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ABSTRACT Context: A code smell indicates a flaw in the design, implementation, or maintenance process
that could degrade the software’s quality and potentially cause future disruptions. Since being introduced
by Beck and Fowler, the term code smell has attracted several studies from researchers and practitioners.
However, over time, studies are needed to discuss whether this issue is still interesting and relevant.
Objective: Conduct a thorough systematic literature review to learn the most recent state of the art for
studying code smells, including detection methods, practices, and challenges. Also, an overview of trends
and future relevance of the topic of code smell, whether it is still developing, or if there has been a shift in
the discussion.Method: The search methodology was employed to identify pertinent scholarly articles from
reputable databases such as ScienceDirect, IEEEXplore, ACMDigital Library, SpringerLink, ProQuest, and
CiteSeerX. The application of inclusion and exclusion criteria serves to filter the search results. In addition,
forward and backward snowballing techniques are employed to enhance the comprehensiveness of the
results. Results: The inquiry yielded 354 scholarly articles published over the timeframe spanning from
January 2013 to July 2022. After inclusion, exclusion, and snowballing techniques were applied, 69 main
studies regarding code smells were identified.Many researchers focus on detecting code smells, primarily via
machine learning techniques and, to a lesser extent, deep learning methods. Additional subjects encompass
the ramifications of code smells; code smells within specific contexts, the correlation between code smells
and software metrics, and facets about security, refactoring, and development habits. Contexts and types of
code smells vary in the focus of the study. Some tools used are Jspirit, aDoctor, CAME, and SonarQube.
The study also explores the concept of design smells and anti-pattern detection. While a singular dominating
technique to code smell detection has yet to be thoroughly investigated, other aspects of code smell detection
remain that still need to be examined. Conclusion: The findings underscore scholarly attention’s evolution
towards code smells over the years. This study identified significant journals and conferences and influential
researchers in this field. The detection methods used include empirical, machine learning, and deep learning.
However, challenges include subjective interpretation and limited contextual applicability.

INDEX TERMS Code smell, detection, systematic review, software quality, bad smell.

I. INTRODUCTION AND BACKGROUND
The concept of ‘‘code smell,’’ initially introduced by Kent
Beck, pertains to observable manifestations that may indicate
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underlying issues inside a software system [1]. Nevertheless,
this assertion only holds sometimes in some instances, and
Martin Fowler explains: ‘‘Smells are not inherently bad on
their own - they are often an indicator of a problem rather
than the problem themselves’’ [2]. Numerous studies have
highlighted code smells as a significant signal of potential
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errors directly associated with a system’s overall quality [3].
Code smells are often associated with deficiencies in system
design, suboptimal implementation techniques, and the pres-
ence of micro and nanopatterns, all of which can contribute
to a decrease in software quality [4], [5], [6]. Identifying and
managing olfactory perceptions are crucial in software qual-
ity assurance, as they contribute significantly to developing
high-quality software.

Regarding software quality, apart from its relation to main-
tainability issues, several studies have looked for links to code
smells with other problems, one of which is the vulnerability
of program code [7], [8]. Regarding the code smell detection
method, several studies have used machine learning [9], [10].
As a research field that has been around for a long time,
since Beck and Fowler introduced it in 1997, the term code
smell has attracted several studies from researchers and prac-
titioners. However, over time, studies are needed to discuss
whether this issue is still interesting and relevant in the future.

The main objective of this study is to provide valuable
insights to researchers and professionals regarding the current
status of research on the identification of code smells. The pri-
mary objective of this study was to identify potential avenues
for future research in the field of code smell detection,
enhance software development processes, and ensure the pro-
duction of high-quality software. A comprehensive analysis
of the available literature was undertaken to accomplish this
objective. The primary objective of this study is to conduct a
complete analysis of the research subjects about identifying
code smells. This analysis will encompass the examination
of prior research, the methodology and instruments employed
in said research, and the practical obstacles and occurrences
observed in the field of code smell detection.

The current manuscript is structured subsequently:
Section II provides a comprehensive examination of the
current survey about code smells. This paper’s third section
analyzes the study’s aims, research questions, and review
methodologies. Subsequently, it presents a thorough sum-
mary of the fundamental discoveries obtained from the
investigation. Following this, delves into a comprehensive
analysis of the data and acknowledges the inherent limitations
included in the research. Finally, Section IV functions as the
concluding section of the study.

A. CODE SMELL
This is a short section explaining code smells taken from
those proposed by Fowler and Beck [1]. This originally long
list of smells could be better for understanding the details,
only made for a quick overview. Table 1 below presents a
summary of Fowler and Beck’s list along with the taxonomy
proposed by Mantyla [11], summarized by Haque [12].

1) BLOATERS
Bloaters are a category of smells that pose difficulties in
efficient control, primarily due to their substantial size or
intensity. Mantyla provides a comprehensive compilation

of software design concerns, encompassing the subsequent
components: The five code smells referred to are the Long
Method, Large Class, Primitive Obsession, Long Parameter
List, and Data Clumps. Bloaters commonly arise because
of the incorporation of additional functionality into existing
systems.

TABLE 1. Taxonomies of code smells.

a: LONG METHOD
The term ‘‘Long Method,’’ referred to as the ‘‘God Method,’’
describes a method or procedure characterized by exten-
sive code, typically exceeding ten lines, and incorporating
numerous functions.

b: LARGE CLASS
The Large Class encompasses a multitude of fields and
techniques. The size of classes frequently expands due
to developers’ inclusion of different responsibilities within
them [13].

c: PRIMITIVE OBSESSION
Many programming languages include support for two dis-
tinct data types: record types, which are used to store data
in a structured manner, and primitive types, which are used
to enhance the organization and structure of code. The phe-
nomenon of Primitive Obsession occurs when a software
program is afflicted by the tendency of its developer to favor
primitive objects instead of employing more sophisticated
classes. The concept of Primitive Obsession is not directly
associated with the bloater’s feature, although it frequently
plays a role in the development of large classes and Long
Methods.

2) OBJECT-ORIENTED ABUSERS
The olfactory classification diverges from the fundamental
concepts of Object-Oriented Programming (OOP).

a: SWITCH STATEMENT
Object-oriented programming (OOP) is a preventive measure
against the utilization of switches, which can result in code
duplication within programs. In the given instance, altering
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an introductory statement and introducing a new one will
invariably impact the pre-existing program logic.

b: TEMPORARY FIELDS
Temporary fields are the specific instance or temporary vari-
ables utilized within sections of a program. This type of code
frequently necessitates clarification because of the absence of
a variable’s reference beyond its scope and intended usage,
rendering it indescribable. Temporary variables are com-
monly utilized in algorithm implementations as a means for
developers to circumvent long parameter lists.

c: REFUSED BEQUEST
ARefuse Bequest is a situation inwhich a subclass selectively
inherits some methods and attributes from its parent class in
the code. The absence of enforcement of inheritance consis-
tently signifies a significant design issue due to the need for
more precise definitions within hierarchies, resulting in the
emergence of sibling classes alongside parent classes.

3) CHANGE PREVENTERS
Change Preventers refer to a group of smells that pose chal-
lenges to maintenance procedures due to their presence in
current implementations. The olfactory sensation in ques-
tion may be discerned when a class or its method assumes
responsibility for multiple features or functionalities.

a: DIVERGENT CHANGE
Classes that possessmany extraneousmethods are recognized
as classes exhibiting divergent changes. Divergent change
arises when developers resort to duplicating and inserting
code instead of consolidating the functionality within a single
class.

b: SHOTGUN SURGERY
Shotgun Surgery exhibits notable similarities to divergent
changes. Nevertheless, numerous classes are structured with
layered relationships in this situation. Consequently, when a
software developer modifies a minor component of a sys-
tem, a significant amount of time is required to update the
corresponding class.

4) DISPENSABLES
This smell category refers to programs containing
unnecessary things that should be removed.

a: LAZY CLASS
Maintaining useless classes results in good use of cost and
time. This kind of thing is unnecessary. A class that is not
needed but still exists is called a Lazy class.

b: DATA CLASS
Data classes are categorized exclusively as fields, getter, and
setter methods. In most cases, other classes tend to modify the
data fields employed. These classes lack essential attributes
and cannot function inside their respective domains.

c: DUPLICATE CODE
When repetitive code is present across numerous lines, it is
possible to substitute or combine the instances. The occur-
rence of duplicate code is frequently observed in two closely
related classes, although it is not uncommon for a single class
to include duplicate code.

II. RELATED WORKS
In the code smell research literature, 15 papers are sum-
marized in Table 2. The following is a summary of related
research. The related work in code smell detection and analy-
sis can be categorized into several groups based on their focus
and methodologies.

A. CODE SMELL DETECTION APPROACHES AND SURVEYS
Several studies have explored detecting code smells.
Gupta et al. [13] conducted a comprehensive systematic sur-
vey encompassing various aspects of bad smells, including
detection techniques and correlations between them. Their
study aimed to provide a holistic overview of research in this
area and identify code smells that necessitate more attention
in the detection process. Agnihotri and Chug [14] performed
a systematic survey from the perspectives of bad smells,
refactoring, and software metrics. This study aimed to offer
valuable insights to software developers and categorized tools
based on their application in code smell detection, software
refactoring, and metric calculations. Similarly, Dos Reis et al.
[15] conducted a systematic literature survey to identify
prominent techniques and tools discussed in the literature for
detecting and visualizing code smells.

