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ABSTRACT In this paper, a set of integrated control problems for distributed spacecraft formation with input
asymmetric constraints under external disturbances are studied. First, a new configuration error function is
designed based on the compact nonlinear manifold SE(3), and the dynamic model of the coupling of the
orbit and attitude of the distributed spacecraft formation is established. Then, in order to ensure the thrust
constraints of the spacecraft in different directions, a novel asymmetric saturation controller is designed.
Secondly, to deal with the effects of non-smooth asymmetric saturation, a continuously differentiable
asymmetric saturation model is used based on a Gaussian error function. Using the proposed control scheme,
the desired velocity can be tracked and the desired formation created. Finally, the finite-time stability of
the spacecraft formation is demonstrated using Lyapunov’s stability analysis, and the effectiveness of the
proposed control scheme is verified by numerical simulation results.

INDEX TERMS Formation control, spacecraft, asymmetric saturated input, SE(3).

I. INTRODUCTION
Over the past few decades, formation control has become a
popular area of research for many researchers and engineers.
This control method dramatically improves the robustness
of the system adaptability and flexibility, which has been
used in many engineering tasks, such as earth observation
distribution, aperture radar, gravity field measurement and
so on [1], [2], [3], [4], [5]. At the same time, to meet the
above requirements, the formation control technology for
multiple spacecraft is also placing greater demands on the
technology [6].

In the early research on spacecraft formation control,
WH Clohessy [7] proposed a scheme of spacecraft for-
mation control based on linear model. In [8], a nonlinear
controller with adaptive laws is proposed in order to
ensure global asymptotic convergence of the relative position
and attitude errors. Subsequently, P.K.C. Wang developed
a non-linear model for spacecraft formation control and
designed a non-linear state feedback control method that
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enables asymptotic position tracking and global exponential
attitude tracking. However, many practical systems usually
are required to converge in finite time as the finite time control
has faster convergence speed, higher control accuracy and
better robustness [10], [11], [12]. In [13], based on adaptive
nonsingular terminal sliding mode control, a distributed con-
trol law for satellite formation is proposed, which achieves
finite time consistency. In [11], a finite-time convergent
extended state observer is developed, which can estimate the
external disturbance with high precision. In [14], a finite
time controller with high precision convergence is proposed
by applying the adaptive nonsingular fast terminal sliding
mode surface, which is robust to time-varying disturbances
and uncertainties. In [15], a distributed finite time controller
with attitude measurement only is proposed. The tracking
error is kept within the predefined feasible region to
ensure the transient and steady-state performance. The finite
time control of satellite formation is worthy of further
study.

The aforementioned literature pertains to spacecraft with
separate attitude and orbital control subsystems. Orbital
control influences the spacecraft’s trajectory, altitude, and
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velocity, while attitude control affects the spacecraft’s relative
position and orientation with respect to its surrounding
environment. Certain missions require the spacecraft to
operate on specific orbits while maintaining designated
attitudes to achieve mission objectives, such as optimal solar
panel orientation and alignment of communication antennas.
Therefore, achieving simultaneous control of attitude and
orbit is imperative. However, realizing concurrent control of
attitude and trajectory introduces challenges like attitude-
orbit coupling, heightened precision requirements, and
increased computational complexity. Presently, quaternion-
based control theory has emerged as a potent tool to address
the issues of attitude-orbit coupling in spacecraft. Quater-
nions circumvent the singularities associated with rigid body
attitude descriptions, making them widely applicable in
spacecraft large-angle attitude maneuvers [16], [17], [18].
Of these, dual quaternions have become an important

tool in the study of individual or formation spacecraft
orbit and attitude control problems, and a large body
of research has been accumulated in the literature. [19],
[20], [21], [22], [23]. In [19], a coupled model utilizing
dual quaternions is proposed, presenting an event-triggered
motion vision estimation strategy for spacecraft attitude esti-
mation. This strategy effectively addresses model mismatch
issues caused by event-triggering while reducing spacecraft
energy consumption. Referring to [20], an adaptive terminal
sliding mode control algorithm is introduced based on dual
quaternions modeling, ultimately achieving practical stability
of the spacecraft control system in a finite-time framework.
In [21], within the framework of dual quaternions, an opti-
mization of conventional spacecraft controllers is achieved
using newly introduced dual quaternion direction cosine
matrices.

However, there are redundancy, fuzziness and unwinding
in the quaternion based attitude deployment, which does
not intuitively represent the deployment to ensure the
integrated attitude orbit control of formation spacecraft. The
same attitude can be described by two groups of different
quaternions, so it is fuzzy to describe the rigid body attitude
with quaternions, which will lead to unwinding in the process
of attitude control and consume too much energy stored in the
spacecraft [24].

Consider the above analysis, this paper proposes a
formation control scheme based on SE(3). SE(3), a non-linear
compact manifold with 16 elements and 10 constraints, has a
more complex configuration and definition of the generalised
velocity error vector than that of the Euclidean space. The
modeling scheme based on SE(3) offers simple expressions
and helps avoid the singularity of attitude representation [25],
[26]. It meets the coordinated formation control of attitude
and orbit of spacecraft, but also avoids the problems of
redundancy, fuzziness and unwinding while describing the
attitude position motion and its coupling effect of spacecraft.
Furthermore, this modeling scheme based on SE(3) preserves
the inherent geometric topology of the attitude of a rigid body,
ensuring that it is not compromised.

