
Received 23 October 2023, accepted 15 November 2023, date of publication 17 November 2023,
date of current version 22 November 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3334212

Network Anomaly Detection Through IP Traffic
Analysis With Variable Granularity
SHOHEI KAMAMURA 1, (Member, IEEE), YUKI TAKEI2, MASATO NISHIGUCHI2,
YUHEI HAYASHI2, AND TAKAYUKI FUJIWARA2
1Faculty of Science and Technology, Seikei University, Tokyo 180-8633, Japan
2NTT Network Innovation Center, NTT Corporation, Tokyo 180-8585, Japan

Corresponding author: Shohei Kamamura (shohei-kamamura@st.seikei.ac.jp)

ABSTRACT A network anomaly detection method is proposed for large-scale, wide-range Internet Protocol
(IP) networks. Because network behavior is projected onto communication traffic, anomaly detection can
be achieved by properly analyzing the communication traffic flows. However, in wide-area IP networks,
communication traffic flows are encapsulated by headers assigned by communication carriers and thus are
observed as more macroscopic information. Therefore, accurately detecting the occurrence of anomalies
in individual communication flows is difficult because the flow observation results obtained by flow
measurement protocols such as IP Flow Information Export (IPFIX) are the result of superimposing various
communication flows with different characteristics. In this study, we propose an anomaly-detection method
based on time-series traffic flows. First, we decompose superimposed traffic flows into individual flows
using our implemented system called the Fast xFlow Proxy, which can decompose traffic flows to a fine
granularity. Our method detects anomalies in the decomposed flows based on a simple correlation analysis
and dynamic threshold configuration. Our extensive simulation shows that, if we observe individual flows
using the Fast xFlow Proxy, our method can detect anomalies caused by service failures with almost 100%
accuracy. Our method can achieve an accuracy of approximately 80%–90% even in more difficult detection
cases, such as small traffic fluctuations or noisy situations.

INDEX TERMS Anomaly detection, communication system traffic control, correlation, IP networks, time
series analysis.

I. INTRODUCTION
To operate wide-area internet protocol (IP) networks as a
social infrastructure in a sustainable and reliable manner,
accurate measurement and analysis of the communication
traffic over the network and detection of anomalies, such as
failures or security attacks, are important. Communication
traffic consists of individual flows. Generally, flows are
identified using five identifiers called a 5-tuple: source
IP address, destination IP address, source port number,
destination port number, and protocol type. By referring to
the flow information, we can observe the amount of specific
applications such as web conferencing, video streaming,
games, office traffic, and IoT services. These flows can be
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collected using flow measurement protocols called xFlow
protocol such as NetFlow [1] and IPFIX [2].
Although the xFlow protocol can practically collect flow

information over the Internet, it has limitations in large-
scale wide-are IP networks: packet headers are encapsulated
by additional headers assigned by communication carriers,
and user traffic behavior is observed in a more macroscopic
state. For example, encapsulation by the layer 2 tunneling
protocol (L2TP) [3] is used for PPPoE user authentication,
and multiple labels by segment routing using multiprotocol
label switching (SR-MPLS) [4] are added as outer headers
for virtual private network (VPN) users or flexible network
control by traffic engineering [5]. Consequently, the xFlow
protocol does not obtain detailed per-flow information but
rather more macroscopic information from the outer headers.

Owing to the limitation of the xFlow protocol in large-
scale, wide-area IP networks, flows are measured as
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macroinformation on which multiple services are superim-
posed. Although each service has different traffic character-
istics depending on its usage pattern, these differences are
not discernible trough this superimposition. As a result, accu-
rately detecting communication anomalies for a specific flow
from the measurement results becomes extremely difficult.

Herein, we propose a network anomaly detection method
using the Fast xFlow Proxy [6], which has the capability
of measuring communication flows at a fine-granular level
to improve anomaly detection accuracy. The Fast xFlow
Proxy can analyze complex outer headers of IP packets
and perform statistical processing per service at ultrahigh
speeds (100 Gbps), which can appropriately decompose
macro-traffic information into individual flow behaviors. Our
assumption is that if traffic is properly decomposed, we can
detect anomalies quickly and accurately using a simple
correlation value analysis. This is because of our empirical
observation that the time-series pattern of traffic tends to
fluctuate periodically while increasing monotonically unless
an external factor, such as a failure, occurs. Therefore,
we propose the anomaly-detection method by applying
a lightweight correlation value analysis method to the
decomposed communication flows.

This study makes two major contributions to the existing
literature.