B. TOOL-CENTRIC INVESTIGATIONS
Other studies have specifically focused on tools used in code
smell detection. Fernandes et al. [16] conducted a study to
compile and document various tools reported and utilized
in the literature for detecting bad smells. They aimed to
provide a concise summary of these tools, highlighting their
main features and effectiveness in detecting bad smells. Liu
and Zhang [17] conducted a mapping study to scrutinize the
purpose of code smell research and the scope of detection
tools. They delved into the empirical software engineering
context to determine if the available detection tools could
identify all types of code smells.

C. MACHINE LEARNING-BASED CODE SMELL DETECTION
With the advancement of machine learning techniques, sev-
eral studies have explored their application in code smell
detection. Rasool and Arshad [18] reviewed mining tech-
niques for code smells, analyzing different approaches and
their results. Azeem et al. [19] conducted a systematic lit-
erature review and meta-analysis using machine-learning
techniques to detect code smells. They investigated the types
of code smells considered, classifications used, and train-
ing strategies employed in existing studies. Al-Shaaby et al.
[20] undertook a systematic review of detecting code smells
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TABLE 2. Summary of selected literature on code smell reviews.

using machine learning. Their study comprehensively ana-
lyzed datasets, tools, and techniques used in this domain.
Lewowski and Madeyski [21] conducted a systematic lit-
erature review to identify and investigate state-of-the-art
detection of code smells using artificial intelligence tech-
niques. This study aims to identify various predictors used in
code smell detection prediction models, artificial intelligence
methods used, code smells analyzed in scientific literature,
datasets and projects used in research to predict code smells,
and performance metrics most commonly used in literature.

D. IMPACT OF CODE SMELLS AND THEIR ASSOCIATION
WITH DEVELOPERS
Certain studies, such as Santos et al. [22], delved into the
effects of code smells and their implications for developers.
They conducted a systematic literature review to provide
empirical support for understanding the effects of code

smells. Another research by Haque et al. [12] aimed to
represent code smells more comprehensibly for develop-
ers and understand their impact on software development.
Lewowski and Madeyski [23] focused on the consistency
betweenmachine learning algorithms’ performance detecting
code smells and developers’ views. Their research empha-
sized the reproducibility of existing studies and the alignment
betweenmachine learningmodels and developer perceptions.

E. CONTEXT-SPECIFIC STUDIES
Yamashita and Counsell [24] conducted empirical research
to explore the potential of code smells as indicators of
software product maintainability. Their study aimed to eval-
uate code smell detection approaches and compare them
with expert and metrics-based methods. Padilha et al. [25]
reported empirical results regarding using the anxiety metric
in detecting specific code smells. Their investigation aimed to
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TABLE 3. Research questions on literature review.

assess the effectiveness of this metric compared to traditional
ones. Additionally, Ponce et al. [26] conducted a multivocal
literature review on security smells in microservices-based
applications. Their research provided insights into recog-
nized security smells and their impact on microservices
applications.

These various categories and summaries of studies col-
lectively contribute to the comprehensive understanding and
advancement of code smell detection, analysis, and its impact
on software development practices.

Although existing reviews highlight that code smells are
quite research intense, little is known about research trends,
methods, practices, and challenges to code smell detection.
This article aims to provide a substantial update exploring
the latest (mostly in the last decade) trends in code smell
research. By integrating the findings from a summary of
related research, this article will provide an overview of the
latest developments in code smell detection, their impact, and
related practices and challenges.

III. RESEARCH METHOD
In this research, the systematic literature review is used
as a research methodology to define, identify, assess, and
analyze to answer the code smell phenomenon. Several
researchers have investigated several topics in code smell.
In this research, we followed [27] the guidelines to conduct
a systematic review. There are several steps in a systematic
review: planning, implementation, and reporting results.

A. PLANNING THE REVIEW
Several research questions are proposed according to the
research objectives. In addition, the details are described

TABLE 4. Search sources.

below for searching terms and inclusion/exclusion criteria as
the strategy.

1) REVIEW OBJECTIVES AND RESEARCH QUESTIONS
This systematic literature review investigates how code
smell has been empirically addressed. These several research
questions are proposed in our research:

The selection paper is a prior stage to find a significant
role in our topic. In this research, we used several pieces of
literature, as shown in Table 4.

2) SEARCH STRATEGY
Once the study goals and questions were established, a for-
mal search strategy was devised to systematically assess all
relevant empirical materials about the objective of this review.

In the collection process, we search as many papers as
possible to get more representative papers for our systematic
literature review. Electronic databases and proceedings are
included to define search space. Firstly, electronic databases
are identified to find meaningful references (snowballing).
This additional approachwas implemented to incorporate any
possible literature that may have been necessary to be incor-
porated [28]. Subsequently, the collected studies underwent
the application of inclusion and exclusion criteria.

3) SEARCH CRITERIA
We used several terms from the main topic. Electronic
databases are identified using well-known keywords related
to code smells, such as code smell detection, anti-pattern,
refactoring, and software smell. We considered specific terms
by using quotes and connectives AND and OR. The search
string is presented as follows.
(‘‘code smell’’ OR ‘‘software smell’’) AND (‘‘detection’’

OR ‘‘anti-pattern’’ OR ‘‘refactoring’’) AND (‘‘methodology’’
OR ‘‘technique’’ OR ‘‘tool’’ OR ‘‘practice’’ OR ‘‘challenge’’)

4) INCLUSION AND EXCLUSION CRITERIA
In order to ascertain the suitability of a study for inclusion,
the researchers employed a set of predetermined criteria for
inclusion and exclusion. The criteria for inclusion in this
study are as follows:

(I1) The document is composed in the English language;
(I2) The search terms specified in the search criteria section

are pertinent to the topic;
(I3) The study presented in this paper is based on empirical

research and has been published in a reputable academic
journal and presented at a conference;
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FIGURE 1. Stages of search to produce a primary study.

(I4) The study was published from January 2013 to July
2022.

The refinement of exclusion criteria was undertaken
throughout the research. Initially, a thorough examination
was conducted on a subset of the obtained articles to
establish a consensus among all researchers participating in
the Systematic Literature Review (SLR). Subsequently, the
exclusion criteria were repeatedly refined:

(E1) Research that does not primarily focus on code scent
but mentions code smell incidentally, such as studies that use
code smell as a descriptive term;

(E2) Research that does not address code smells in the field
of software engineering;

(E3) Research projects that fail to meet the specified
inclusion criteria; and

(E4) In academic discourse, various forms of communica-
tion are employed to convey ideas and perspectives. These
include opinions, viewpoints, keynotes, discussions, edito-
rials, comments, tutorials, prefaces, anecdote papers, and
presentations in slide formats, which corresponding written
papers may not necessarily accompany.

B. CONDUCTING THE REVIEW
This section shows the results of our systematic search and
data extraction from pertinent sources and databases.

1) STUDY SEARCH AND SELECTION
During the period from January 2013 to July 2022, a com-
prehensive search was conducted across various academic

TABLE 5. Quality criteria for study selection.

databases to collect relevant studies on the topic of code
smells, with the duration of the search aligned with related
work, ranging from 10 to 20 years. Consequently, the time-
frame for this paper follows a 10-year duration, aiming to
capture not only historical perspectives but also to discern
recent trends from the last decade.

We searched online libraries using predetermined search
terms: The ACM Digital Library, IEEE Xplore, Proquest,
SpringerLink, and ScienceDirect are prominent academic
databases, and CiteSeerX.

We run searches on electronic databases in parallel. Ini-
tially, a comprehensive data search was conducted, and the
obtained findings were meticulously documented in a spread-
sheet and Mendeley, a reference management software.
We screened by checking the title, abstract, and keywords.
The process involves the identification of pertinent schol-
arly articles, which are then categorized and recorded in a
spreadsheet. Subsequently, these articles are downloaded and
imported into the Mendeley program for further management
and organization.We also ensure that no studies are redundant
when using this approach. From there, we get 201 relevant
studies.

The backward and forward snowballing techniques were
then used to increase the number of relevant studies
to make them more comprehensive. From this stage,
we obtained an additional 169 studies. So, the total number
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TABLE 6. Data extraction form.

of studies obtained after snowballing was 370 studies. Next,
an examination of duplicate papers was carried out; inclusion
criteria were applied, where the title, abstract and key-
words were assessed, thereby reducing the number of initial
studies to 354. The search yielded a total of 354 studies,
distributed across different databases as follows: Mende-
ley with 20 studies, CiteSeerX with 35 studies, Science
Direct with 48 studies, IEEEXplore with 68 studies, Proquest
with 55 studies, ACM with 56 studies, and Springer with
72 studies.

After that, an examination was carried out with five ques-
tions, the details of which are in Table 5 based on [30]. The
maximum value for each question is 1; the smallest is -1. The
assessment is carried out by three researchers for each paper,
so the maximum score for a paper if it is assessed as perfect
by three examiners is 15 points. After that, from all papers,
to get papers with good quality, sort them based on points.
With three quality categories: poor (0-5), fair (6-10), and good
(11-15). Then, paperswere taken that were in a good category,
namely 11 points and above, resulting in 69 primary studies.
Figure 1 displays the study search and selection process for
69 primary studies.

This extensive collection of studies from diverse sources
forms the foundation for this systematic literature review,
enabling a comprehensive analysis of the research trends,
detection methods, practices, and challenges related to code
smells.