The above research deals with the symmetrical constraints
of spacecraft system. In the high altitude with complex actual
situation, the spacecraft is affected by many factors such
as material, space structure and load. The upper limit of
bearing energy of each spacecraft in all directions is different,
which leads to the asymmetric constraints of input spacecraft
system.To address this challenge, we have introduced an
asymmetric saturation controller. What sets this controller
apart is its ability to adaptively adjust input thresholds in
different directions based on the specific load characteristics
of the satellite. This adaptive approach allows us to better
cater to the demands of real-world applications. More-
over, our proposed control algorithm exhibits significantly
enhanced convergence performance compared to previous
works, providing a more reliable control solution for practical
implementations.

The main innovations of this paper are as follows:
(1) A new SE(3)-based configuration error function

description system is proposed, which can solve the difficult
problem of spacecraft orbit-attitude coupling more effec-
tively.

(2) In order to guarantee thrust constraints in different
directions, a continuously differentiable asymmetric satura-
tion model based on Gaussian error function is proposed,
which solve the effect of non-smooth asymmetric saturation.

(3) A new finite-time control scheme that satisfies asym-
metric saturated inputs is proposed for distributed formations
of spacecraft, enabling the spacecraft to track the desired
velocity and form the desired formation.

The rest of the paper is organized in this way. The
Section II describes the geometric dynamics modeling and
analysis model of spacecraft attitude orbit integration; The
Section III mainly describes how to control the attitude orbit
integration of spacecraft; In Section IV, the accuracy of
the control method is verified by simulation language, and
the error is analyzed; The Section V is the summary and
prospect of this paper and it also summarizes the innovation
points.

II. INERTIAL MODEL DESIGN AND ANALYSIS
A. GRAPH THEORY [27]
An undirected fix graph is denoted as G = (υ, ε), where υ =

{1, 2, . . . ,N } and ε ⊂ υ × υ represent the node set and edge
set, respectively. The edge (i, j) means node i can transmits
information to j. Node j is set as the child node, node i is set as
the parent node and it is a neighbor of node j.Ni represents the
neighbor set of node i. A directed path from node i1 to node
in means a sequence of edges

(
i1,i1+k

)
, k = 1, . . . , n − 1.

aij is defined as if there is an edge between nodes aij = 1;
otherwise aij = 0. Furthermore, a path from node i to node j
is defined as sequence of arcs (i, i1) , (i1, i2) , . . . , (ii, j). The
Laplacian matrix of G is defined as L = D − A, in this
formula D = diag (d1, . . . , dn) is a diagonal matrix, where
di =

∑n
j=1 aij. If there exists at least one path from the
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FIGURE 1. The spacecraft with body-fixed reference frames.

virtual leader to each follower, the leader is said to be globally
reachable.

B. RIGID BODY DYNAMICS OF SPACECRAFT ON SE(3)
In this paper, the spacecraft is considered as rigid according
to [32]. To define the pose of the spacecraft, assumed a
coordinate frame{B} = {Bx ,By,Bz} to its body and the
Earth-centered Inertial (ECI ) reference frame is {E} =

{Ex ,Ey,Ez}, which is usually used to describe the absolute
motion of spacecraft around the earth. As shown in Figure 1.

LetR3 be a three-dimensional Euclidean space at the center
of mass of a rigid body. Let pi ∈ R3 denote the i-th spcaecraft
position expressed in ECI reference fram. And Ri ∈ R3

is the i-th attitude of rigid body in the frame {B} relative
to theECI reference fram. SO(3) is a Lie group and represents
the rotation matrix, from the body-fixed frame to the inertial
frame, which can be denoted as

SO (3) = {R ∈ R3×3
|RTR = I , det [R] = 1} (1)

The Lie group SE(3) is the configuration space for a rigid
body motion in a 3-DOF Euclidean space, which include
rotational and transnational motions. Lie group SE(3) is the
semi-product of R3 and SO(3), which is described as

SE (3) = SO (3) × R3 (2)

gi ∈ SE(3) denotes the configurations of rigid body with
respect to the inertial frame, which is expressed as

gi =

[
Ri pi

01×3 1

]
(3)

The kinematic equation of the rigid body based on the
SE(3) is

ġi = giζ̄i (4)

where ζ ∈ R6 is the generalized velocity in the body-fixed
frame ζi, which is described as follow

ζi =

[
9i
vi

]
∈ R6 (5)

where 9i ∈ R3, vi ∈ R3 represent the angular and
translational velocities in the body-fixed frame, respectively.
The expression of ζ̄i ∈ SE (3) is defined as

ζ̄i =

[
9i
vi

]−

∈

[
9∧
i vi

01×3 0

]
(6)

where the map [·]− : R3
→ se (3) is a bijectionmap. se (3) =

so (3) × R3 and so (3) are the corresponding Lie algebras of
the Lie groups SE (3) and SO (3), respectively. 9∧

i ∈ so(3)
is defined as

9∧
i =

9i1
9i2
9i3

∧

=

 0 −9i3 9i2
9i3 0 −9i1

−9i2 9i1 0

 (7)

where [·]∧ : R3
→ so (3) denotes the skew-symmetricmatrix

operation, whose inverse is defined as the vee map [·]∨ :

so (3) → R3. Brief discussions about the skew-symmetric
matrix operator [·]∨ : R3

