, with a mean
value of 87.7km/h. In contrast, corrected speeds mostly fell
between 90km/h and 100km/h, averaging 94km/h. Given that
the road’s speed limits are 110km/h for cars and 100km/h for

other vehicles, these corrected values align more closely with
actual traffic patterns on the highway.

FIGURE 11. Short-time road traffic status - travel speed comparison.

E. LONG-TERM ROAD TRAFFIC STATUS MONITORING
The long-term road traffic status is equally important as it
helps the trafficmanagement authorities to formulate relevant
improvement measures to enhance the travel service level of
the road segment. We analyzed the traffic status of the road
segment for one day on a one-day basis. Again, we have
considered the passing time and passing speed. The passing
status of all vehicles not entering the service area on that
day was used as a standard reference to compare the passing
status before and after correction. Analyze and compare the
significant difference before and after correction, the symbols
are indicated as follows, ns: no significant difference, *:
significant difference, the more * means the more significant
difference.

FIGURE 12. Long-time road traffic status - comparison after correction.

Figure 12 (a) (b) (c) shows the passing speeds on
September 3, September 4, and September 5, respectively,
and it can be seen that there is a very significant difference
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between the passing speeds before correction and the passing
speeds after correction, pvalue = 0.0013; there is no
significant difference between the corrected passing speeds
and the passing speeds of the vehicles that did not drive into
the service area, pvalue = 0.2284; the pre-correction passing
speed is very significantly different from the passing speed of
vehicles not driving into the service area, pvalue = 0.0003.

Similarly, Figure 12 (d) (e) (f) shows the passing times for
the three days from September 3rd to September 5th. There is
a highly significant difference between the pre-reconstruction
travel time and the post-reconstruction passing time for
vehicles that did not drive into the service area, pvalue <

0.0001; the post-reconstruction passing time is not signif-
icantly different from the standard passing time, pvalue =

0.7517. The experimental results strongly indicate that the
roadway passing states obtained from the corrected travel
times and travel speeds are more accurate, which may be an
interesting finding.

VI. CONCLUSION
This paper introduces a novel framework to enhance travel
speed modeling by accounting for the significant influence
of service area dwell times, an overlooked factor in previous
research. By integrating machine learning prediction of dwell
times into travel speed calculations, our approach provides
more accurate measurements that reflect normal driving
behaviors, as validated experimentally. The recalibrated
speeds enable precise short-term and long-term assessment
of traffic conditions across multiple time horizons.

The study offers three key contributions - highlighting
the importance of dwell time for travel speed analysis,
demonstrating the ability to recover authentic speeds after
adjusting for dwell time, and presenting an innovative
solution to address limitations in existing methods. The
proposed framework significantly advances the capability to
model speeds on roadways with service areas.

Furthermore, this research establishes a crucial connection
between service area dwell times, travel speed metrics,
and comprehensive traffic condition evaluations. As dwell
times escalate, the resulting diminished speeds are primarily
due to extended stops, not genuine congestion. Overlooking
dwell times can inadvertently lead to an underestima-
tion of the roadway’s true capacity. By recognizing and
accounting for dwell times, our methodology facilitates a
more discerning assessment of traffic states and congestion
severity based on speed indicators. This, in turn, paves
the way for a more robust appraisal of highway service
quality and the formulation of impactful traffic management
policies.

While this study focuses on a specific road segment, future
research should validate the framework more extensively
across diverse locations and conditions. Overall, by consid-
ering service area dwell times, this pioneering study opens
a promising path to enrich travel speed prediction practices
and provides a springboard for further enhancements. The
framework offers a viable direction to help formulate

effective traffic management strategies that account for the
nuances of driver behaviors.
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