2) QUALITY ASSESSMENT
Quality evaluationwas employed to evaluate themethodolog-
ical quality of the primary research. In our study, we utilized

FIGURE 2. Percentage scores for the quality assessments of the studies.

the quality assessment methodology employed by [29] and
[30]. The checklist employed for assessing the quality of the
studies included in the analysis is presented in Table 5.
Sixty-nine primary studies were evaluated using quality

evaluations, as indicated in Table 5. The initial item (QA1)
evaluates the objective of each investigation. The question
had a favorable response in 69% of the conducted studies.
The second criterion (QA2) evaluated whether the study com-
prehensively described the approach employed. The question
elicited a positive response in 50% of the conducted stud-
ies. The third item, referred to as QA3, inquires about the
validation method implemented to assess the accuracy and
reliability of the obtained results. Notably, 54% of the studies
included in the analysis utilized proper validation procedures
in their research protocols. The fourth item, QA4, evaluates
the extent to which studies are grounded in research instead of
being influenced by personal opinion or subjective perspec-
tive. It was found that 53% of the studies provided a positive
response in this regard. The final component, QA5, is ascer-
taining the number of citations from research studies. As a
result, most studies, precisely 58%, received citations from
other studies exceeding five times. Figure 2 illustrates the
scores obtained from the quality assessment of the primary
studies.

3) DATA EXTRACTION AND SYNTHESIS
The data extraction process was conducted to acquire perti-
nent information that applies to the study inquiry. The data
were extracted by a predetermined extraction form (Table 6).
This form facilitated the comprehensive documentation of
primary studies to meet our research inquiry.

C. FINDINGS AND DISCUSSION OF OUR REVIEW
Within this particular portion, we will explicate the discov-
eries and deliberation of our comprehensive analysis of our
designated research inquiries.

1) SIGNIFICANT JOURNAL AND CONFERENCE
PUBLICATIONS
In this SLR, 69 primary studies were analyzed around code
smell. The distribution over the years shows how interest
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FIGURE 3. Distribution of selected studies over the years.

FIGURE 4. Journal and conference publications and distribution of
selected studies.

in code smells has changed over time. Figure 3 concisely
summarizes the distribution studies conducted over the years.
Figure 3 also shows that there are fluctuations in the trend,
sometimes it goes up, but in several years, it also shows
a decline. This can happen because there is a shift in the
research paradigm, such as several studies that introduce new
terms such as design smell [10], security smell [7], [31],
and behavioral smell [8], which are more specific than code
smells.

According to a careful examination of relevant primary
studies, it has been determined that the IEEE Transac-
tion on Software Engineering holds significant prominence
as the foremost publication in code smell detection. This
phenomenon is visually represented in Figure 4.
Based on the data presented in Figure 4, it can be

observed that IEEE Transactions on Software Engineering
has a notable concentration of high-quality papers about code
smells. The list of journals and conferences can be a reference
for researchers in the future where to publish their articles.
Complementing the data for the list of journal publishers,

FIGURE 5. Influential research and number of studies.

FIGURE 6. Country of author distribution.

Table 7 presents the Scimago Journal Rank (SJR) values and
Q categories (Q1-Q4) of the journals encompassed in the
significant investigation of code smell. The table does not
encompass conferences.

2) MOST ACTIVE AND INFLUENTIAL RESEARCHERS
The researchers who contributed significantly and demon-
strated high activity levels in code smell were examined
and recognized from the chosen primary studies. Figure 5
illustrates the researchers who have demonstrated the highest
level of activity and influence within the domain of code
smell. The researchers were ranked based on the number
of primary studies they contributed to. It is worth mention-
ing that Fabio Palomba, Francesca Arcelli Fontana, Aiko
Yamashita, Fabiano Pecorelli, Liu Hui, Antoine Barbez, and
Akond Rahman are active researchers on code smell topics.

Figure 6 shows the distribution of authors who have con-
ducted many studies on code smells by country. We list all
authors, meaning not just the first author. Europe dominates
the number of studies related to code smell, followed by the
USA and Canada. Writers from Asia, Africa, and Australia
also exist, but the quantity is small. Even so, this shows
that the discussion of code smell on all continents attracts
researchers and practitioners to conduct studies about it.

The research methods utilized in the 69 selected papers
are depicted in Figure 7. Out of the 69 research within this
particular category, most are empirical, Most of the examined
methods or tools (65 out of 69) were subjected to empirical
evaluation. However, it should be noted that such evalua-
tions were conducted without the inclusion of real-world
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TABLE 7. Scimago Journal Rank (SJR) of selected journals.

FIGURE 7. Distribution of research methods.

experiments or investigations. In the interim, four studies
(surveys and interviews) are included in empirically-based
(qualitative) studies. Of the 65 included in empirically-
evaluated (quantitative) studies. 10 of them directly presented
the experimental results, while the remaining 55 were in
the form of case studies, which were also conducted with
interviews as a sub-research method (6 studies) and case
studies then presented the experimental results of 49 studies.
For qualitative studies, two studies raise case studies, and two
others use surveys. That two terms, empirically-based study
and empirically-evaluated study, following this [27].

D. RESEARCH TOPICS AND PRACTICES IN CODE SMELL
The examination of the chosen original studies indicates that
the existing body of code smell research mainly concentrates
on five specific topics:

1) CODE SMELL DETECTION
Numerous scholarly publications examine various strategies
and methodologies employed in identifying code smells
within software systems. This includes machine learning-
based, deep learning, heuristic, and metric approaches.
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TABLE 8. Code smell research paper topics.

Sub-topic: code smells detection and machine/deep learn-
ing: numerous scholarly works delve into the identification
of distinct code smells through the utilization of machine
learning methodologies and the examination of machine
learning strategies, including deep learning, for forecasting
code smells.

2) CODE SMELL IMPACT
Several articles discuss the effects of code smells on soft-
ware, This study aims to investigate the influence of soft-
ware testing practices on the overall quality of software,
maintainability, and performance.

Sub-topic: code smells effect and software engineer-
ing metrics: numerous scholarly studies investigate the
correlation between code smells and distinct software
metrics.

3) CODE SMELL REFACTORING
Several articles discuss refactoring techniques to overcome
code smells in software.

4) CODE SMELLS IN SPECIFIC CONTEXTS
Several articles discuss code smells specific to a program-
ming language (such as JavaScript), a platform (such as
Android), or a particular software environment.

Sub-topic: security smells: several articles discuss
detecting and analyzing security smells in software code.

5) CODE SMELL AND DEVELOPER
Several articles discuss code smell and its relationship with
developers, for instance, the level of comprehension, conduct,
and interpretation of the code smell by the developer.

Moreover, Table 8 displays a summary of the topics of each
study.

From the topics in Table 8, most of the discussion is on
detecting code smells, especially those related to machine
learning, and developing deep learning. The influence of code
smells, and their correlation with other metrics in software
engineering is a considerable discussion among numerous
individuals. For those who conduct studies related to real

life, namely related to developers and software development,
several studies are interesting to note, such as in studies [32],
[33], [34], where it is sought to find out how developers
respond or interact with code. Smell in terms of understand-
ing, different experience levels, and related to the tools used.

Some studies discuss code smells in specific contexts; for
example, in certain programming languages, the majority
discuss Java, but some discuss other programming languages
such as JavaScript [35], [36], [37]. another context, some
studies discuss code smells in mobile apps [38], even its
impact on energy consumption on mobile devices [39]. Also,
code smells on infrastructure configurations such as Ansible
and Chef [7] and [31]. those discussing refactoring, there are
only two studies, and three studies discuss the connection
between code smell and security. This is a future research
opportunity because this field can explore many things.

E. METHODS USED IN CODE SMELL DETECTION
To detect the existence of a code smell in a program code,
from the 69 selected studies, several methods can be summa-
rized, including [40] and [41] using a competitive coevolu-
tionary search; it is an approach used in the paper to detect
code smells, where two populations undergo simultaneous
evolution, where the objective of one population is contingent
upon the existing population of the other. The individual
asserted that their precision and recall scores surpassed 80%
on a pre-established criterion. Similar to the method, [42] the
term ‘‘multi-objective’’ is used in this paper to describe the
approach of simultaneously considering multiple objectives
or goals. Specifically, it involves maximizing the detec-
tion of code-smell examples while minimizing the detection
of well-designed code examples. This approach generates
detection rules using multi-objective genetic programming
(MOGP). The study assessed the suggested multi-objective
approach by evaluating seven extensive open-source systems.
The results indicated that, on average, the approach suc-
cessfully detected most of the five distinct types of code
smells with a precision rate of 87% and a recall rate of 92%.
Furthermore, statistical analysis of the experiments, which
were repeated 51 times, demonstrated that the multi-objective
approach outperformed existing code smell detectors sta-
tistically. Some use detection methods based on structural
[43], textual [44], and a combination of the two, as in
[45] and [46]. Although the detected code smells are specific
to only a few types, for example, God Class, Data Class,
Feature Envy, and Long Method. Some detect code smells
through SQL queries and regex [47], and there is also a
detection visualization. Of the 69 selected articles, since 2015
[48] many code smell detection methods have started to use
machine learning techniques, [48] utilizing data changes over
time, not just directly from the program code, to then carry out
mining, the algorithms used are a priori and FP growth, some
also use association rules [49].
According to [9], based on a comparison of several tech-

niques, the best algorithm is J48 (decision tree) and random
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forest, with high accuracy, above 96%. However, that study
was done in 2016, so it is clear that changes are pos-
sible. In this study [50], the authors have employed six
commonly utilized machine learning methods, namely the
Naive Bayes Classifier, Multilayer Perceptron, LogitBoost,
Bagging, Random Forest, and Decision Tree, for the pur-
pose of identifying code smells. The findings of this study
demonstrate that code smell serves as a robust indicator of
the likelihood of class changes. Additionally, the multilayer
perceptron emerges as the most efficient method for fore-
casting change proneness based on code smell. In [51], the
whale algorithm was used in the search for code smells;
the findings of the study indicate that the suggested frame-
work demonstrates a notable level of accuracy in identifying
code smells. Specifically, it achieves an average precision
of 94.24% and a recall of 93.4% across five open-source
software projects. These results were obtained through the
utilization of an 80% training and 20% testing data split.
The suggested framework enhances the identification of code
smells, hence enhancing the overall quality of software while
simultaneously reducing the need for maintenance, time, and
cost.