→ so (3) and its inverse operator
[·]∨ : so (3) → R3 are as follows. In order to make the
equation x̂y = x × y feasible for any x̂y = x × yx, y ∈ R3,
the hat map [·]∨ : R3

→ so (3) transforms a vector in R3 to
a 3× 3 skew-symmetric matrix. More explicitly, for a vector
x = [x1, x2, x3]T , we have

x̂ =

 0 −x3 x2
x3 0 −x1

−x2 x1 0

 (8)

The inverse of the hat map is denoted by the vee map [·]v :

so(3) → R3. The properties of the hat map are shown as
follows

x̂y = x × y = −y× x = −ŷx

tr[Ax̂] =
1
2
tr
[
x̂
(
A− AT

)]
= −xT

(
A− AT

)∨

x̂A+ AT x̂ = ({tr · [A]I3×3 − A} x)∨

Rx̂RT = (Rx)∧ (9)

for any x, y ∈ R3, A ∈ R3×3, and R ∈ SO(3).
The dynamics equation of the rigid body based on SE (3)

is

5ζ̇i = ad∗
ζi
5ζi + fi (10)

where 5 ∈ R6×6 is the inertial parameter, which is related to
the inertial matrix J ∈ R3×3 and the mass m ∈ R+ of rigid
body. 5 is defined as

5 =

[
J 03×3

03×3 mI3

]
(11)

and ad∗
ζi

=
(
adζi

)T is the dual map of adζi . The map adζi :

R6
→ R6 is the adjoint operator and can be expressed in a

matrix adζi , which is descibed as follow

adζi =

[
9∧
i 03×3
v∧i 9∧

i

]
∈ R6×6 (12)
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fi ∈ R6 denotes the resultant generalized force. According
to the potential force and external disturbance, fi is described
as

fi = ui + di + fGi (13)

where ui ∈ R6 is the designed input. di ∈ R6

is the generalized external disturbance caused by model
simplifications, parameter uncertainties and so on. fGi ∈ R6 is
the generalized potential force, for example, the force caused
by gravity. In addition, the generalized forces in equation (13)
is rewritten as

fi =

[
f9 i
fvi

]
, ui =

[
Mi
Fi

]
,

di =

[
d9 i
dvi

]
, fGi =

[
Mgi
Fgi

]
(14)

where f9 i ∈ R3 and fvi ∈ R3 denote the resultant external
torque and force in the body-fixed frame. Mi ∈ R3 and
Fi ∈ R3 denote the input torque and force, respectively.
d9 i ∈ R3 is the disturbance torque and dvi ∈ R3 is the
disturbance force. Mgi ∈ R3 and Fgi ∈ R3 denote the known
moment and force caused by the potential forces, such as
gravity.

According to Eqs. (6), (12) and (14), the formulas (4) and
(10) can be expanded and rewritten as

Ṙi = Ri9∧
i

ṗi = Rivi
J9̇ = −9i × J9i +Mi + d9i +Mgi

miv̇i = −mi9i × vi + Fi + dvi + Fgi

(15)

C. THE ASYMMETRIC CONSTRAINTS CONTROL RATE
In this section, we introduce an asymmetric constraints
control rate to address the issue of asymmetric, which is
described as:

U (ui) = UM × erf
(√

π

2uM
ui

)
(16)

where UM = (Ua + Ub) /2 + (Ua − Ub) /2 ∗ sig (ui), Ua ≥

0 and Ub ≤ 0 are the known upper and lower bounds of
ui. sig(x) = [sign (x(1)) , sign (x(1)) , · · · , sign (x(n))]T is
the standard sign function, and erf (•) is a Gaussian error
function. If |Ua| = |Ub|, the symmetric saturation model
is obtained. In this paper, |Ua| ̸= |Ub|, so we can get an
asymmetric saturation actuator.
Remark 1: U (ui) ∈ R6 is an asymmetric constraints

control rate containing forces and torques. Different upper
and lower bounds can be set for elements in the matrix,
which can meet the force constraints of spacecraft in different
directions.

in order to facilitate the derivation of the part of control
design later, define following function

1 (ui) =

[
1 (Mi)

1 (Fi)

]
= Ui − ui (17)

The proposed saturation model can be translated into

Ui = 1 (ui) + ui (18)

Then, the dynamic model (15) is rewritten as
Ṙi = Ri9∧

i

ṗi = Rivi
J9̇ = −9i × J9i + 1 (Mi) +Mi + d9i +Mgi

miv̇i = −mi9i × vi + 1 (Fi) + Fi + dvi + Fgi
(19)

Assumption 1: The communication graph among spacr-
crafts is undirected and connected, and at least one spacrcraft
can know the leader’s states.
Assumption 2: The disturbances di are bounded and

satisfy that ∥di∥ < dM , where dM is a positive constant and
dM is the vector of the max value of total disturbance.
Assumption 3: In practical engineering, input saturation or

constraint of spacecraft control system must be considered
due to the constraint of maximum actuator torque or force.

D. CONTROL OBJECTIVE
The control objective of this work is 6-DOF spacecrafts in
space. The aim of this work is control multiple spacecraft
to reach the desired trajectory. In the case of asymmetric
constraints, the orbital motion attitude of multiple spacecrafts
can be achieved consistently.

E. SOME LEMMAS
Lemma 1 ([28]): Suppose that there exists a continuous

differential positive definite function V (t), If the differential
inequality equation (20) is satisfied by V (t). Then, V (t) will
converge to the equilibrium point in a finite time tf .

