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ABSTRACT With the development of computer vision technology, the demand for accurate recognition of
stereoscopic image quality in the market is increasing. Accurate recognition of stereoscopic image quality
is of great significance for providing high-value intelligent image services, which is also the motivation
for this study. Accurately recognizing the quality of stereoscopic images is of great significance for image
analysis and computer vision applications. In fields such as autonomous driving, medical image analysis,
and industrial detection, accurate stereo image quality can provide reliable input for algorithms and improve
the accuracy of analysis and recognition. The field or issue of this study is image quality evaluation, which
aims to find higher performance stereoscopic image quality evaluation methods. Therefore, this study draws
inspiration from the idea of ensemble learning and designs two Convolutional Neural Network (CNN)
stereoscopic image quality evaluation methods based on the semantic features of stereoscopic images and
the local detail perception module, and fuses them to form a mixed evaluation model. This study aims to
solve the problem of image quality assessment, which is to accurately identify the quality of stereoscopic
images and provide high-value intelligent image services. With the continuous development of computer
vision technology, the demand for accurate recognition of stereoscopic image quality is increasing, which
is also the motivation of this study. This study drew inspiration from the idea of ensemble learning and
designed two hybrid evaluation models based on stereo image semantic features and local detail perception
modules. Convolutional Neural Network (CNN) was used to achieve stereo image quality evaluation. This is
one of the main contributions of this article. In order to evaluate the performance of the designed model, the
LIVE 3D Phase I dataset was used for testing experiments. The expected results show that when the number
of test samples is 500, the overall measurement values of the Spearman rank ordered correlation coefficient
(SROCC) and Pearson linear correlation coefficient (PLCC) of the designed ICNN1 and ICNN2 stereo image
quality evaluation models are 0.940, 0.949, and 0.940, 0.949, respectively. These results are significantly
higher than the selected contrastive deep learning models and machine learning models. In addition, the
designed model has relatively low computational time but high computational memory consumption, which
is one of the main gaps compared to other studies. In summary, the model designed in this study has great
application potential in improving the accuracy of stereo image quality recognition, and is particularly
suitable for the Chinese visual design industry. Future research can further explore the market-oriented
application of this recognition model.

INDEX TERMS Stereoscopic images, visual communication design, evaluation model, convolutional neural
network.

I. INTRODUCTION
Stereoscopic images (SIs) refer to the use of special
techniques to convert two-dimensional (2D) images into
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three-dimensional images, which can enhance the realism and
impression of images, and have a significant impact on visual
communication design. This is also the motivation behind
this study [1], [2]. Three-dimensional (3D) images have been
widely used in advertising design, product packaging, poster
promotion, film and television production, and other fields.
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However, in the process of production and use, image quality
issues have become one of the important factors restricting its
development.

Because the quality of SIs is the most crucial aspect in
SI design, it also directly affects the presentation effect of
SIs and the visual perception of the audience. Therefore, the
evaluation method of SI quality has become a highly valuable
research direction.

Currently, subjective evaluation-based methods are widely
used in the study of SI quality. However, due to the signifi-
cant individual differences in human beings and the reliance
on subjective opinions in evaluation results, the subjective
rationality of subjective evaluation results is difficult to guar-
antee, and it is very cumbersome and time-consuming to use.
Therefore, it is very important and urgent to study a SI quality
evaluation method based on objective evaluation, which is
also the gap between previous research and this study [4],
[5]. Although objective evaluation methods are standardized
and scientific, they often overlook the characteristics and
requirements of SIs in visual communication design.

Designing a more suitable method for evaluating the qual-
ity of SIs is an urgent problem to be solved in the design
field. SI quality evaluation, as an emerging research field,
has been rarely involved in industry related research, and
only some insights from similar fields can be referenced. For
example, currently in the field of advertising design, more
attention is paid to the quality evaluation methods of 2D
images, while in the field of 3D modeling, 3D models are
evaluated by measuring geometric attributes, surface quality,
and observing objects from different perspectives.