Apart frommachine learning, recently several studies have
also used deep learning in detecting code smells, as in [52],
which specifically discusses Brain Class and Brain Method;
he claims that the CNN algorithm, capable of producing
95-97% accuracy, as well as other studies discussing deep
learning such as [8], [43], [52], and [53]. Of the existing
studies, no studies stand out in detecting code smells because
each study usually focuses on a certain context, for example,
implementation in a certain programming language, a certain
paradigm, or even a certain type of code smell. For tools in
detecting code smells, some that have been mentioned are
Jspirit [54], aDoctor [55], CAME [43], SLIC [7], ADIODE
[56], JDeodorant, HIST, InCode [57], DÉCOR [58], SMAD
[10], SLAC [44], and SonarQube [59].
Study [10] introduces the concept of design smells and

anti-pattern detection to identify code components that
require refactoring. Moreover, the study [46] presents the
results of implementing 32machine-learning algorithms after
the execution of feature selection via six distinct iterations
of the filter approach to detect code smells. The findings
indicate that the machine learning models have demon-
strated an improvement in accuracy by 26.5%, an increase
in f-measure by 70.9%, a surge in the area under the ROC
curve by 26.74%, and a reduction in average training time
by 62 seconds when compared to the performance mea-
sures of machine learning models executed without feature
selection. The utilization of the mutual information fea-
ture selection approach in conjunction with the random
forest correlation methodology exhibits the most signifi-
cant influence on performance measurements compared to
other filter methods. After doing dimensionality reduction,
it was observed that the boosted decision trees (J48) and
Naive Bayes algorithms had superior performance among the
32 classifiers.

So that it can be abstracted, on the topic of code
smell detection, based on published empirical studies,
including various techniques, tools, and methodologies used
by researchers and practitioners to identify and analyze code
smells in software systems. These practices are derived from
the findings of studies that have explored code smells in
real-world software projects. Some of the common practices
of code smell detection are as follows:

1) MANUAL CODE INSPECTION
One of the early and fundamental practices of code smell
detection involves manual code inspection by experienced
developers. They review the source code to identify patterns
and structures indicative of code smells. Manual inspection
of developers’ expertise and knowledge of design principles
and best practices.

2) STATIC CODE ANALYSIS
The use of static code analysis techniques is prevalent in auto-
matically identifying code smells within software projects.
These tools analyze the source code without executing it and
flag potential instances of code smells based on predefined
rules and patterns. Some popular static analysis tools for code
smell detection include SonarQube.

3) METRICS-BASED DETECTION
Researchers often use various software metrics to detect code
smells. Metrics like cyclomatic complexity, lines of code, and
coupling between objects can indicate potential code smells.
By setting threshold values for these metrics, researchers can
identify code fragments that exceed the specified limits and
may contain code smells.

4) MACHINE LEARNING
Numerous empirical investigations have been conducted to
investigate the utilization of machine-learning approaches in
detecting code smells. By training machine learning models
on labeled datasets of code smells, researchers can build
classifiers capable of automatically identifying code smells
in new codebases.

5) CODE SMELL PATTERNS
Researchers have identified and documented specific code
smell patterns that can be matched against the source code.
These patterns serve as templates for identifying code smells
based on their structural and behavioral characteristics.

6) RULE-BASED SYSTEMS
Rule-based systems define rules that identify code smells
based on specific coding patterns or anti-patterns. When code
fragments match these rules, they are flagged as potential
instances of code smells.

7) VISUALIZATION TECHNIQUES
Some studies explore using visualization techniques to
represent code smells more intuitively and easily. Visual
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representations help developers identify and understand
complex code smell occurrences.

8) COMPARATIVE STUDIES
Empirical studies often compare different code smell detec-
tion techniques, tools, or thresholds to determine their
effectiveness and efficiency in identifying code smells.

TABLE 9. The challenges of code smell detection.

F. THE CHALLENGES OF CODE SMELL DETECTION
The primary investigations documented several problems.
Several factors are associated with the code smell idea,

field conditions, tool restrictions, and particular contexts.
These factors are summarized in Table 9, which provides an
overview of the issues identified in the primary investigations.

Major studies in code smell detection identify several
challenges faced in this endeavor. First, the need for more
documentation by developers is a frequent problem. The doc-
umentation of code smells is sometimes less comprehensive
than that of defects, posing challenges in locating instances of
code smells, particularly in open-source systems where their
assessment is typically conducted manually. Furthermore,
subjective understanding and low agreement among code
smell detectors are important constraints. These challenges
can negatively impact the accuracy and reliability of detec-
tion results due to varying interpretations between detectors.
Applying code smell detection in a limited context is also a
concern. This detection must consider contextual factors such
as the programming language or development environment
to make the results more valid and relevant in everyday
use.

Conversely, the presence of an imbalanced dataset in the
context of machine learning or deep learning-based detec-
tion algorithms can result in suboptimal performance when
identifying code smells. This can impact the accuracy and
effectiveness of detection. Developers’ limited knowledge,
especially those who are new, about code smells is also a
barrier. This limitation can lead to technical accumulation
(technical debt). Moreover, the need for more apparent pri-
oritization in identifying the various code smell types poses
additional difficulties. This may result in software degrada-
tion and further technical accumulation. The detection results
of code smells are also influenced by the requirement for
enhanced precision in setting the threshold. The problems
above underscore the code smell detection process’s intri-
cacy and the necessity for a meticulous strategy and efficient
solutions to tackle these challenges.

G. LIMITATION OF THE REVIEW
The inclusion of certain studies may have an impact on the
overall completeness of our findings. A specified strategy,
thorough search methodology, and numerous databases were
employed to mitigate this potential danger. In the research
search and selection process, we employed forward and back-
ward snowballing techniques to ensure the inclusion of a
comprehensive set of primary studies. The study results were
managed, and the utilization of spreadsheet tools andMende-
ley software prevented the potential duplication of primary
studies. A phased search method was also devised to handle
instances of text duplication effectively. During the process of
inclusion and exclusion, our scanning was limited to the title,
abstract, and keywords of each database. This approach may
have included irrelevant, relevant, or unrelated papers in the
final list. To ensure the exclusion of irrelevant publications,
we incorporated a series of phases for evaluating the eligi-
bility of full-text articles. In the case of untracked pertinent
papers, we assumed the associated risk by asserting that the
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fundamental content of the paper ought to be discernible
through the title, abstract, and keywords.

IV. CONCLUSION
The present study included a systematic literature review
(SLR) about code smells. Out of the 354 publications iden-
tified throughout the search process, 69 primary studies
were chosen based on their adherence to the predeter-
mined inclusion and exclusion criteria. These selected stud-
ies were published within the time frame spanning from
2013 to July 2022. The main focus of this study was the
detection of code smells, which were identified mainly using
a machine learning approach and some studies using deep
learning. Studies also cover the impact of code smells,
refactoring, and interactions with software metrics and
security aspects. Active and influential researchers in this
field are identified. Various detection methods have been
identified, such as competitive coevolutionary search and
multi-objective genetic programming. Studies also compare
different detection tools. Challenges in this study include sub-
jective understanding and low agreement between detectors,
applicability to limited contexts and unbalanced datasets,
limited developer knowledge, unclear priorities, and unclear
thresholds. This demonstrates the complexity of detecting
code smells and the need for more sophisticated approaches
and tools.

REFERENCES
[1] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactor-

ing: Improving the Design of Existing Code, 1st ed. Boston, MA, USA:
Addison-Wesley Professional PTG, 2012.

[2] K. Z. Sultana, Z. Codabux, and B. Williams, ‘‘Examining the relationship
of code and architectural smells with software vulnerabilities,’’ Oct. 2020,
arXiv:2010.15978.

[3] A. Yamashita, ‘‘Assessing the capability of code smells to explain mainte-
nance problems: An empirical study combining quantitative and qualitative
data,’’ Empirical Softw. Eng., vol. 19, no. 4, pp. 1111–1143, Aug. 2014,
doi: 10.1007/s10664-013-9250-3.

[4] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta, A. De Lucia,
and D. Poshyvanyk, ‘‘When and why your code starts to smell bad,’’ in
Proc. IEEE/ACM 37th IEEE Int. Conf. Softw. Eng., vol. 1, May 2015,
pp. 403–414, doi: 10.1109/ICSE.2015.59.

[5] Z. Codabux, K. Z. Sultana, and B. J. Williams, ‘‘The relationship between
code smells and traceable patterns—Are they measuring the same thing?’’
Int. J. Softw. Eng. Knowl. Eng., vol. 27, no. 9–10, pp. 1529–1547,
Nov. 2017, doi: 10.1142/s0218194017400095.

[6] Z. Codabux, K. Z. Sultana, and B. Williams, ‘‘The relationship between
traceable code patterns and code smells,’’ in Proc. SEKE, Jul. 2017,
pp. 444–449, doi: 10.18293/SEKE2017-121.