1. We demonstrate that, when macroscopic communica-
tion traffic information is decomposed into individual
flows, anomalies can be detected clearly and numer-
ically, even in an environment where packets are
encapsulated.

2. We demonstrate the applicability of our proposed
method to specific network anomalies such as service
disruptions and distributed denial of service (DDoS)
attacks. If we observe individual flows using the
Fast xFlow Proxy, service failures, which cause
communication disruptions, can be detected with
almost 100% accuracy because the amount of change
in the correlation values is large. However, traffic
fluctuations, whose variations in correlation values are
smaller than that of failures, tend to be more difficult
to detect. Therefore, by dynamically adjusting the
threshold value for anomaly detection, we show that
our method can achieve an accuracy of approximately
80–90% in detecting small traffic fluctuations and
anomalies in noisy situations.

The remainder of this paper is organized as follows:
Section II discusses related works. Section III presents an
overview of our Fast xFlow Proxy system and defines
the problem statement. Section IV describes the proposed
network anomaly-detection methods. Section V presents an
evaluation of the effectiveness of the proposed method, and
Section VI concludes the paper.

II. RELATED WORKS
As studies closely related to this research, we introduce
studies on observing and classifying traffic [1], [2], [6], [9],

[10], [11], [12], [13], [14], [15], anomaly detection based
primarily on traffic analysis [16], [17], [18], [19], [20],
[21], [22], [23], [24], [25], [26], [27], [28], [29], [30], and
traffic generation [31], [32], [33], [34], [35], [36], [37], [38],
[39]. The taxonomy of traffic measurements and time-series
traffic analyses, which are particularly relevant to this study,
is presented in Table 1.

A. TRAFFIC MEASUREMENT
In the analysis of networks, methods have been proposed
for multimedia analysis at the application layer [7], as rep-
resented by web access, and for analyzing the relationship
between citations of publications based on the graph theory
[8]. The traffic addressed in this paper is more about lower-
layer flows defined by port numbers in the transport layer and
IP addresses in the IP layer.

Methods for traffic measurement can be classified into
two categories: direct measurement of packets and a flow
measurement-based approach that obtains meta-information
of sampled packets at regular intervals. A typical example
of the former is deep packet inspection (DPI) [9], which
accumulates pcap format data as big data. A machine
learning approach has been proposed to analyze the data
obtained by DPI [10]. However, this approach is inefficient
owing to the enormous amount of traffic in wide-area IP
networks.

In contrast, a flow-measurement-based approach has been
proposed for efficient traffic measurement [1], [2], [11].
Although various flow definitions exist, flows are identified
using five identifiers called a 5-tuple: source IP address,
destination IP address, source port number, destination port
number, and protocol type. Netflow and IPFIX count packet
appearances, whereas sFlow [11] extracts a specified number
of bytes from the beginning of a packet. Each method
forwards the collected data to a flow collector. Recently,
efficient methods based on probabilistic data structures have
been proposed, such as flow radar [12] using a Bloom
filter, MV-sketch [13] using a count-min sketch structure,
and HashFlow [14], which identifies elephant flows and
focuses on their observations. By observing communication
flows using these methods, network operators can properly
assess service failures or apply traffic engineering [5] to their
networks.

Although the flow-measurement-based approach is highly
scalable, IP packets in a large-scale carrier network are
encapsulated with various outer headers, such as L2TP [3]
or MPLS labels [4]. Ref. [15] considered a limited protocol
stack, such as IPv6 over IPv4, and the maximum throughput
was approximately 10 Gbps. Subsequently, we proposed the
Fast xFlow Proxy [6], which can deal with various protocol
stacks and has 100 Gbps performance. As presented in
Table 1, our analysis method is the first one based on the
Fast xFlow Proxy. The key points of the Fast xFlow Proxy are
described in Section III, and our analysis method is described
in Section IV.
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TABLE 1. Taxonomy of traffic measurement and time-series traffic analysis. The scope of our method is also clarified.

B. TIME-SERIES DATA ANALYSIS
Composite and advanced analysis methods based on multiple
indicators obtained from networks [16], [17], [18] have been
studied as trends in network anomaly detection. For example,
methods based on deep neural evolution networks accurately
estimate fault locations from large alarm information [16],
predict multi-index time series variations using deep learning
to detect anomalies in optical networks [17], and develop
a method for anomaly detection using autoencoders, which
is unsupervised learning [18]. On the other hand, simpler
methods have been proposed for anomaly detection by
focusing on the behavior of communication traffic, which is
time-series data [19], [20], [21], [22], [23], [24], [25], [26],
[27], [28], [29], [30]. Our study adopted this simple approach
because our empirical observations show that the time-series
pattern of traffic tends to fluctuate periodically.