These methods have different applicability in different
fields, but they cannot effectively solve the practical problem
of SI quality evaluation. Based on the above considera-
tions, this study draws on the ideas of convolutional neural
networks, stereo image semantic features and local detail per-
ception modules, with a view to using convolutional neural
networks (CNN) to realize a stereo image quality evaluation
system to explore the relationship between visual perception
and image features, and effectively improve the image quality
of stereo images. In order to meet the game, film, advertising
and other fields of stereo image quality requirements. This
is the main contribution of this paper. This research has
important practical significance for improving the effective-
ness of stereo image design and promoting the application
of stereo image widely. This study has important practical
significance for improving the effectiveness of SI design and
widely promoting the application of Sls.

Il. RELATED WORKS

Image quality evaluation has been a popular field of image
computer processing in recent years, attracting a large num-
ber of scholars’ attention. Relevant research by industry
experts and scholars is shown in Table 1. Table 1 shows the
numbering of references in this study, a summary of the main
content, and an analysis of the advantages and disadvantages
of the design methods for each reference.
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TABLE 1. Summary of relevant research.

Reference | Summary Advantages and
number disadvantages
[6] They designed seven | The evaluation
image evaluation | algorithm of fusion
models based on | filtering
commonly used | backprojection
algorithms and | technology has the
calculation rules closest  evaluation
quality to manual
evaluation labels
[7] Design  an image | The evaluation
quality evaluation | accuracy of neonatal
model based on | brain images using
improved CNN | this model is higher
algorithm than that of

traditional models

(8]

An improved pulse

coupled neural
network is proposed.
In the calculation

process of this
network, the role of

This algorithm can
further improve the
accuracy of
underwater target
segmentation and
evaluation, and has

evaluation method
based on an improved
neural network
algorithm.

internal activity terms | certain adaptability
in convolution | to different
calculation is | optimization
considered, which | frameworks
can better utilize the
pixel information of
adjacent spaces on
sonar images.

[9] Design a pear image | It can greatly

improve the taste
recognition speed of
pears, and the
recognition accuracy
is high, but the
calculation speed is
slow

[10] A novel dual path | This model can
deep neural network | quickly and
has been designed to | accurately evaluate
measure the quality | the quality of sonar
of sonar images images

[11] Design an image | This method
quality evaluation | effectively improves
method based on | the evaluation
improved CNN | accuracy of
algorithm traditional

evaluation models,
and the
computational time
does not

significantly
increase

[12]

Design an evaluation
method based on
high-pass filter and
improved neural
network algorithm

The evaluation
accuracy of this
evaluation model has
increased by 14.9%
compared to the
basic algorithm
before improvement

In summary, although previous researchers have designed
a large number of improved automation models to improve
the image quality evaluation, there are still quite few models
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TABLE 1. (Continued.) Summary of relevant research.

[13] Design an improved | After processing
artificial neural | with this improved
network and select | model, the
signal-to-noise ratio | signal-to-noise ratio
and contrast-to-noise | of the image has
ratio as evaluation | significantly
indicators to conduct | decreased and is
SI denoising | lower than that of
experiments. the comparison

model, indicating
good denoising
performance. But the
model designed for
research has  the
drawbacks of slow
computation  speed
and slow training
speed

[14] A hybrid improved | This model has
CNN and attention | higher recognition
module model for | accuracy for breast
breast volume | volume ultrasound
ultrasound  imaging | imaging and
and magnetic | magnetic resonance
resonance  imaging | imaging quality than
quality  recognition | traditional CNN
was designed. models and common

image quality
recognition models,
and the calculation
results are more
stable.

specifically designed to deal with the problem of SI distor-
tion, and solving this problem is of great significance for
fields such as autonomous driving. This is the starting point
for conducting this study.

Ill. CNN SI QUALITY RECOGNITION MODEL FOR VC

A. CNN IMAGE QUALITY RECOGNITION MODEL BASED
ON SI SEMANTIC FEATURES

Now, the first step is to design a CNN image quality eval-
uation model based on SI semantic features, explore the
advantages and disadvantages of this model, and prepare for
future improvements. Neural network algorithms have pow-
erful nonlinear data fitting capabilities and are increasingly
being applied in the data processing, and this ability cannot
be improved without hidden layer neurons. The multi-layer
perceptron model is the basis of most current neural network
algorithms, and its typical computing structure is shown in
Figure 1.