[7] A. Rahman, C. Parnin, and L. Williams, ‘‘The seven sins: Security smells
in infrastructure as code scripts,’’ in Proc. IEEE/ACM 41st Int. Conf. Softw.
Eng. (ICSE), May 2019, pp. 164–175, doi: 10.1109/ICSE.2019.00033.

[8] E. Amer and S. El-Sappagh, ‘‘Robust deep learning early alarm
prediction model based on the behavioural smell for Android mal-
ware,’’ Comput. Secur., vol. 116, May 2022, Art. no. 102670, doi:
10.1016/j.cose.2022.102670.

[9] F. A. Fontana, M. V. Mäntylä, M. Zanoni, and A. Marino, ‘‘Comparing
and experimenting machine learning techniques for code smell detection,’’
Empirical Softw. Eng., vol. 21, no. 3, pp. 1143–1191, Jun. 2016, doi:
10.1007/s10664-015-9378-4.

[10] A. Barbez, F. Khomh, and Y.-G. Guéhéneuc, ‘‘A machine-learning based
ensemble method for anti-patterns detection,’’ J. Syst. Softw., vol. 161,
Mar. 2020, Art. no. 110486, doi: 10.1016/j.jss.2019.110486.

[11] M. Mantyla, J. Vanhanen, and C. Lassenius, ‘‘A taxonomy and an initial
empirical study of bad smells in code,’’ in Proc. Int. Conf. Softw. Mainte-
nance (ICSM)., 2003, pp. 381–384, doi: 10.1109/icsm.2003.1235447.

[12] M. S. Haque, J. Carver, and T. Atkison, ‘‘Causes, impacts, and detection
approaches of code smell: A survey,’’ in Proc. ACMSE Conf., Mar. 2018,
pp. 1–8, doi: 10.1145/3190645.3190697.

[13] A. Gupta, B. Suri, and S. Misra, ‘‘A systematic literature review: Code bad
smells in Java source code,’’ in Proc. Int. Conf. Comput. Sci. Appl., 2017,
pp. 665–682, doi: 10.1007/978-3-319-62404-4_49.

[14] M. Agnihotri and A. Chug, ‘‘A systematic literature survey of software
metrics, code smells and refactoring techniques,’’ J. Inf. Process. Syst.,
vol. 16, no. 4, pp. 915–934, Aug. 2020, doi: 10.3745/JIPS.04.0184.

[15] J. P. dos Reis, F. B. E. Abreu, G. de Figueiredo Carneiro, and C. Anslow,
‘‘Code smells detection and visualization: A systematic literature review,’’
Arch. Comput. Methods Eng., vol. 29, no. 1, pp. 47–94, Jan. 2022, doi:
10.1007/s11831-021-09566-x.

[16] E. Fernandes, J. Oliveira, G. Vale, T. Paiva, and E. Figueiredo, ‘‘A review-
based comparative study of bad smell detection tools,’’ in Proc. 20th
Int. Conf. Eval. Assessment Softw. Eng., Jun. 2016, pp. 1–12, doi:
10.1145/2915970.2915984.

[17] X. Liu and C. Zhang. (2017). The Detection of Code Smell on
Software Development: A Mapping Study. [Online]. Available:
http://checkstyle.sourceforge.net

[18] G. Rasool and Z. Arshad, ‘‘A review of code smell mining techniques,’’
J. Softw., Evol. Process, vol. 27, no. 11, pp. 867–895, Nov. 01, 2015, doi:
10.1002/smr.1737.

[19] M. I. Azeem, F. Palomba, L. Shi, and Q. Wang, ‘‘Machine learning
techniques for code smell detection: A systematic literature review and
meta-analysis,’’ Inf. Softw. Technol., vol. 108, pp. 115–138, Apr. 2019, doi:
10.1016/j.infsof.2018.12.009.

[20] A. Al-Shaaby, H. Aljamaan, and M. Alshayeb, ‘‘Bad smell detection using
machine learning techniques: A systematic literature review,’’ Arabian J.
Sci. Eng., vol. 45, no. 4, pp. 2341–2369, Apr. 1, 2020, doi: 10.1007/s13369-
019-04311-w.

[21] T. Lewowski and L. Madeyski, ‘‘Code smells detection using artificial
intelligence techniques: A business-driven systematic review,’’ inDevelop-
ments in Information&KnowledgeManagement for Business Applications
(Studies in Systems, Decision and Control). Cham, Switzerland: Springer,
2022, pp. 285–319, doi: 10.1007/978-3-030-77916-0_12.

[22] J. A. M. Santos, J. B. Rocha-Junior, L. C. L. Prates, R. S. D. Nascimento,
M. F. Freitas, and M. G. D. Mendonça, ‘‘A systematic review on the
code smell effect,’’ J. Syst. Softw., vol. 144, pp. 450–477, Oct. 2018, doi:
10.1016/j.jss.2018.07.035.

[23] T. Lewowski and L. Madeyski, ‘‘How far are we from repro-
ducible research on code smell detection? A systematic literature
review,’’ Inf. Softw. Technol., vol. 144, Apr. 2022, Art. no. 106783, doi:
10.1016/j.infsof.2021.106783.

[24] A. Yamashita and S. Counsell, ‘‘Code smells as system-level indicators
of maintainability: An empirical study,’’ J. Syst. Softw., vol. 86, no. 10,
pp. 2639–2653, Oct. 2013, doi: 10.1016/j.jss.2013.05.007.

[25] J. Padilha, J. Pereira, E. Figueiredo, J. Almeida, A. Garcia, and
C. Sant’Anna, ‘‘On the effectiveness of concern metrics to detect code
smells: An empirical study,’’ in Proc. Int. Conf. Adv. Inf. Syst. Eng., 2014,
pp. 656–671.

[26] F. Ponce, J. Soldani, H. Astudillo, and A. Brogi, ‘‘Smells and refactor-
ings for microservices security: A multivocal literature review,’’ 2021,
arXiv:2104.13303.

[27] I. Inayat, S. S. Salim, S. Marczak, M. Daneva, and S. Shamshirband,
‘‘A systematic literature review on agile requirements engineering prac-
tices and challenges,’’ Comput. Hum. Behav., vol. 51, pp. 915–929,
Oct. 2015, doi: 10.1016/j.chb.2014.10.046.

[28] D. Badampudi, C. Wohlin, and K. Petersen, ‘‘Experiences from using
snowballing and database searches in systematic literature studies,’’ in
Proc. 19th Int. Conf. Eval. Assessment Softw. Eng., New York, NY, USA,
Apr. 2015, pp. 1–10, doi: 10.1145/2745802.2745818.

[29] E.-M. Schön, J. Thomaschewski, and M. J. Escalona, ‘‘Agile require-
ments engineering: A systematic literature review,’’ Comput. Standards
Interfaces, vol. 49, pp. 79–91, Jan. 2017, doi: 10.1016/j.csi.2016.08.
011.

[30] I. K. Raharjana, D. Siahaan, and C. Fatichah, ‘‘User stories and
natural language processing: A systematic literature review,’’ IEEE
Access, vol. 9, pp. 53811–53826, 2021, doi: 10.1109/access.2021.
3070606.

[31] A. Rahman, M. R. Rahman, C. Parnin, and L. Williams, ‘‘Security smells
in ansible and chef scripts: A replication study,’’ ACM Trans. Softw. Eng.
Methodol., vol. 30, no. 1, pp. 1–31, Jan. 2021, doi: 10.1145/3408897.

129548 VOLUME 11, 2023

http://dx.doi.org/10.1007/s10664-013-9250-3
http://dx.doi.org/10.1109/ICSE.2015.59
http://dx.doi.org/10.1142/s0218194017400095
http://dx.doi.org/10.18293/SEKE2017-121
http://dx.doi.org/10.1109/ICSE.2019.00033
http://dx.doi.org/10.1016/j.cose.2022.102670
http://dx.doi.org/10.1007/s10664-015-9378-4
http://dx.doi.org/10.1016/j.jss.2019.110486
http://dx.doi.org/10.1109/icsm.2003.1235447
http://dx.doi.org/10.1145/3190645.3190697
http://dx.doi.org/10.1007/978-3-319-62404-4_49
http://dx.doi.org/10.3745/JIPS.04.0184
http://dx.doi.org/10.1007/s11831-021-09566-x
http://dx.doi.org/10.1145/2915970.2915984
http://dx.doi.org/10.1002/smr.1737
http://dx.doi.org/10.1016/j.infsof.2018.12.009
http://dx.doi.org/10.1007/s13369-019-04311-w
http://dx.doi.org/10.1007/s13369-019-04311-w
http://dx.doi.org/10.1007/978-3-030-77916-0_12
http://dx.doi.org/10.1016/j.jss.2018.07.035
http://dx.doi.org/10.1016/j.infsof.2021.106783
http://dx.doi.org/10.1016/j.jss.2013.05.007
http://dx.doi.org/10.1016/j.chb.2014.10.046
http://dx.doi.org/10.1145/2745802.2745818
http://dx.doi.org/10.1016/j.csi.2016.08.011
http://dx.doi.org/10.1016/j.csi.2016.08.011
http://dx.doi.org/10.1109/access.2021.3070606
http://dx.doi.org/10.1109/access.2021.3070606
http://dx.doi.org/10.1145/3408897


M. A. A. Hilmi et al.: Research Trends, Detection Methods, Practices, and Challenges in Code Smell: SLR

[32] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, ‘‘Why don’t
software developers use static analysis tools to find bugs?’’ in Proc.
35th Int. Conf. Softw. Eng. (ICSE), May 2013, pp. 672–681, doi:
10.1109/ICSE.2013.6606613.