Forecasting-based approaches [19], [20] that model time-
series data using autoregressive analysis, such as ARIMA,
and detect anomalies by comparing the values forecasted
from the model with observed values have been proposed
for anomaly detection. In addition, machine learning-based
approaches using long short-term memory (LSTM) [21]
and convolutional neural network (CNN) [22] have been
proposed for forecasting. These methods assume that the
behavior of time-series data is complex and fluctuates
irregularly, which differs from our assumption that the shape
of the communication flow is periodic.

A simple approach to anomaly detection for time series
data that does not include model prediction is the unsuper-
vised analysis of univariate data [23], [24], [25], [26], [27],
[28], [29]. These methods detect anomalies by creating a
low-dimensional latent space of normal time-series data and

comparing it with observed values. For example, FFT [23]
and SR [24] are based on signal analysis, and normA-SJ
[25] and SAND [26] are based on data mining. They define
their unique distance and compare the length of the distance
to detect anomalies. A typical statistical approach involves
computing the autocorrelation function between multiple
sequences [27] and comparing probability distributions [28],
[29]. A well-structured survey paper on time-series data
analysis is presented in [30].

Although the proposed method described in Section IV
is similar to the distance comparison approach in that it
compares subsequences, it can detect anomalies quickly
and accurately using a simple correlation value analysis.
This is because of our empirical observation that the time-
series pattern of traffic tends to fluctuate periodically while
increasing monotonically unless an external factor, such as a
failure, occurs. Therefore, as shown in Table 1, our analysis
method adopts a simple method without model predictions.
Further details are provided in Section IV.

C. TRAFFIC GENERATION
Our analysis was conducted using the traffic generator
described in the appendix. This section introduces the
research trends in traffic generators. Numerous traffic
generators have been implemented previously [31]. They are
classified as replayers and narrowly defined generators, and
this section introduces the major generators.

Traffic replayers generate traffic in packet units [32], [33].
TCPivo [32] aims to replay packets accurately and quickly
by tracing cap data. Tcpreplay [33] enables packet rewriting
and editing and more advanced replay functions such as
netmaps [34].
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The most well-known traffic generators are iperf [35],
which can generate traffic at arbitrary throughputs, and D-
ITG [36], which can generate customized traffic with various
patterns and protocols. MoonGen [37] is a logic-scriptable
traffic generator, and Swing [38] is a tracing-based traffic
generator that generates more realistic traffic behavior by
tracing logs. Recently, NeCSTGen [39] was proposed to
simulate the unpredictable behavior of various types of
communication traffic using deep learning.

Many traffic generators have been developed for analyzing
microscopic behavior at the packet or flow level. However, for
the analysis of time-series data, which are more macroscopic
and wide-ranging, we should implement a traffic generator
that satisfies these requirements. Please refer to the appendix
for further details.

III. PRELIMINARIES AND PROBLEM STATEMENT
A. OVERVIEW OF FAST XFLOW PROXY
As previously discussed, in large-scale wide-area IP net-
works, a user’s packet headers are encapsulated by additional
headers, such as the L2TP header or SR-MPLS labels
assigned by the communication carriers. Therefore, as shown
in Fig. 1(a), flow measurement protocols such as NetFlow
or IPFIX collect statistics for these outer headers. Because
the outer-header information consists of the IP addresses of
the internal devices of the carrier network, the behaviors of
individual user applications are difficult to observe.

FIGURE 1. Traffic measurement using fast xFlow proxy.

In contrast, our proposed Fast xFlow Proxy enables the
observation of flows with arbitrary granularity in large, wide-
area IP networks. An example of a measurement using the
Fast xFlow Proxy is illustrated in Fig. 1(b). A Fast xFlow
Proxy was deployed between an IP router and commercial
flow collectors [40]. If the user has given permission for
detailed monitoring of their traffic, the Fast xFlow Proxy
can be configured to remove outer IP headers in advance.
After the Fast xFlow Proxy receives the flows, it forwards
the inner header information to flow collectors. The flow
collector performs statistical processing based on the inner
header information observed by the IP router. The Fast xFlow

Proxy is implemented using FPGA NICs [41], can be scaled
out, and can process large volumes of flow information, up to
100 Gbps, in real time.

B. PROBLEM STATEMENT
Because IP traffic in large IP networks is observed as
macroinformation on which various services are superim-
posed, accurate detection of anomalies from observation
results has traditionally been difficult. However, as men-
tioned, the Fast xFlow Proxy can explore inside IP traffic
and enable the observation of flows with arbitrary granularity,
even in large-scale networks.