Multi-layer perceptron, CNN, backfeed neural network
and their improved neural network all calculate the output
hy.p(x) of neurons in a similar way. The same is true for
the CNN image quality recognition model designed now,
as shown in Formula (1).

Iy b(x) = f (Z Wixi + b) (1)
i=1
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FIGURE 1. Typical computing model of multi-layer perceptron.

In Formula (1), W and b represent the weights and biases
of neurons, respectively; f(-) means the activation function
of the neuron, and x refers to the input data of the algorithm.

If zEl) is the sum of the bias term of the ith neuron in the / layer
(I+1)

and all input weighted values, then z; can be calculated

according to Formula (2).

n

I+1 l 1

g =S Wy + 2)
j=1

At the same time, the output value aEl) of the activation
function of the i th neuron in the / layer can be calculated
according to Formula (3).

a’ =1 (") 3)

The forward propagation of neural networks is completed
through Formulas (2) and (3). Then it selects the type of
activation function of the recognition model. There are two
types of commonly used neural network activation function,
and the sigmoid calculation method is shown in Formula (4).

1
z) = sigmoid(z) = ———— 4
1 @) = sigmoid() =y @)
The other type is the tanh function, as shown in
Formula (5).

Z_e—Z

e
f @ =tanh@ = ———— 5)

The function change images of the two functions are shown
in Figure 2. As shown in Figure 2, when the input value of the
tanh activation function is very large or very small, the output
value changes very little, which may cause the neural network
to converge in advance or slowly in the training, so it chooses
to use sigmoid as the activation function [15], [16].

It redesigns the back propagation in the quality identifi-
cation model. For a group of input samples (x, y), the loss
function value J(W, b) of the network can be calculated
according to the forward propagation rules. Therefore, the
partial derivative corresponding to the weight value and offset
term can be calculated according to the residuals of the output
layer. Then, the gradient descent method can be used to obtain
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FIGURE 2. Function Images of two typical neural network activation
functions.

the function for updating the network parameters, as shown

in Formulas (6) and (7).

aJ (W, b)
AWl (6)
In Formula (6), o denotes the learning rate during the

algorithm training. The expression for updating paranoid

items is shown in Formula (7).

wi=w!—q«

aJ (W, b) 7
o] (N
The commonly used pooling methods in CNN include
maximum pooling and average pooling, and their calculation
methods are shown in Figure 3. Since maximum pooling can
improve the performance of algorithm feature extraction, it is
used to construct the model.

b =b -«

Input data Pooled nucleus Output data
514,18
301129 E 9
2 |7 7
5| 4
(a) Maximum pooling
Input data Pooled nucleus Output data

21112109 5
o7 4
5| 4

(b) Average pooling

FIGURE 3. Common CNN pooling module calculation methods.

Most existing SI quality evaluation methods tend to seg-
ment the entire image into multiple small blocks without
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overlap for calculation. However, the evaluation results
obtained by this method cannot represent the entire image and
lack some accuracy. Therefore, based on the above content,
a CNN algorithm with multi-channel parallel input struc-
ture is now constructed, as shown in Figure 4. As shown
in Figure 4, this method can extract the overall semantic
features of the entire image, which is beneficial for improving
the evaluation quality of distorted images [17], [18]. This
algorithm is mainly divided into two parts, which are used for
monocular and binocular feature extraction fusion work [19].
When the input of the whole algorithm is a distorted SI, a dual
column parallel channel is used in the network to extract
semantic information from the left and right views. This
module can also simulate the process of image information of
human eyes imaging on the retina [20], [21], [22]. For each
column of network channel, it is also necessary to use parallel
networks to extract receptive field information. Only the size
of convolution kernel in each column structure is different.
In the binocular feature fusion module, the fully connected
layer is used to achieve the fusion convolutional layer for
feature extraction. In Figure 4, “MP”’ represents the maxi-
mum pooling module, the values marked on the convolutional
module represent the size of the convolutional kernel, and
“FC” represents the fully connected layer [23], [24].

9%9 7x7

-

7 5x5 545 MpS00

N = =>

9—»'

Sanordized L

left image Z7X5 3x3 343 P500

Ay 8

o
X
\O

A X7 747 P500 Evaluation score
/ —}@P@@ |:‘N\$H |:>
2?75% 5%5 500
v:—> "@"@’@ & 0>
StaYardized N
right image Z?XS 33 3x3 3 p300

_,@,@@:>H o>d O U

FIGURE 4. CNN with multi-channel parallel input structure.