[33] A. Yamashita and L. Moonen, ‘‘Do developers care about code smells?
An exploratory survey,’’ in Proc. 20th Work. Conf. Reverse Eng. (WCRE),
Oct. 2013, pp. 242–251, doi: 10.1109/WCRE.2013.6671299.

[34] D. Taibi, A. Janes, and V. Lenarduzzi, ‘‘How developers perceive smells in
source code: A replicated study,’’ Inf. Softw. Technol., vol. 92, pp. 223–235,
Dec. 2017, doi: 10.1016/j.infsof.2017.08.008.

[35] A. M. Fard and A. Mesbah, ‘‘JSNOSE: Detecting Javascript code smells,’’
in Proc. IEEE 13th Int. Work. Conf. Source Code Anal. Manipulation
(SCAM), Sep. 2013, pp. 116–125, doi: 10.1109/SCAM.2013.6648192.

[36] A. Saboury, P. Musavi, F. Khomh, and G. Antoniol. An Empirical Study
of Code Smells in JavaScript Projects. Accessed: Aug. 15, 2023. [Online].
Available: http://eslint.org/docs/rules/no-cond-assign

[37] I. Shoenberger, M. W. Mkaouer, and M. Kessentini, ‘‘On the use of
smelly examples to detect code smells in Javascript,’’ in Proc. Eur.
Conf. Appl. Evol. Comput. Lecture Notes in Computer Science: Includ-
ing Subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics. Cham, Switzerland: Springer, 2017, pp. 20–34, doi:
10.1007/978-3-319-55792-2_2.

[38] U. A. Mannan, I. Ahmed, R. A. M. Almurshed, D. Dig, and C. Jensen,
‘‘Understanding code smells in Android applications,’’ inProc. IEEE/ACM
Int. Conf.Mobile Softw. Eng. Syst. (MOBILESoft), May 2016, pp. 225–236,
doi: 10.1145/2897073.2897094.

[39] F. Palomba, D. Di Nucci, A. Panichella, A. Zaidman, and A. De Lucia,
‘‘On the impact of code smells on the energy consumption of mobile
applications,’’ Inf. Softw. Technol., vol. 105, pp. 43–55, Jan. 2019, doi:
10.1016/j.infsof.2018.08.004.

[40] M. Boussaa, W. Kessentini, and S. Bechikh. (2013). Competitive Coevo-
lutionary Code-Smells Detection Article View Project Bi-Level Opti-
mization View Project. [Online]. Available: https://www.researchgate.net/
publication/305215765

[41] D. Sahin. Code-Smells Detection as a Bi-Level Problem. Accessed: Aug.
15, 2023. [Online]. Available: http://www.egr.msu.edu/~kdeb/COIN.shtml

[42] U. Mansoor, M. Kessentini, B. R. Maxim, and K. Deb, ‘‘Multi-objective
code-smells detection using good and bad design examples,’’ Softw. Qual.
J., vol. 25, no. 2, pp. 529–552, Jun. 2017, doi: 10.1007/s11219-016-9309-
7.

[43] A. Barbez, F. Khomh, and Y.-G. Guéhéneuc, ‘‘Deep learning anti-
patterns from code metrics history,’’ in Proc. IEEE Int. Conf.
Softw. Maintenance Evol. (ICSME), Sep. 2019, pp. 114–124, doi:
10.1109/ICSME.2019.00021.

[44] A. Rahman, M. R. Rahman, C. Parnin, and L. Williams, ‘‘Security smells
in ansible and chef scripts,’’ ACM Trans. Softw. Eng. Methodol., vol. 30,
no. 1, pp. 1–31, Jan. 2021, doi: 10.1145/3408897.

[45] F. Palomba, A. Panichella, A. De Lucia, R. Oliveto, and A. Zaidman,
‘‘A textual-based technique for smell detection,’’ in Proc. IEEE 24th
Int. Conf. Program Comprehension (ICPC), May 2016, pp. 1–10, doi:
10.1109/ICPC.2016.7503704.

[46] F. Palomba, A. Panichella, A. Zaidman, R. Oliveto, and A. De Lucia,
‘‘The scent of a smell: An extensive comparison between textual and
structural smells,’’ IEEE Trans. Softw. Eng., vol. 44, no. 10, pp. 977–1000,
Oct. 2018, doi: 10.1109/TSE.2017.2752171.

[47] G. Rasool and Z. Arshad, ‘‘A lightweight approach for detection of code
smells,’’ Arabian J. Sci. Eng., vol. 42, no. 2, pp. 483–506, Feb. 2017, doi:
10.1007/s13369-016-2238-8.

[48] S. Fu and B. Shen, ‘‘Code bad smell detection through evolution-
ary data mining,’’ in Proc. ACM/IEEE Int. Symp. Empirical Softw.
Eng. Meas. (ESEM), Oct. 2015, pp. 1–9, doi: 10.1109/ESEM.2015.
7321194.

[49] F. Palomba, R. Oliveto, and A. De Lucia, ‘‘Investigating code smell co-
occurrences using association rule learning: A replicated study,’’ in Proc.
IEEE Workshop Mach. Learn. Techn. Softw. Quality Eval. (MaLTeSQuE),
Feb. 2017, pp. 8–13, doi: 10.1109/MALTESQUE.2017.7882010.

[50] N. Pritam, M. Khari, L. H. Son, R. Kumar, S. Jha, I. Priyadarshini,
M. Abdel-Basset, and H. V. Long, ‘‘Assessment of code smell for predict-
ing class change proneness using machine learning,’’ IEEE Access, vol. 7,
pp. 37414–37425, 2019, doi: 10.1109/ACCESS.2019.2905133.

[51] M.M.Draz,M. S. Farhan, S. N. Abdulkader, andM.G. Gafar, ‘‘Code smell
detection using whale optimization algorithm,’’ Comput., Mater. Con-
tinua, vol. 68, no. 2, pp. 1919–1935, Apr. 2021, doi: 10.32604/cmc.2021.
015586.

[52] A. K. Das, S. Yadav, and S. Dhal, ‘‘Detecting code smells using deep learn-
ing,’’ in Proc. IEEE Region Conf. (TENCON), Oct. 2019, pp. 2081–2086,
doi: 10.1109/TENCON.2019.8929628.

[53] H. Liu, J. Jin, Z. Xu, Y. Zou, Y. Bu, and L. Zhang, ‘‘Deep learning
based code smell detection,’’ IEEE Trans. Softw. Eng., vol. 47, no. 9,
pp. 1811–1837, Sep. 2021, doi: 10.1109/TSE.2019.2936376.

[54] S. Vidal, H. Vazquez, J. A. Diaz-Pace, C. Marcos, A. Garcia, and
W. Oizumi, ‘‘JSpIRIT: A flexible tool for the analysis of code smells,’’
in Proc. 34th Int. Conf. Chilean Comput. Sci. Soc. (SCCC), Nov. 2015,
pp. 1–6, doi: 10.1109/SCCC.2015.7416572.

[55] F. Palomba, D. Di Nucci, A. Panichella, A. Zaidman, and A. De Lucia,
‘‘Lightweight detection of android-specific code smells: The aDoc-
tor project,’’ in Proc. IEEE 24th Int. Conf. Softw. Anal., Evol.
Reeng. (SANER), Feb. 2017, pp. 487–491, doi: 10.1109/SANER.2017.
7884659.

[56] S. Boutaib, S. Bechikh, F. Palomba, M. Elarbi, M. Makhlouf, and
L. B. Said, ‘‘Code smell detection and identification in imbalanced envi-
ronments,’’ Expert Syst. Appl., vol. 166, Mar. 2021, Art. no. 114076, doi:
10.1016/j.eswa.2020.114076.

[57] F. Pecorelli, D. Di Nucci, C. De Roover, and A. De Lucia, ‘‘A large empir-
ical assessment of the role of data balancing in machine-learning-based
code smell detection,’’ J. Syst. Softw., vol. 169, Nov. 2020, Art. no. 110693.

[58] F. Pecorelli, F. Palomba, D. Di Nucci, and A. De Lucia, ‘‘Compar-
ing heuristic and machine learning approaches for metric-based code
smell detection,’’ in Proc. IEEE/ACM 27th Int. Conf. Program Com-
prehension (ICPC), May 2019, pp. 93–104, doi: 10.1109/ICPC.2019.
00023.

[59] V. Lenarduzzi, N. Saarimäki, and D. Taibi, ‘‘Some SonarQube issues
have a significant but small effect on faults and changes. A large-scale
empirical study,’’ J. Syst. Softw., vol. 170, Dec. 2020, Art. no. 110750, doi:
10.1016/j.jss.2020.110750.

[60] M. Boussaa, W. Kessentini, M. Kessentini, S. Bechikh, and S. B. Chikha,
‘‘Competitive coevolutionary code-smells detection,’’ in Proc. Int. Symp.
Search Based Softw. Eng. Lecture Notes in Computer Science: Includ-
ing Subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics, vol. 8084, 2013, pp. 50–65, doi: 10.1007/978-3-642-
39742-4_6.

[61] W. Kessentini, M. Kessentini, H. Sahraoui, S. Bechikh, and A. Ouni,
‘‘A cooperative parallel search-based software engineering approach
for code-smells detection,’’ IEEE Trans. Softw. Eng., vol. 40, no. 9,
pp. 841–861, Sep. 2014, doi: 10.1109/TSE.2014.2331057.