V̇ + αV r
− β ≤ 0 (20)

tf ⩽
1

α (1 − r)
(V (0))1−r (21)

where α, β, r are real numbers, which satisfy α > 0, β > 0,
0 < r < 1.

III. MAIN RESULTS
Based on SE (3) scheme, dynamic analysis and discussion
of spacecraft errors are discussed in this section. Combined
with the distributed formation control strategy, a finite time
controller is designed for each spacrcraft, and the asymmetric
saturation input is satisfied.

A. ERROR KINEMATICS AND DYNAMICS
The desired configurations of the i-th spacecraft relative to the
reference spacecraft is pi ∈ R3. The system dynamics model
is given as follows:{

ġj = gj
(
ζj
)−

ζ̇j = 5−1
(
ad∗

ζj
5ζj + Uj

) (22)
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As some spacecraft can not get attitude information from
leader directly, design the following sliding mode observer ˙̂gj = ĝj

(
ζ̂j

)−∏
˙̂
ζj = ad∗

ζj

∏
ζj + Uj − keg

(
gj, ĝj

) (23)

where ĝj is the observation from the j-th spacecraft observer
on SE(3), which gives the the reference trajectory for each
follower spacecraft in the communication graph. eg is the
configuration error vector, which specific forms are as
follows:

eg
(
gj, ĝj

)
=

[
eR
(
gj, ĝj

)
ep
(
gj, ĝj

) ]
eR
(
gj, ĝj

)
=

1

2

√
1 + tr

(
R̂Tj Rj

) (R̂Tj Rj − RTj R̂j
)

ep
(
gj, ĝj

)
= RTj

(
pj − p̂j

)
(24)

The proof of observer (23) is in APPENDIX A.
The relative motion error model of spacecrafts can be

obtained as equation(25)
ϕRi =

n∑
j=0

aij

(
2 −

√
1 + tr

(
R̂Tj Ri

))

ϕpi =
1
2

n∑
j=0

aij
∥∥pi − p̂j

∥∥2 (25)

where ϕRi is the attitude error function on SO (3), ϕpi is the
position error function on R3.
The configuration error function ϕgi : SE (3) × SE (3) →

R is summarized as follows

ϕgi = ϕRi + ϕpi (26)

Define the configuration error egi , which is deduced from
the gradient of the configuration error function ϕgi . The
angular and translational velocity error vectors are defined as
eRi : SE (3)×SE (3) → R6, epi : SE (3)×R6

×SE (3)×R6,
respectively

egi = 3

[
eRi
epi

]
(27a)

eRi =
1

2

√
1 + tr

(
R̂Tj Ri

)(R̂Tj Ri − RTi R̂j
)∨

(27b)

epi = RTi
(
pi − p̂j

)
(27c)

where 3=


n∑
j=0

aij 03×3

03×3

n∑
j=0

aij

 ∈ R6×6

Let e9i : SO (3) × R3
× SO (3) × R3

→ R3 and evi :

SO (3) × R3
× SO (3) × R3

→ R3 denote the angular and
translational velocity error vectors, respectively

eζi = 3

[
e9i

evi

]
(28a)

e9i = 9i − RTi R̂j9̂j (28b)

evi =

(
vi − RTi R̂jv̂j

)
(28c)

where eζ i is the configuration error.
To analyze the configuration error function ϕgi , by consid-

ering the configuration error vector egi and the generalized
velocity error vector eζi , the configuration error dynamics
analysis are as follows:

ϕ̇gi = egi · eζi (29a)

ėgi = G0eζi +
n∑
i=0

aijθi (29b)

ėζ i = 35−1
(
ad∗

ζi
ζi + Ui + di + fGi

)
− 3α̇ (29c)

where G0 =

[
Ei 0
0 I

]
is a positive definite variable matrix,

Ei ∈ R3×3 is a positive definite variable matrix.

Ei =

(
tr
(
R̂Tj Ri

)
I − RTi R̂j + 2eRieTRi

)
2

√
1 + tr

(
R̂Tj Ri

) (30)

θi=

[
0

−9∧
i epi

]
(31)

α̇i =

[
RTi R̂j

˙̂9 j − 9̂jRTi R̂j9̂j

RTi R̂j
˙̂vj − 9̂jRTi R̂jv̂+ RTi R̂j9̂jv̂j

]
(32)

Taking into account the kinematics (4) and (10) of the
rigid body dynamics system described by the equation on
SE(3), and on the basis of analyzing the configuration error
dynamics of SE(3) in Subsection III-A, the sliding mode
surface is designed as

si = eζi + k1egi
∥∥egi∥∥q1/q2−1 (33)

where k1, q1 and q2 are positive odd integers and satisfy q1 <

q2
Derive the above formula to get

ṡi = ėζi + k1

(
I + (q1/q2 − 1)

egie
T
gi∥∥egi∥∥2
)∥∥egi∥∥q1/q2−1ėgi

= k1

(
I + (q1/q2 − 1)

egieTgi∥∥egi∥∥2
)∥∥egi∥∥q1/q2−1ėgi

+ 35−1
(
adTζ 5ζ + Ui + di + fGi

)
− 3α̇i

= a+ bUi (34)

a = k1

(
I + (q1/q2 − 1)

egie
T
gi∥∥egi∥∥2
)∥∥egi∥∥q1/q2−1ėgi

+ 35−1
(
adTζ 5ζ + di + fGi

)
− 3α̇ (35a)

b = 35−1 (35b)

Substituting (13) into (34), we have

ṡi = a+ b (1 (ui) + ui) (36)
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B. CONTROLLER DESIGN
Accoring to the spacecraft relative motion error model
equation (25), the spacecraft synchronization controller is
designed as

ui = −βi∥si∥
1
2 sig (si) + υi (37)

where βi ∈ R6is an adaptive gain and υi ∈ R6 are as follow

β̇i=

ω1i

√
γ1i

2
∥si∥ ̸= 0

0 ∥si∥ = 0
(38a)

υ̇i = −
λi

2
· sig (si) (38b)

in which γ1i is a constant and ω1i ∈ R6 is a matrix.