Therefore, the objective of this study is to establish a
method for anomaly detection using a traffic measurement
approach under the assumption that the Fast xFlow Proxy
can observe communication traffic with arbitrary granularity.
In addition, through evaluations, we clarify the guidelines for
the appropriate granularity of flow observation for certain use
cases.

IV. NETWORK ANOMALY DETECTION METHODS
A. NETWORK MODEL WITH FAST XFLOW PROXY
Fig. 2 presents an overview of the network anomaly-detection
environment. The network is assumed to be a large-scale,
wide-area IP network provided by a telecommunications
carrier. In a wide-area IP network, wireless and mobile
networks, such as 4G and 5G, and wired networks using
optical fibers are provided as access networks for users.
Traffic passing through these access networks flows into
the core network through edge routers at the boundaries.
The core network consists of multifunctional edge routers
and high-capacity core routers connected to each other
via optical devices such as reconfigurable optical add/drop
multiplexers (ROADM) or optical cross-connects (OXC).
Figure 3 illustrates the network topology model. A block
is defined for each region, and each block consists of
multiple edge routers and a core router. To establish
nationwide communication across Japan, multiple blocks
are defined, and a higher-level core router connects the
blocks. The network consists of thousands of edge routers
and hundreds of core routers. Flows are collected by the
xFlow protocol only from core routers or including edge
routers. In both cases, our Fast xFlow Proxy could collect
the flows practically [6]. Through the core network, users can
access various services, such as internet access or secure VPN
connections.

In the network model, we assume that communication
flows are observed at the edge routers using IPFIX. In this
case, the observed communication flows are encapsulated as
described above and can only be classified by geographic
location, for example, ‘‘flows to IP routers connected to
the Internet’’ or ‘‘flows to IP routers connected to VPNs.’’
Therefore, we first remove the outer IP headers of the flows
observed by IPFIX using the Fast xFlow Proxy and then send
the flow information to the analysis server at a later stage.
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FIGURE 2. Overview of our network anomaly detection environment.

FIGURE 3. Network topology model. Only Layer 3 routers are shown, and
each link consists of optical fibers and optical nodes such as OXC or
ROADM.

The analysis server analyzes the detailed behavior of the
traffic based on the 5-tuple of the inner IP header from the
Fast xFlow Proxy output results. The analysis server records
the communication flows as time-series data, representing
the time variation in the volume of each flow. The specific
anomaly-detection method on the analysis server is described
in the next subsection.

B. ANOMALY-DETECTION METHOD
Based on our knowledge of network operations, in large-
scale IP networks, even though the time-series pattern of
traffic tends to increase monotonically on an annual basis, its
daily variations tend to be periodic. Accordingly, we designed
a simple anomaly-detection method. The proposed method
detects the occurrence of an anomaly by calculating the
correlation value between the shape of the target flow to
be analyzed and its past shape. If no anomaly occurs, the
correlation value is high; if an anomaly occurs, the correlation
value is low because the correlation between the shapes is
low.

First, the analysis data for the target flow were prepared as
sequence X as follows:

X = (x1, x2, · · · , xn) ∈ Rn. (1)

Each element xi in sequence X represents the amount of
traffic per unit time. For example, if one data point is observed
every hour and the analysis is performed for 1 d, n is set to
24. Our method then produces sequence Y ,which is T weeks
before the target date X , as follows:

Y =

(
yT1 , yT2 , · · · , yTn

)
∈ Rn,T = 1, 2, · · · Tm. (2)

Our method computes the average Ȳ of multiple observa-
tions to suppress the effect of the singularities of previous
observations.

Ȳ = (ȳ1, ȳ2, · · · , ȳn) ∈ Rn, (3)

where ȳl is as follows:

ȳl =
1
Tm

Tm∑
k=1

ykl . (4)

Because the dimensions of sequences X and Ȳ are the same,
the correlation value ρX ,Ȳ can be calculated using

ρX ,Ȳ =

1
n

∑n
t=1 (xt − x̄)(yt − ȳ)

σx · σy
, (5)

where x̄ and ȳ are the means of X and Ȳ , respectively, and
σx and σy are their standard deviations, respectively. ρX ,Ȳ is
a standardized value that is close to +1 when two sequences
are correlated and close to zero when they are not correlated.
If ρX ,Ȳ falls below a predetermined threshold value, our
method determines that an anomaly has occurred.
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FIGURE 4. Quasi-real-time anomaly detection using sliding windows.
X
(
t
)
, Y

(
t
)
, Ȳ(t) is based on (1), (2), (3) respectively.