[62] H. Liu, Q. Liu, Z. Niu, and Y. Liu, ‘‘Dynamic and automatic
feedback-based threshold adaptation for code smell detection,’’ IEEE
Trans. Softw. Eng., vol. 42, no. 6, pp. 544–558, Jun. 2016, doi:
10.1109/TSE.2015.2503740.

[63] A. Kaur, S. Jain, and S. Goel, ‘‘SP-J48: A novel optimization and
machine-learning-based approach for solving complex problems: Special
application in software engineering for detecting code smells,’’ Neu-
ral Comput. Appl., vol. 32, no. 11, pp. 7009–7027, Jun. 2020, doi:
10.1007/s00521-019-04175-z.

[64] M. De Stefano, F. Pecorelli, F. Palomba, and A. De Lucia, ‘‘Com-
paring within- and cross-project machine learning algorithms for code
smell detection,’’ in Proc. 5th Int. Workshop Mach. Learn. Techn.
Softw. Quality Evol., Aug. 2021, pp. 1–6, doi: 10.1145/3472674.
3473978.

[65] S. Jain and A. Saha, ‘‘Rank-based univariate feature selection methods on
machine learning classifiers for code smell detection,’’Evol. Intell., vol. 15,
no. 1, pp. 609–638, Mar. 2022, doi: 10.1007/s12065-020-00536-z.

[66] N. Almarimi, A. Ouni, and M. W. Mkaouer, ‘‘Learning to detect commu-
nity smells in open source software projects,’’Knowl.-Based Syst., vol. 204,
Sep. 2020, Art. no. 106201, doi: 10.1016/j.knosys.2020.106201.

[67] T. Guggulothu and S. A. Moiz, ‘‘Code smell detection using multi-label
classification approach,’’ Softw. Quality J., vol. 28, no. 3, pp. 1063–1086,
Sep. 2020, doi: 10.1007/s11219-020-09498-y.

[68] A. Alazba and H. Aljamaan, ‘‘Code smell detection using feature selection
and stacking ensemble: An empirical investigation,’’ Inf. Softw. Tech-
nol., vol. 138, Oct. 2021, Art. no. 106648, doi: 10.1016/j.infsof.2021.
106648.

[69] M. De Stefano, F. Pecorelli, F. Palomba, and A. De Lucia, ‘‘Compar-
ing within-and cross-project machine learning algorithms for code smell
detection,’’ in Proc. 5th Int. Workshop Mach. Learn. Techn. Softw. Qual.
Evol., Co-Located With ESEC/FSE, New York, NY, USA: Association
for Computing Machinery, Aug. 2021, pp. 1–6, doi: 10.1145/3472674.
3473978.

VOLUME 11, 2023 129549

http://dx.doi.org/10.1109/ICSE.2013.6606613
http://dx.doi.org/10.1109/WCRE.2013.6671299
http://dx.doi.org/10.1016/j.infsof.2017.08.008
http://dx.doi.org/10.1109/SCAM.2013.6648192
http://dx.doi.org/10.1007/978-3-319-55792-2_2
http://dx.doi.org/10.1145/2897073.2897094
http://dx.doi.org/10.1016/j.infsof.2018.08.004
http://dx.doi.org/10.1007/s11219-016-9309-7
http://dx.doi.org/10.1007/s11219-016-9309-7
http://dx.doi.org/10.1109/ICSME.2019.00021
http://dx.doi.org/10.1145/3408897
http://dx.doi.org/10.1109/ICPC.2016.7503704
http://dx.doi.org/10.1109/TSE.2017.2752171
http://dx.doi.org/10.1007/s13369-016-2238-8
http://dx.doi.org/10.1109/ESEM.2015.7321194
http://dx.doi.org/10.1109/ESEM.2015.7321194
http://dx.doi.org/10.1109/MALTESQUE.2017.7882010
http://dx.doi.org/10.1109/ACCESS.2019.2905133
http://dx.doi.org/10.32604/cmc.2021.015586
http://dx.doi.org/10.32604/cmc.2021.015586
http://dx.doi.org/10.1109/TENCON.2019.8929628
http://dx.doi.org/10.1109/TSE.2019.2936376
http://dx.doi.org/10.1109/SCCC.2015.7416572
http://dx.doi.org/10.1109/SANER.2017.7884659
http://dx.doi.org/10.1109/SANER.2017.7884659
http://dx.doi.org/10.1016/j.eswa.2020.114076
http://dx.doi.org/10.1109/ICPC.2019.00023
http://dx.doi.org/10.1109/ICPC.2019.00023
http://dx.doi.org/10.1016/j.jss.2020.110750
http://dx.doi.org/10.1007/978-3-642-39742-4_6
http://dx.doi.org/10.1007/978-3-642-39742-4_6
http://dx.doi.org/10.1109/TSE.2014.2331057
http://dx.doi.org/10.1109/TSE.2015.2503740
http://dx.doi.org/10.1007/s00521-019-04175-z
http://dx.doi.org/10.1145/3472674.3473978
http://dx.doi.org/10.1145/3472674.3473978
http://dx.doi.org/10.1007/s12065-020-00536-z
http://dx.doi.org/10.1016/j.knosys.2020.106201
http://dx.doi.org/10.1007/s11219-020-09498-y
http://dx.doi.org/10.1016/j.infsof.2021.106648
http://dx.doi.org/10.1016/j.infsof.2021.106648
http://dx.doi.org/10.1145/3472674.3473978
http://dx.doi.org/10.1145/3472674.3473978


M. A. A. Hilmi et al.: Research Trends, Detection Methods, Practices, and Challenges in Code Smell: SLR

[70] A. Kovačević, J. Slivka, D. Vidaković, K.-G. Grujić, N. Luburić, S. Prokić,
and G. Sladić, ‘‘Automatic detection of long method and god class
code smells through neural source code embeddings,’’ Expert Syst.
Appl., vol. 204, Oct. 2022, Art. no. 117607, doi: 10.1016/j.eswa.2022.
117607.

[71] H. Grodzicka, A. Ziobrowski, Z. Łakomiak, M. Kawa, and L. Madeyski,
‘‘Code smell prediction employing machine learning meets emerging Java
language constructs,’’ inData-Centric Business and Applications (Lecture
Notes on Data Engineering and Communications Technologies). Cham,
Switzerland: Springer, 2020, pp. 137–167, doi: 10.1007/978-3-030-34706-
2_8.

[72] D. I. K. Sjøberg, A. Yamashita, B. C. D. Anda, A. Mockus, and
T. Dybå, ‘‘Quantifying the effect of code smells on maintenance
effort,’’ IEEE Trans. Softw. Eng., vol. 39, no. 8, pp. 1144–1156,
Aug. 2013.

[73] A. Carette, M. A. A. Younes, G. Hecht, N. Moha, and R. Rouvoy, ‘‘Inves-
tigating the energy impact of Android smells,’’ in Proc. IEEE 24th Int.
Conf. Softw. Anal., Evol. Reeng. (SANER), Feb. 2017, pp. 115–126, doi:
10.1109/SANER.2017.7884614.

[74] F. Hermans and E. Aivaloglou, ‘‘Do code smells hamper novice program-
ming? A controlled experiment on scratch programs,’’ in Proc. IEEE 24th
Int. Conf. Program Comprehension (ICPC), May 2016, pp. 1–10, doi:
10.1109/ICPC.2016.7503706.

[75] Z. Soh, A. Yamashita, F. Khomh, and Y.-G. Guéhéneuc, ‘‘Do code
smells impact the effort of different maintenance programming activ-
ities?’’ in Proc. IEEE 23rd Int. Conf. Softw. Anal., Evol., Reeng.
(SANER). Piscataway, NJ, USA: Institute of Electrical and Electronics
Engineers, vol. 1, Mar. 2016, pp. 393–402, doi: 10.1109/SANER.2016.
103.

[76] F. Palomba, M. Zanoni, F. A. Fontana, A. De Lucia, and R. Oliveto,
‘‘Smells like teen spirit: Improving bug prediction performance using
the intensity of code smells,’’ in Proc. IEEE Int. Conf. Softw. Mainte-
nance Evol. (ICSME), Oct. 2016, pp. 244–255, doi: 10.1109/ICSME.2016.
27.

[77] F. Palomba, G. Bavota, M. D. Penta, F. Fasano, R. Oliveto, and
A. D. Lucia, ‘‘On the diffuseness and the impact on maintainability of
code smells: A large scale empirical investigation,’’ Empirical Softw.
Eng., vol. 23, no. 3, pp. 1188–1221, Jun. 2018, doi: 10.1007/s10664-017-
9535-z.

[78] F. Palomba, D. A. Tamburri, F. Arcelli Fontana, R. Oliveto, A. Zaidman,
and A. Serebrenik, ‘‘Beyond technical aspects: How do community
smells influence the intensity of code smells?’’ IEEE Trans. Softw.
Eng., vol. 47, no. 1, pp. 108–129, Jan. 2021, doi: 10.1109/TSE.2018.
2883603.

[79] F. A. Fontana, V. Ferme, A. Marino, B. Walter, and P. Martenka, ‘‘Investi-
gating the impact of code smells on system’s quality: An empirical study
on systems of different application domains,’’ in Proc. IEEE Int. Conf.
Softw. Maintenance, Sep. 2013, pp. 260–269, doi: 10.1109/ICSM.2013.
37.

[80] T. Hall, M. Zhang, D. Bowes, and Y. Sun, ‘‘Some code smells
have a significant but small effect on faults,’’ ACM Trans. Softw.
Eng. Methodol., vol. 23, no. 4, pp. 1–39, Sep. 2014, doi: 10.1145/
2629648.