λi=2εiβi ∈ R6 (39)

where εi is a constant.
In this section, for facilitating Lyapunov stability analysis,

we introduce a new state quantity. The form is as follows

z =
[
z1 z2

]T
=

[
∥si∥

1
2 sig (si) υi

]T
(40)

The time derivative of equation (40) is given by

ż1 =
1

2 ∥z1∥
(−βibz1 + z2 + a1) (41a)

ż2 = −
λb

2 ∥z1∥
z1 (41b)

where a1 = ρ1z1. Thus, the equation can be rewritten in a
vector-matrix format [

ż1
ż2

]
= A

[
z1
z2

]
(42)

where A=
1

2∥z1∥

[
− (βib− ρ1) ϖ (1)

−λib ϖ (0)

]
is a bounded function

so that 0 < ∥ρ1∥ ≤ δ1, ϖ (x) is a function defined as ϖ (x) =[
x x x x x x

]T .
Theorem 1: Consider the configuration error dynamics

(25). Suppose that Assumption 1 holds, the proposed force
command (37) guarantees that system converge to small sets
around zero in a finite time.

Proof. The Lyapunov function at this step is designed as
follows:

V = zTPz+
1

2γ1i

(
βi − β∗

i
)T (

βi − β∗
i
)

+
1

2γ2i

(
λi − λ∗

i
)T (

λi − λ∗
i
)

(43)

where β∗
i > 0, λ∗

i > 0 are some constants. P is a positive

definite matrix, represented by P =

[
σ + 4ε2i −2εi
−2εi 1

]
, where

σ = diag{σ1, . . . , σn}.
Meanwhile, for the convenience of proof, we divide

equation (19) into two parts

V = V0 + V1 (44)

where

V0=zTPz (45)

V1 =
1

2γ1i

(
βi − β∗

i
)T (

βi − β∗
i
)

+
1

2γ2i

(
λi − λ∗

i
)T (

λi − λ∗
i
)

(46)

in which βi have a minimal eigenvalue, design a positive
definite matrix Q̃,

Q̃ =

[
Q̃11 Q̃12

Q̃21 4εiϖ (1)

]
(47)

where

Q̃11=4εib (2εiβi − λi) − 2
(
σ + 4εiεTi

)
ρ1

+ 2σβib+ εiρ2 (48a)

Q̃12 =

(
λib− 2εiβib− σϖ (1) − 4ε2i ϖ (1)

)
+ 2εiρ1

= Q̃21 (48b)

The derivative of equation (48) yields the following expres-
sion

V̇ = V̇0 + V̇1

= V̇0 +
1
γ1i

(
βi − β∗

i
)T

β̇i +
1
γ2i

(
λi − λ∗

i
)T

λ̇i (49)

where

V̇0=zT
[
ATP+ PA

]
z

≤ −
1

2 ∥z1∥
zT Q̃z (50)

≤ −
ε

∥z1∥
∥z∥2

λmin (P) ∥z∥2 ≤ zTPz (51)

where

∥z∥2 = z21 + z22 = ∥si∥ + z22 (52)

It can derive as follow

∥z∥ ≤
V

1
2
0

λ
1
2
min (P)

(53)

and ∥z1∥ ≤ ∥z∥
Then

V̇0 ≤ −εi ∥z∥

≤ −rV
1
2
0 (54)

where r =
εi

λ
1
2
min(P)

.

In view of the above assumption, it can be reduce to the
following

V̇ ≤ −rV
1
2
0 +

1
γ1i

εβ β̇i +
1
γ2i

ελλ̇i +

∥∥εβ

∥∥
√
2γ1i

ω1i
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+
∥ελ∥
√
2γ2i

ω2i −

∥∥εβ

∥∥
√
2γ1i

ω1i −
∥ελ∥
√
2γ2i

ω2i

≤ −ηV
1
2 +

1
γ1i

εβ β̇i +
1
γ2i

ελλ̇i +

∥∥εβ

∥∥
√
2γ1i

ω1i

+
∥ελ∥
√
2γ2i

ω2i (55)

where η= min (r, ∥ω1i∥min, ∥ω2i∥min), ∥ω1i∥min, ∥ω2i∥min
represent the smallest item in ω1i, ω2i, εβ=

(
βi − β∗

i

)T ,
ελ=

(
λi − λ∗

i

)T , respectively. There exist positive constants
β∗
i and λ∗

i satisfying βi − β∗
i < 0 and λi − λ∗

i < 0, then,
we can get

ζ=
1
γ1i

εβ β̇i +
1
γ2i

ελλ̇i +
ω1i

√
2γ1i

∥∥εβ

∥∥+
ω2i

√
2γ2i

∥ελ∥

= −
∥∥εβ

∥∥( 1
γ1i

β̇i −
ω1i

√
2γ1i

)
− ∥ελ∥

(
1
γ2i

λ̇i −
ω2i

√
2γ2i

)
(56)

The following proof is given in both cases.
Case 1). Suppose that si ̸= 0, β̇i=ω1i

√
γ1i
2 > 0, there is

always βi > 0 for t ∈ [0, +∞).
When ζ= − ∥ελ∥

(
1

γ2i
λ̇i −

ω2i√
2γ2i

)
, let λ̇i=2εiβ̇i=ω2i

√
γ2i
2 ,

then we can obtain λ̇=2εiβ̇i=ω2i

√
γ2i
2 .