In the study, Spearman Rank Ordered Correlation Coeffi-
cients (SROCC) and Pearson Linear Correlation Coefficients
(PLCC) were selected as the evaluation indicators for the
model’s performance in SI quality evaluation. The calculation
method for SROCC indicators is shown in Formula (8).

N
63 d}
SROCC =1— —=L
N(N2-1)

In Formula (8), N and d; respectively represent the differ-
ence between the output rank of the total number of samples
to be tested and the subjective evaluation rank of the ith

®)
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FIGURE 5. Improved CNN image quality recognition model based on hybrid local detail perception.

distorted image after objective quality evaluation ranking.
The calculation method of PLCC is shown in Formula (9).

N
Z(xi_)_C)(Yi_)_’)

i=1
N N
/ ; (xi — i)z\/ ; i —)?

In Formula (9), x; and y; respectively represent the objec-
tive quality evaluation value and subjective quality evaluation
value of the i distorted image. Finally, ReL U function is more
appropriate for the activation function in the study, and the
calculation method is shown in Formula (10).

f(zf) = max (O, Zwi * a,-) (10)

In Formula (10), > w; *a; indicates the visual layer
output.

PLCC = 9

B. CNN IMAGE QUALITY RECOGNITION MODEL BASED
ON HYBRID LOCAL DETAIL PERCEPTION

The disadvantage of CNN image quality evaluation model
based on SI semantic features is that if the training sample set
is small, the model’s ability to extract local distorted features
will also deteriorate. To address this drawback, the designed
model has been further improved. The overall structure of the
improved model is shown in Figure 5. The input image size
of the network in Figure 5 is all 32 x 32 size and normalized.
At the same time, as the distortion level of each region of the
image used for training the model in this study is generally
consistent, the subjective evaluation score of the entire image
can be used to represent the quality score of the image. And
the model is also constructed using a symmetrical structure,
which is used to extract feature information from left and right
views.

Moreover, the improved model has a total of ten layers,
among which the first five layers follow the classic CNN
structure components: the convolutional layer is repeated
with the pooling layer module, and a convolutional layer is
placed at the end.

At the same time, to preserve the detailed data of the input
image more clearly, the convolutional kernels are all based
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on 3 x 3 and a step size of 1 for parameter components. The
size of the pooling layer is uniformly 2 x 2 and the step size
is also 2. Then the seventh layer is designed as a fusion layer,
which is used to fuse the left and right view features, and
the remaining layers are all fully connected layers. To match
the research purpose, only one neuron is retained in the last
layer, with the aim of outputting objective quality prediction
values of the image. The specific structure of each layer of
this neural network is shown in Table 2. Due to table format
limitations, Table 2 does not display the complete structure of
the neural network. In fact, a fully connected layer consisting
of 1000 neurons, 300 neurons, and one neuron is connected
sequentially.

In the SI quality model, the image saliency detection step
also needs to exist. This module is constructed by imitating
the attention mechanism in the human visual system. The
role of image saliency detection is to make the algorithm
pay more attention to designated or predetermined regions
with certain rules. It is of great significance for tasks such
as image segmentation, object detection, and image quality
evaluation. The mature visual attention mechanisms currently
validated by the market are mainly divided into stimulus
driven bottom-up types and task driven top-down types.

The bottom-up visual attention mechanism driven by stim-
uli specifically refers to the way in which image processing
attention regions are guided by the characteristics of the
image itself, such as color and brightness. For example,
in images with a gray background, the black region can be
considered a prominent region. The task driven top-down
type of visual attention mechanism refers to the way in which
the focus area is influenced by set rules, such as the require-
ment to locate the vehicle position in the image. Under this
rule, the vehicle in the image is considered the area that the
attention mechanism should focus on. This study adopts a
bottom-up type of visual attention mechanism, and below
is the design of a visual attention mechanism for SI quality
evaluation.