Although our proposed anomaly-detection method
requires sequences X and Ȳ , it can also be applied to quasi-
real-time anomaly detection by employing a sliding-window
mechanism. As shown in Fig. 4, sequences X (tr ) and Ȳ (tr )
are created using the abovementioned equations based on
the latest traffic observation time tr , and then ρX (tr ),Ȳ (tr )
is computed. Next, sequences X (tr + 1t) and Ȳ (tr + 1t)
are created at time tr + 1t after the observation time 1t
has passed, and the correlation values ρX (tr+1t),Ȳ (tr+1t) are
computed. Thus, the correlation value is computed while
sliding the window, which is the period to be analyzed, as the
observation results are added. This enables quasi-real-time
anomaly detection.

C. METHOD FOR DETERMINING THE THRESHOLD VALUE
In this section, we describe how the threshold value for
determining an anomaly is evaluated, not only as a fixed
value but also as a dynamically changing value. The dynamic
threshold Th is given by the following equation:

Th = (1 − α · SR) · ρmean, (6)

where α is a scale factor, and ρmean is the average of the
correlation values between normal periods.

Let SR represent the sampling rate obtained by the First
xFlow Proxy: If Fo is the rate of the observed flow and Fe
is the rate of the evented flow, where an external event such
as failure is occurring, then SR is defined by the following
equation:

SR = Fe/Fo. (7)

For example, when SR = 1, the observed flow rate is equal
to the flow rate of the external event occurrence, indicating
that the flow for important users is monitored intensively
using the Fast xFlow Proxy. Conversely, as the SR value
decreases, it indicates a state in which multiple flows of
the masses are efficiently monitored. When SR is close to
one, Th becomes smaller, and when it is close to zero, Th
increases. Our goal is to improve the anomaly-detection rate
by adaptively changing Th within a range not exceeding
ρmean, in accordance with the monitoring granularity SR.

V. PERFORMANCE EVALUATION
A. AIMS AND CONDITIONS
We evaluated our method by computer simulations to clarify
whether it could detect anomalies, even in an environment
where packets are encapsulated. In addition, we analyzed
its applicability to two anormal traffic fluctuation scenarios.
The first is a decrease in traffic due to service failures on
the Internet. The second is an increase in traffic due to
bandwidth-consuming security attacks such as DDoS attacks.

The traffic was generated as a one-month time series from
April 1, 2022, to April 30, 2022, using our traffic generator
described in the Appendix. Time-series data were generated
by superimposing 10 different communication flows with
approximately the same traffic rate. In the simulation,
an external event was intentionally generated on one service
on a specific date and time that reduced the traffic rate to zero
owing to a failure between 1 and 5 h (Tuesday, April 26) and
increased the traffic rate between 10% and 100% owing to a
security attack between 1 and 5 h (Monday, April 25).

FIGURE 5. Example of generated flows. April 16, 2022 ((a) and (c))
represents normal conditions and April 26, 2022 ((b) and (d)) represents
the date of the disruption. SR means the sampling rate. Noise ratio is set
as 0.1.

Fig. 5 shows an example of the generated traffic.
Fig. 5(a) and 5(b) show the daily traffic variation for the
normal and 1-hour failure cases observed with SR = 1/1,
whereas Fig. 5(c) and 5(d) show the traffic variation for the
normal and 1-hour failure cases observed with SR = 1/10.
In the case of SR = 1/1, shown in Fig. 5(b), the decrease
in traffic is evident, whereas in the case of SR = 1/10 in
Fig. 5(d), the anomaly is difficult to detect because it occurs
only in a portion of the observed traffic. Using this time-
series traffic data as input, the correlation was computed as
an evaluation index using (5) in Section IV-B.

B. RESULTS FOR FAILURE EVENTS
Fig. 6 shows the correlation between the date of the failure
event (Tuesday, April 26) and the average value on the
same day of the week (Tuesday) for the previous three
weeks. The X-axis represents the failure time, and the Y-axis
represents the SR, which varies from 1/1 to 1/10. Darker-
colored areas on the heat map indicate that the correlation
values decreased significantly. Additionally, Figs. 6(a)–(c)
indicate that random values were added as noise components
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FIGURE 6. Correlation values when the sampling rate (SR) is changed at the failure event. Darker colored areas on the heat map indicate a
significant decrease in correlation values. The correlation value was computed using (5).