Thus, ζ=0 and (55) is reduced to

V̇ ≤ −ηV
1
2 (57)

Case 2). Suppose that si = 0 and β̇i = 0, so βi = β∗
i , ζ = 0,

hence

V̇ ≤ −ηV
1
2 . (58)

Now, the system is stable on the sliding surface si = 0,
obtain

eζi = −k2egi
∥∥egi∥∥q1/q2−1 (59)

where k2 is a positive constant.
Design the Lyapulov function V2 as follows:

V2=ϕgi = ϕRi + ϕpi (60)

Deriving V2 with respect to time:

V̇2 = egi · eζi

=egi ·
(
−k2egi

∥∥egi∥∥q1/q2−1
)

= − k2
(∥∥egi∥∥2) q1/q2+1

2
(61)

From the relationship among egi , eRi and epi , we have∥∥egi∥∥2 =
∥∥eRi∥∥2 + (

n∑
j=0

aij
∥∥epi∥∥)2

≥
1
2
ϕRi + 2ϕpi

≥
1
2
(ϕRi + ϕpi )

=
1
2
V2 (62)

hence

V̇2 ≤ −
k1

2
q1/q2+1

2

(V2)
q1/q2+1

2 (63)

To prove to complete.
Remark: The control parameter selections in this section

are as follows: Increasing ω1i, γ1i, k1, q1, q2 and decreasing
k2 can increase the convergence rate. However, this may lead
to larger initial control inputs, which could potentially result
in actuator saturation.

IV. SIMULATION
In this section, the simulation experiment for the proposed
control law (37) is carried out. Numerical simulations are
conducted to verify the efficacy of the asymmetrically
finite-time sliding mode controllers in this paper, and their
performance is compared with finite-time super-twisting
sliding mode controllers. Consider a scenario with four
spacecrafts, and Figure 2 illustrates the trajectory of each
spacecraft, depicting their movement from the initial position
to the final position. It also showcases the communication
flow from S1 to S2, then to S3, and finally to S4..

A. PARAMETER SETTING
The parameters of the rigid bodies are considered to be
m = 56.7kg, J = diag

(
4.85 5.10 4.76

)
kg · m2. Consider

the Earth’s oblateness to the level of J2 and the coupled
relationship between the translational and rotational motion,
the moments Mgi and forces Fgi induced by gravity in the
body-fixed frame are acquired from the reference [29].

Mgi = 3
(

µ

||pi||5

)
b̂iJbi (64)

Fgi = FJ2 −

(
miµ
||pi||3

)
bi − 3

(
µ

||pi||5

)
J1bi

+
15
2

(
µbTi Jbi
||pi||7

)
bi (65)

where bi = RTi pi, J1 = trace (J) I + J . µ =

398600.44km3s−2 is the gravitational constant of the Earth.
The perturbation caused by the Earth’s oblateness FJ2
expressed in ECI frame is given as follows

FJ2 = −miRTi
3J2µR2e
2∥pi∥5


pix
(
1 −

5pz2

∥pi∥2

)
piy
(
1 −

5pz2

∥pi∥2

)
piz
(
3 −

5piz2

∥pi∥2

)
 (66)

where pix , piy and piz are the components of pi, J2 =

0.00108263, Re = 6378.14km is the equatorial radius of the
Earth. The initial conditions (attitude and position) for each
spacecraft are considered as follow: p1 =

[
0 100 10

]T , p2 =[
−30 80 −5

]T , p3 =
[
−20 60 0

]T , p4 =
[
20 90 10

]T ,
the formation distance D is selected as D12 =

[
15 0 0

]T ,
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FIGURE 2. The trajectories and communication graph of the spacecraft formation.

D23 =
[
0 15 0

]T , D34 =
[
−15 0 0

]T . Furthermore,
the initial velocity and angular velocity of spacecrafts are
v1 =

[
0.3 −0.2 0.4

]T , v2 =
[
0.3 −0.2 0.4

]T , v3 = [0.2
−0.1 0.3

]T , v4 =
[
−0.3 −0.2 0.2

]T , 91=
[
0.05 −0.03

−0.04]T , 92 =
[
0.05 −0.03 −0.04

]T ,93= [0.01
−0.02 −0.02

]T , 94= [−0.03 0.03 −0.01
]T . The desired

formation of the position, velocity, and angular velocity are
set as pd =

[
0 0 0

]T , vd =
[
0 0 0

]T , 9d =
[
0 0 0

]T . The
parameters for controller composition are shown in Table 1.
The desired orbital elements are shown in Table 2 [30]. The
disturbance input of the system are di =

[
dT9i

dTvi
]T

are
assumed as [31]

d9i =

 1 + sin (π t/125) + sin (π t/200)
1 − sin (π t/125) − sin (π t/200)
1 + cos (π t/125) + cos (π t/200)