[81] F. A. Fontana, V. Ferme, M. Zanoni, and A. Yamashita,
‘‘Automatic metric thresholds derivation for code smell detection,’’
in Proc. IEEE/ACM 6th Int. Workshop Emerg. Trends Softw.
Metrics, May 2015, pp. 44–53, doi: 10.1109/WETSoM.2015.
14.

[82] S. Kaur and R. Maini. (2016). Analysis of Various Software Metrics Used
To Detect Bad Smells. [Online]. Available: https://www.theijes.com

[83] I. Pigazzini, F. A. Fontana, and B. Walter, ‘‘A study on corre-
lations between architectural smells and design patterns,’’ J. Syst.
Softw., vol. 178, Aug. 2021, Art. no. 110984, doi: 10.1016/j.jss.2021.
110984.

[84] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. D. Penta, A. De Lucia,
and D. Poshyvanyk, ‘‘When and why your code starts to smell
bad (and whether the smells go away),’’ IEEE Trans. Softw. Eng.,
vol. 43, no. 11, pp. 1063–1088, Nov. 2017, doi: 10.1109/TSE.2017.
2653105.

[85] B. Walter, F. A. Fontana, and V. Ferme, ‘‘Code smells and their col-
locations: A large-scale experiment on open-source systems,’’ J. Syst.
Softw., vol. 144, pp. 1–21, Oct. 2018, doi: 10.1016/j.jss.2018.05.
057.

[86] F. Palomba, M. Zanoni, F. A. Fontana, A. De Lucia, and R. Oliveto,
‘‘Toward a smell-aware bug prediction model,’’ IEEE Trans. Softw.
Eng., vol. 45, no. 2, pp. 194–218, Feb. 2019, doi: 10.1109/TSE.2017.
2770122.

[87] H. Liu, X. Guo, and W. Shao, ‘‘Monitor-based instant software refactor-
ing,’’ IEEE Trans. Softw. Eng., vol. 39, no. 8, pp. 1112–1126, Aug. 2013,
doi: 10.1109/TSE.2013.4.

[88] A. Ouni, M. Kessentini, H. Sahraoui, K. Inoue, and K. Deb, ‘‘Multi-criteria
code refactoring using search-based software engineering: An industrial
case study,’’ ACM Trans. Softw. Eng. Methodol., vol. 25, no. 3, pp. 1–53,
Aug. 2016.

[89] A. Chatzigeorgiou and A. Manakos, ‘‘Investigating the evolution of code
smells in object-oriented systems,’’ Innov. Syst. Softw. Eng., vol. 10, no. 1,
pp. 3–18, Mar. 2014, doi: 10.1007/s11334-013-0205-z.

[90] M. Aniche, G. Bavota, C. Treude, M. A. Gerosa, and A. van Deursen,
‘‘Code smells for model-view-controller architectures,’’ Empirical Softw.
Eng., vol. 23, no. 4, pp. 2121–2157, Aug. 2018, doi: 10.1007/s10664-017-
9540-2.

[91] M. K. Sarker, A. Al Jubaer, M. S. Shohrawardi, T. C. Das, andM. S. Siddik,
‘‘Analysing GoLang projects’ architecture using code metrics and code
smell,’’ in Proc. 1st Int. Workshop Intell. Softw. Automat., 2021, pp. 53–63,
doi: 10.1007/978-981-16-1045-5_5.

[92] T. Sharma,M. Fragkoulis, and D. Spinellis, ‘‘Does your configuration code
smell?’’ in Proc. IEEE/ACM 13th Work. Conf. Mining Softw. Repositories
(MSR). New York, NY, USA: Association for Computing Machinery,
May 2016, pp. 189–200.

[93] V. Garousi and B. Küçük, ‘‘Smells in software test code: A survey of
knowledge in industry and academia,’’ J. Syst. Softw., vol. 138, pp. 52–81,
Apr. 2018, doi: 10.1016/j.jss.2017.12.013.

[94] R. M. de Mello, A. G. Uchoa, R. F. Oliveira, D. T. M. de Oliveira,
B. Fonseca, A. F. Garcia, and F. de Barcellos de Mello, ‘‘Investigating
the social representations of code smell identification: A preliminary
study,’’ in Proc. IEEE/ACM 12th Int. Workshop Cooperat. Hum. Aspects
Softw. Eng. (CHASE). Piscataway, NJ, USA: Institute of Electrical and
Electronics Engineers, May 2019, pp. 53–60, doi: 10.1109/CHASE.2019.
00022.

[95] F. Pecorelli, F. Palomba, F. Khomh, and A. De Lucia, ‘‘Developer-driven
code smell prioritization,’’ in Proc. IEEE/ACM 17th Int. Conf. Mining
Softw. Repositories (MSR), New York, NY, USA, May 2020, pp. 220–231,
doi: 10.1145/3379597.3387457.

MUHAMMAD ANIS AL HILMI received the
master’s degree in electrical and informatics engi-
neering from the Bandung Institute of Technology,
in 2015. He is currently an Assistant Professor
with the Department of Informatics, Politeknik
Negeri Indramayu. He has published journal arti-
cles and conference papers related to information
security and IT. His research interests include
information security and software engineering.
He holds a patent and two industrial designs.

ALIFIA PUSPANINGRUM received the mas-
ter’s degree in software engineering from Institut
Teknologi Sepuluh Nopember, in 2018. She is
currently an Assistant Professor with the Depart-
ment of Informatics, Politeknik Negeri Indramayu.
She has published journal articles and conference
papers related to software engineering and arti-
ficial intelligence. Her research interests include
software engineering and artificial intelligence.
She holds an intellectual property right in web
application.

129550 VOLUME 11, 2023

http://dx.doi.org/10.1016/j.eswa.2022.117607
http://dx.doi.org/10.1016/j.eswa.2022.117607
http://dx.doi.org/10.1007/978-3-030-34706-2_8
http://dx.doi.org/10.1007/978-3-030-34706-2_8
http://dx.doi.org/10.1109/SANER.2017.7884614
http://dx.doi.org/10.1109/ICPC.2016.7503706
http://dx.doi.org/10.1109/SANER.2016.103
http://dx.doi.org/10.1109/SANER.2016.103
http://dx.doi.org/10.1109/ICSME.2016.27
http://dx.doi.org/10.1109/ICSME.2016.27
http://dx.doi.org/10.1007/s10664-017-9535-z
http://dx.doi.org/10.1007/s10664-017-9535-z
http://dx.doi.org/10.1109/TSE.2018.2883603
http://dx.doi.org/10.1109/TSE.2018.2883603
http://dx.doi.org/10.1109/ICSM.2013.37
http://dx.doi.org/10.1109/ICSM.2013.37
http://dx.doi.org/10.1145/2629648
http://dx.doi.org/10.1145/2629648
http://dx.doi.org/10.1109/WETSoM.2015.14
http://dx.doi.org/10.1109/WETSoM.2015.14
http://dx.doi.org/10.1016/j.jss.2021.110984
http://dx.doi.org/10.1016/j.jss.2021.110984
http://dx.doi.org/10.1109/TSE.2017.2653105
http://dx.doi.org/10.1109/TSE.2017.2653105
http://dx.doi.org/10.1016/j.jss.2018.05.057
http://dx.doi.org/10.1016/j.jss.2018.05.057
http://dx.doi.org/10.1109/TSE.2017.2770122
http://dx.doi.org/10.1109/TSE.2017.2770122
http://dx.doi.org/10.1109/TSE.2013.4
http://dx.doi.org/10.1007/s11334-013-0205-z
http://dx.doi.org/10.1007/s10664-017-9540-2
http://dx.doi.org/10.1007/s10664-017-9540-2
http://dx.doi.org/10.1007/978-981-16-1045-5_5
http://dx.doi.org/10.1016/j.jss.2017.12.013
http://dx.doi.org/10.1109/CHASE.2019.00022
http://dx.doi.org/10.1109/CHASE.2019.00022
http://dx.doi.org/10.1145/3379597.3387457


M. A. A. Hilmi et al.: Research Trends, Detection Methods, Practices, and Challenges in Code Smell: SLR

DARSIH received the master’s degree in informa-
tion system fromUniversitas Diponegoro, in 2014.
She is currently an Assistant Professor with
the Department of Informatics, Politeknik Negeri
Indramayu. She has published journal articles
and conference papers related to information sys-
tems. Her research interests include software engi-
neering and information systems. She holds an
intellectual property right in web application.

DANIEL ORANOVA SIAHAAN (Member, IEEE)
received the master’s degree in software engineer-
ing from Technische Universiteit Delft, in 2002,
and the Ph.D. degree in software engineering from
Technische Universiteit Eindhoven, in 2004. He is
currently a Professor with the Department of Infor-
matics, Institut Teknologi Sepuluh Nopember.
He has published more than 50 journal articles
and conference papers related to software engi-
neering. His research interests include software

engineering and requirements engineering. He is also a Society Member
of IEEE.

HERNAWATI SUSANTI SAMOSIR (Member,
IEEE) received the master’s degree in soft-
ware engineering from Institut Teknologi Sepuluh
Nopember, in 2018. She is currently an Assistant
Professor with Institut Teknologi Del. She has
published journal articles and conference papers
related to software engineering. Her research
interest includes software engineering.

AMELIA SAHIRA RAHMA received the mas-
ter’s degree in software engineering from Institut
Teknologi Sepuluh Nopember, in 2018. She has
published journal articles and conference papers
related to software engineering. Her research
interest includes software engineering.

VOLUME 11, 2023 129551