FIGURE 7. Correlation values when the sampling rate (SR) is changed at the traffic increase event. Darker colored areas on the heat map indicate a
significant decrease in correlation values. The correlation value was computed using (5).

at the rates of 1%, 5%, and 30%, respectively. This assumes
that the shape of the communication flow is periodic but
fluctuates periodically, and the fluctuations are small and
irregular.

First, we focus on Fig. 6(a), which shows almost no noise
components. As the SR value increases, the correlation value
decreases. Increasing the SR value means that the failed
flow is monitoredmore intensively, enabling easier numerical
identification of external events such as service failures.
However, even if the SR is not set as high as 1/1, a decrease in
the correlation value can be visually confirmed in the range
of 1/3 to 1/4. In addition, the correlation decreased as the
failure time increased, even when the SR value was as low
as 1/10. In other words, although the detection of failures is
easy if the SR is set to a high value, anomalies can be detected
even with a smaller SR, depending on the threshold value of
the correlation. This also indicates that monitoring a single
service intensively is not necessary and that multiple services
can be efficiently monitored.

Next, we focus on the cases in Fig. 6(b) and (c), where
the noise component is large. In the presence of a certain
amount of noise, the correlation values tended to decrease as
the SR value increased, independent of the effect of failure.
For example, in the case of zero failure time and SR =

1/1, the correlation value for 10% noise was 0.9771 and
that for 30% noise was 0.7389, indicating a decrease. This
is because the number of observed flows decreased as the
SR value increased, which increased the correlation value’s

susceptibility to noise components. In the case of a low
SR, for example, the correlation value was 0.9829 when
the failure time was zero, SR was 0.1, and noise was
30%, whereas the correlation value was 0.9573 when the
failure time was 1 h under the same conditions. In other
words, although the correlation value analysis was affected
by the noise component, it tended to decrease as the failure
time increased. Therefore, an anomaly can be detected
by determining whether the correlation value decreases,
compared to the normal condition.

C. RESULTS FOR TRAFFIC INCREASE EVENTS
Fig. 7 shows the correlation values between the date of the
traffic increase event (Monday, April 25) and the average
values for the same day of the week (Monday) for the
previous three weeks. The X-axis shows the time of traffic
increase, and the Y-axis shows the SR, which varies from
1/1 to 1/10. As in Fig. 6, the darker colors on the heatmap
indicate that the correlation values decreased significantly.
In addition, Fig. 7(a)–(c) indicate that traffic increased by
10%, 50%, and 100%, respectively. For example, a 100%
increase in Fig. 7(c) indicates that the original traffic volume
has doubled.

In contrast to Fig. 6, in the case of increased traffic, the
correlation value does not decrease as much as it does in
the case of failure. For example, in the case of a 10% traffic
increase in Fig. 7(a), the decrease in the correlation values
cannot be visually read from the heatmap. However, this
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case is not without a trend either. For example, in the top
row of the heatmap in Fig. 7(a), where the SR value is 1/1,
the correlation value gradually decreases as the traffic time
increases.

Next, in the case of 50% traffic in Fig. 7(b), the correlation
value decreases significantly if the SR value is not less than
1/3 and the time increase is not less than 2 h. This trend
is more pronounced in Fig. 7(c). In the case of a 100%
increase in traffic, as shown in Fig. 7(c), the correlation value
tended to decrease not only when the SR value was large
but also when the SR value was 1/10. Although the decrease
in the correlation value is evident when the SR is large, the
correlation value tends to decrease even when the SR is as
low as 1/10, as shown in the bottom row of the heatmap in
Fig. 7(c).

TABLE 2. Analysis of anomaly detection based on accuracy indicators
with moderate threshold (Th = 0.999).

TABLE 3. Analysis of anomaly detection based on accuracy indicators
with sensitive threshold (Th = 0.9999).

D. RESULTS FOR THRESHOLD CONFIGURATION
Tables 2, 3, and 4 present the accuracy, precision, recall, and
specificity for each condition when the threshold value for
judging anomaly detection was changed. Each metric was
defined using true positive (TP), true negative (TN), false
positive (FP), and false negative (FN) as follows. Accuracy is
the ratio of correct predictions to all predictions, formulated
as (TP + TN)/(TP + TN + FP + FN). Precision is the
ratio of outcomes predicted to be positive to those that are
actually positive and is formulated as TP/(TP + FP). Recall
is the ratio of outcomes that are positive to those that could
be correctly predicted to be positive, formulated as TP/(TP
+FN). Specificity is the ratio of outcomes predicted to be
negative to those that are negative and is formulated as
TN/(TN +FP).