× 10−5N · m

(67)

and

dvi =

 1 + sin (π t/125) + sin (π t/200)
1 − sin (π t/125) − sin (π t/200)
1 + cos (π t/125) + cos (π t/200)

× 10−4N

(68)

B. FORMATIONS OF SPACECRAFT RESULT ANALYSIS
The simulation results are shown in Figures 3-12. Figures 3-4
show the attitude of four spacecrafts. Figures 5-8 position
error function evolution and the configuration error vector of
four spacecrafts. Figures 9 to 12 display the torque and force
profiles with and without the saturation controller.
By observing Figure 3 and Figure 4, it is evident that the

evolution of the error function for S1 spacecraft’s attitude,
denoted as ϕR1 , tends to zero within 25 seconds, while the
position error ϕp1 tends to zero within 20 seconds. For the
result of the error function evolution of S2 spacecraft attitude

TABLE 1. Control parameters chosen for numerical analysis.

TABLE 2. Desired orbital elements of the leader.

ϕR2 and position ϕp2 , it can be seen that ϕR2 and ϕp2 were
disturbed during the convergence process, but then converged
in a short time. Then, the S3 spacecraft attitude ϕR3 tend
to zero in 60s and positionϕp3 tend to zero in 50s. It can
be seen from the figure that the error convergence time is
longer than S2, but the convergence is completed within 60s.
For the attitude and position error function evolution and the
configuration error vector of spacecraft S4. Since S4 obtains
the attitude of S3 through the observer to control its own
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FIGURE 3. The attitude error function evolution of S1 - S4.

FIGURE 4. The position error function evolution of S1 - S4.

FIGURE 5. The configuration error vector of S1.

attitude, it can be seen that when the attitude of S3 changes
greatly, the attitude of S4 will also change accordingly.

As a result, the attitude and position error function evo-
lution and the configuration error vector of four spacecrafts
can all converge in a finite time, the four spacecrafts form a
formation in a relatively short period of time.

Figure 9 displays the input torque and input force of S1,
where MU1 and FU1 have constraint controllers, M1 and

FIGURE 6. The configuration error vector of S2.

FIGURE 7. The configuration error vector of S3.

FIGURE 8. The configuration error vector of S4.

F1 have no constraint controllers. For input torque MU1,
the upper and lower limit intervals on the x, y, z axis
are [−0.1, 0.05], [−0.02, 0.03], [−0.03, 0.06] respectively.
It can be seen that the torque with asymmetric input
constraints all change within a limited range, and the
convergence time is only extended by less than 5s compared
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FIGURE 9. The torque M1x , M1y , M1z and force F1x , F1y , F1z of S1 spacecraft with control law.

FIGURE 10. The torque M2x , M2y , M2z and force F2x , F2y , F2z of S2 spacecraft with control law.

FIGURE 11. The torque M3x , M3y , M3z and force F3x , F3y , F3z of S3 spacecraft with control law.

with the torque without constraints, and the convergence
is completed within 40s. For the force FU1, the upper
and lower limit intervals set by x, y, z are [−50, 15],

[−60, 30], [−25, 55] respectively. The figure demonstrates
that FU1 remains within the specified limit range, and all
variables achieve convergence within a 30-second timeframe.
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FIGURE 12. The torque M4x , M4y , M4z and force F4x , F4y , F4z of S4 spacecraft with control law.

FIGURE 13. The attitude and position error function evolution of
spacecraft.

By incorporating a Gaussian error function into the constraint
controller, we observe that the transition of the force curve is
smoother at corners.

Figures 10-12 demonstrate that both the torque and force
converge within the specified constraint range, and the
convergence time falls within a limited range. At the same
time, it should be pointed out that due to the influence of
the formation, the leader will complete the convergence first,
and then the follower will complete the convergence, so it
can be seen that the time for the four spacecraft to reach a
stable state is gradually increasing. Based on the simulation
results presented above, we can observe the superiority and
the effectiveness of this method for convergence time and
control input constraints.

C. SINGLE OF SPACECRAFT RESULT ANALYSIS
The simulation results are shown in Figures 13-15. Fig-
ures 13-14 show the attitude and position error function
evolution and the configuration error vector of the spacecraft.
Figure 15 shows the torque and force with control law.

FromFigure 13, it can be seen that under the control law the
error function evolution of the spacecraft attitude ϕR1 tend to
zero in 25s and position ϕp1 tend to zero in 20s. While under
the sliding mode control the error function evolution of the
spacecraft attitude ϕR tends to zero in the 35s and position ϕp
tends to zero in the 30s.

From Figure 14, it can be seen that under the control law
the error function evolution of the spacecraft translational
velocity vectors ep1 , rotation angles vectors eR1 , translational
velocity vectors ev1 , rotation angles vectors e91 converge to
small sets around zero in 30s, 40s, 30s, 40s, respectively.
While under the sliding mode control the error function
evolution of the translational velocity vectors ep, rotation
angles vectors eR, translational velocity vectors ev, rotation
angles vectors e9 converge to small sets around zero in 40s,
50s, 40s, 50s, respectively. As a result, the proposed scheme
fast achieves the control aim for the coupled 6-DOF rigid-
body spaceship based on the nonlinear manifold SE(3) model
within a finite amount of time.