In this evaluation, a positive value indicates that failures
or traffic increases have occurred, whereas a negative value

TABLE 4. Analysis of anomaly detection based on accuracy indicators
with dynamic threshold. α is set to 0.01. The dynamic thresholds are
calculated based on (6).

indicates that no traffic fluctuations have occurred. For
evaluating the effect of noise, ten different data sets were
prepared and measured under each of the conditions in
Figs. 6 and 7. In the evaluation results that follow, the fixed
thresholds (0.999 or 0.9999) are heuristically determined
from the results of Figs. 6 and 7. The dynamic thresholds are
calculated based on (6) defined in Section IV-C.

Table 2 shows the results for relatively loose and moderate
threshold settings. Failures with small noise (e.g., 1%) and
traffic increases with large changes (e.g., IR= 50% or 100%)
can be detected with good accuracy. However, accuracy is
low when noise is high or traffic changes are small. In the
former case with high noise, the specificity is zero because all
normal states are regarded as false positives, whereas in the
latter case with low traffic fluctuation, many false negatives
occur, except in areas with high SR, resulting in a small recall.

Table 3 lists the results for the strict and sensitive
thresholds. Although the accuracy of the cases with low
traffic change is higher (71%) than that in Table 2 (58%), the
accuracy decreased for the cases with higher traffic increases
(IR = 50% or 100%) and noise = 1%, which are areas with
high accuracy in Table 2. These are the results of judging
false positive predictions that could have been judged as true
negatives owing to the strict threshold value. Moreover, the
specificity cannot be increased when the noise is high (10%–
30%); in other words, false-positive judgments cannot be
suppressed.

Table 4 shows the results of the proposed dynamic
threshold. While our proposed method inherits the good
characteristics of the moderated threshold (0.999), excelling
in the case of low noise (1%) and large traffic fluctuations,
it can also achieve a high accuracy of 97% for low traffic
fluctuations and a relatively high accuracy (79%–90%) even
under high noise conditions. However, in the case of high
noise, the value of ρmean, which is used as the reference,
varies. This causes a false-positive misjudgment of the
normal state as an anomaly. Consequently, the accuracy
(specificity) tended to decrease. However, a relatively high
accuracy of over 79% can be achieved even in a noisy
environment (30%), and our observations suggest that this
noise is approximately the maximum.

In summary, the data under analysis had the characteristic
of decreasing correlation values with a slope corresponding to
the SR, and a dynamic threshold value using (6) could follow
the characteristic well. The evaluation results showed that,
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TABLE 5. Difference of metrics between no-changed condition and changed condition. At 0%, there is no difference and therefore no anomaly detection
is possible; as the percentage approaches 100%, detection becomes easier. The noise ratio is 0.010 and failure time is 5 h. Correlation is computed using
(5), Cosine Similarity and FFT-based Similarity are computed using (8), and SBD Similarity are computed using (9).

even with a fixed threshold value, the overall accuracy was
relatively good. This is because the analysis was performed
at high resolution based on our Fast xFlow Proxy. In other
words, an SR of 1/10, which is treated as a low resolution
in this evaluation, is also a high resolution in the real world,
and we believe that such good accuracy can only be achieved
using the Fast xFlow Proxy.

E. COMPARISON WITH EXISTING METHODS
Finally, the effectiveness of the proposed method over
existing methods is discussed based on Table 5. In Table 5,
in addition to the previously mentioned correlation values,
we use cosine similarity [42], Fourier Transform-based
similarity [23], [24] and k-shape similarity [26] as evaluation
metrics, both with and without our Fast xFlow Proxy
implementation. The cosine similarity is given by the
following equation using sequence X and Ȳ defined in
section IV-B.

SCos
X ,Ȳ

=

∑n
t=1 xt · yt√∑n

t=1 x
2
t

√∑n
t=1 y

2
t

. (8)

The similarity by the shape-based distance (SBD) based on
the k-shape method is calculated as follows:

SSBD
X ,Ȳ

= 1 −

∑
(i,j)∈PDij

max
(∣∣x ′

t
∣∣ , ∣∣y′t ∣∣) , (9)

where x ′
t and y′t represent the elements of Z-normalised

sequence X and Ȳ , respectively. Dij is the distance
matrix by their Euclidean distance. P is the optimal pair
with the minimum distance calculated by the Hungarian
algorithm. In FFT-based similarity, the cosine similarity
was calculated after transforming the data into frequency
components using the FFT and removing the small noise
components.