Figure 15 displays the input torque and input force of the
spacecraft, where MU1 and FU1 have constraint controllers,
M1 and F1 have no constraint controllers, M and F under
the sliding mode control. For input torque MU1, the upper
and lower limit intervals on the x, y, z axis are [−0.1, 0.05],
[−0.02, 0.03], [−0.03, 0.06] respectively. It can be seen that
the torque with asymmetric input constraints all changes
within a limited range, and the convergence time is only
extended by less than 5s compared with the torque without
constraints, and the convergence is completed within the
40s. While under the sliding mode control the convergence
is completed within the 50s. For the force FU1, the upper
and lower limit intervals set by x, y, z are [−50, 15],
[−60, 30], [−25, 55] respectively. It can be seen from the
figure that FU1 does not exceed the limit range, and all
complete the convergence within the 30s. While under the
sliding mode control the convergence is completed within
the 40s.
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FIGURE 14. The spacecraft error function evolution of translational velocity vectors ep, rotation angles vectors eR , rotation angles vectors e9 and
translational velocity vectors ev .

FIGURE 15. The torque Mx , My , Mz and force Fx , Fy , Fz of spacecraft with control law.

From the observations of Figures 13-15, it is evident that
both the torque and force converge within the specified
constraint range, while the time of convergence remains
within a limited range. At the same time, it should be
pointed out that under the control law convergence is
faster. Based on the simulation results presented above,
we can observe the superiority and the effectiveness of the
method in this paper for convergence time and control input
constraints.

V. CONCLUSION
For distributed spacecraft systems, an asymmetric satura-
tion control strategy based on SE3 is proposed. A new
configuration error function is designed on SE(3), and the
configuration error vector is derived from the configuration
function. Using a novel asymmetric saturable actuator,
we have designed a distributed adaptive spacecraft forma-
tion controller. This controller ensures that the spacecraft

formation can stabilize to the desired position within a finite
time, even in the presence of multiple disturbances and
thrust constraints. Lyapunov stability analysis demonstrates
the fixed-time stability of the proposed control scheme.
Simulation results verify the effectiveness of the method in
this paper, showcasing its good performance. This controller
provides an alternativemethod for spacecraft formation under
asymmetric constraints and can be extended to many other
autonomous aircrafts.

APPENDIX A PROOF OF OBSERVER
Firstly, the observer error is formulated as follows:


eg
(
gj, ĝj

)
=

[
eR
(
Rj, R̂j

)
ep
(
pj, p̂j

) ]
eζ
(
ζj, ζ̂j

)
= ζ̂j − ζj

(A.1)
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The sliding mode surface is set as: s = eζ
(
ζj, ζ̂j

)
+

n0eg
(
gj, ĝj

)
, when,s = 0, there is

eζ
(
ζj, ζ̂j

)
= −n0eg

(
gj, ĝj

)
(A.2)

Lyapunov function V = ϕg
(
gj, ĝj

)
was selected to prove

stability.
Then, there are:

ϕg
(
gj, ĝj

)
= ϕR

(
Rj, R̂j

)
+ ϕp

(
pj, p̂j

)
ϕR

(
Rj, R̂j

)
= 2 −

√
1 + tr

(
R̂Tj Rj

)
ϕp
(
pj, p̂j

)
=

1
2

∥∥pj − p̂j
∥∥2 (A.3)

V̇ = eg
(
gj, ĝj

)
· eζ

(
ζj, ζ̂j

)
= eg

(
gj, ĝj

)
·
(
−n0eg

(
gj, ĝj

))
= −n0

∥∥eg (gj, ĝj)∥∥2 (A.4)

According to (62),
∥∥eg (gj, ĝj)∥∥2 ⩾ 1

2V . So there is V̇ ⩽
−

1
2n0V . Thus, the observer is stable when the sliding mode

surface is s = 0.
The design observer gain n is proved as follows: When

keg
(
gj, ĝj

)
> 5−1

(
ad∗

ζ̂j
5ζ̂j − ad∗

ζj
5ζj + s+ n0ėg

(
gj, ĝj

))
,

the sliding mode surface s will converge to 0. The Lyapunov
function Vs =

1
2 s
T s is chosen to prove its stability, then there

are:

V̇s = sT ṡ

= sT
(
ėζ
(
ζj, ζ̂j

)
+ n0ėg

(
gj, ĝj

))
= sT

(
5−1

(
−keg

(
gj, ĝj

)
+ ad∗

ζ̂j
5ζ̂j − ad∗

ζj
5ζj

)
+ n0ėg

(
gj, ĝj

))
(A.5)

because of
keg

(
gj, ĝj

)
> 5

(
s+ n0ėg

(
gj, ĝj

))
+ ad∗

ζ̂j
5ζ̂j − ad∗

ζj
5ζj,

there is

sT

5−1

(
−keg

(
gj, ĝj

)
+ ad∗

ζ̂j
5ζ̂j−

ad∗
ζj
5ζj

)
+

k1ėg
(
gj, ĝj

)


< sT

5−1


5
(
−s− n0ėg

(
gj, ĝj

))
−

ad∗

ζ̂j
5ζ̂j + ad∗

ζj
5ζj+

ad∗

ζ̂j
5ζ̂j − ad∗

ζj
5ζj

+

n0ėg
(
gj, ĝj

)


= −sT s

< 0 (A.6)

Therefore, V̇s < 0, then s is going to converge to 0. At this
point, the proof of the observer is complete.
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