To compare these different metrics, the difference between
the metric value when no change occurred and the metric
value when the change occurred was calculated. For example,
in SBD similarity, when the sequence in no-changed con-
ditions is given as X1 and Ȳ1 and the sequence in changed
conditions is given as X2 and Ȳ2, the difference is simply

computed as follows:

Diff = |SSVD
X1,Ȳ1

− SSVD
X2,Ȳ2

|. (10)

In other words, at 0%, there is no difference and therefore no
anomaly detection is possible; as the percentage approaches
100%, detection becomes easier.

The most important result in Table 5 is that without
our Fast xFlow Proxy implementation, no clear change can
be detected using any analysis method owing to the low
resolution of the observations. The results also suggest that
the Fast xFlow Proxy may also be applicable to SBD while
it has low applicability to Cosine Similarity or FFT-based
algorithms. In this study, we adopted a correlation analysis
as a simple and effective approach, but in future work,
we would also like to analyze the applicability of different
algorithms.

VI. CONCLUSION
In this study, we propose a network anomaly-detection
method for large-scale wide-area IP networks using a
powerful system called the Fast xFlow Proxy, which can
measure IP traffic at a fine-grained resolution. The anomaly-
detection method is based on an analysis of correlation
values with past time-series patterns because the time-series
patterns of individual flows tend to fluctuate periodically.
In conclusion, the higher the resolution of the measurement
using the Fast xFlow Proxy, the lower the correlation
value. This facilitates anomaly detection. Although anomaly
detection tends to be difficult under large noise or small traffic
changes, its accuracy can be improved using the dynamic
thresholding method.

Finally, we discuss the limitations of this study and
its future directions. The first issue concerns the analysis
methods: although this is the first study to utilize the Fast
xFlow Proxy, the basic strategy is limited to a simple
correlation analysis. As discussed in Section V-E, therefore,
we will analyze the applicability of different algorithms such
as SBD. Second issue is that the proposed method can detect
the occurrence of failures, but not their location. In this study,
we focus on service failures on the Internet. However, failures
can be occurred not only on the Internet but also in the core
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network or user-side equipment, such as campus networks,
access networks, and base station areas. In future work,
we will extend the anomaly-detection method to detect both
the occurrence and location of failures. The key concept is the
spatial analysis of multiple flows. This implies that multiple
flows are monitored, and their correlation is analyzed to
identify the fault location. The third issue is that this study
did not use actual traffic, but used pseudo-traffic generated
by our traffic generator, as shown in appendix A. Because the
effectiveness of the proposed method has been demonstrated
in this study, in future works, we will implement the proposed
system and demonstrate its feasibility for anomaly detection
in actual traffic.

APPENDIX
Although communication flows can be measured using flow
measurement protocols such as NetFlow and IPFIX, they
cannot be flexibly used because they must be managed
in a manner that keeps personal information confidential.
Therefore, we implemented a time-series traffic generator
that generates periodic traffic patterns and simulates various
external events.

The generator produces communication flows superim-
posed on a specific communication path as time-series
data. Communication flow is defined between a region as
the origin and a service as the destination. Regions and
services have specific attributes. The region identifier, name,
number of users, connected services, service utilization rate
(service_rate), and status of the region can be defined. For
a service, the service identifier, name, traffic model, related
parameters, base rate (base_rate), and status of the service can
be defined. For region i and service j, the communication flow
F(i, j) between (i, j) is defined by

F (i, j) = user(i) × service_rate(i) × base_rate(j). (11)

For example, if a time-series traffic model of daily variation
is given as a simple sine curve, the flow occurring at time t
between (i, j) is defined by the following equation:

F (i, j, t) =
F (i, j)

2
sin (ωt + φ0) + F0. (12)

For representing the 24-hour daily variation, the frequency
ω is set to π/12, initial phase φ0 is set to 2.8, and offset F0
is set to F(i, j)/2. In addition to a sine curve, traffic models
can be defined arbitrarily. In this study, we implemented a
night peak model, which has a peak at around 10:00 p.m.,
similar to video distribution, and a day peak model, which
has a peak during the daytime, similar to web conferencing.
These models can be developed using approximate equations,
for example, by performing polynomial fitting to the data
obtained from actual measurements. An example of the night-
peak model is shown in Fig. 5.
Because multiple flows are superimposed on a communi-

cation path, the flowFo(t) observed at time t in the IP router is
given by the following equation, where the region and service

sets are represented by R and S, respectively:

Fo (t) =

∑
i∈R,j∈S

F (i, j, t). (13)

Using (13), Fo, which is the result of traffic observations over
a set period, is generated. This generator can change the state
of arbitrary regions and services or increase traffic between
them over an arbitrary period of time. By generating these
external events, the evented flow Fe can be defined.
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