The first step of image saliency testing based on visual
attention mechanism is to analyze the pixel value differences
in the input image using a locally known kernel function,
with the aim of obtaining local structural information of

134159



IEEE Access

X. Han et al.: Stereoscopic Image Quality Evaluation Method for Visual Communication Design

TABLE 2. Structural parameters of improved CNN image quality recognition model based on mixed local detail perception.

LeftViewInputData RightViewInputData
LayerNumber Parametersand Types LayerNumber ParametersandTypes
Convl 323x3convolutionkernel Convl 503x3convolutionkernel
Poolingl twoxMaximumpoolingof2 Poolingl twoxMaximumpoolingof2
Conv2 643x3convolutionkernel Conv2 643x3convolutionkernel
Pooling2 twoxMaximumpoolingof2 Pooling2 twoxMaximumpoolingof2
Conv3 643x3convolutionkernel Conv3 643x3convolutionkernel
FC1 800neurons FC1 800neurons

the image and the size and shape of the kernel. The locally
known kernel function K (x; — x;) is calculated according to
Formula (11).

K (xi—x) =

V/det(C)) oxn | 01— )T Cr(y — xi)
0 P o2

(1)

In Formula (11), / is the pixels in the image, and [ =
1,..., P? (P? is the number of pixels in the local window);
C; is the covariance matrix composed of pixel gradient vec-
tors; x; = [xq, xz]T indicates the spatial coordinate, and
x; = [x1,x]7 means the global smoothing parameter in
significance testing. The second step is to normalize the local
control kernel function in the first step and compare the
similarity of feature matrices between pixels and neighboring
pixels. The next step is to calculate the significance value S; of
the corresponding point based on the similarity of the feature
matrix obtained in the previous step. The calculation method
is shown in Formula (12).

1
Si= (12)

N —1+p(Fi,F))
2 exp(%)

F; and F; represent the feature matrices of the current
pixel i and adjacent pixel j, respectively; p is a function that
calculates the cosine similarity of a matrix. After calculating
the salient values of each point in the image, a salient map
of the image can be drawn for subsequent training purposes.
So far, it has been possible to obtain objective quality eval-
uation prediction values from both local detail information
and overall semantic information perception, but the final
evaluation value needs to consider both aspects at the same
time, and all need to combine the test results of both.

Now it chooses to combine the data obtained from the sig-
nificance test with the CNN model data. Because the saliency
map output from the image saliency test can reflect the degree
of interest of the set rules in each region of the image, it can
also be considered that the proportion of saliency regions
can reflect the total proportion of information that is con-
cerned. The higher this proportion, the more information the
algorithm can obtain from it during the calculation process.
The quality evaluation results calculated in this region also
have a greater impact on the overall image quality evaluation.
Based on this judgment, it is necessary to combine the overall
and local quality evaluation results in a weighted manner, and
the calculation method is shown in Formula (13).

QZPng+(1_Ps)Ql (13)

134160

In Formula (13), Q denotes the final quality evaluation
value; O, and Q; respectively refer to the overall quality eval-
uation score and local quality evaluation score of the image,
and P; represents the proportion of significant areas in the SI
to the overall image, calculated according to Formula (14).

Py=— (14)

In Formula (14), D means the total area of the area in
the image where the pixel saliency value is greater than the
average saliency value of the overall image, and S repre-
sents the area of the overall image, calculated according to
Formula (15).

1 .
S=0®) =1 Zz(mes SG, j) (15)

In Formula (15), S(i, j) indicates the significant value of
(i, j) pixel positions on the image, and M denotes the total
number of pixels in the image. At this point, the CNN SI
quality recognition model for VC has been designed.

IV. PERFORMANCE TESTING OF IMAGE QUALITY
EVALUATION MODEL

A. EXPERIMENTAL PLAN DESIGN AND TRAINING
PROCESS ANALYSIS

For the purpose of verifying the performance of the two SI
quality evaluation models proposed in this study, a distortion
image evaluation experiment based on the LIVE 3D Phase
I dataset has been designed. The dataset was divided into a
training set and a testing set in a 7:3 ratio.

There were five types of image distortion on this dataset,
including WN, JPEG, JP2K, BLUR, and FF. SROCC and
PLCC were selected as the criteria for evaluating the quality
of the model. To compare the performance of the SI qual-
ity evaluation model designed in this study, classic Faster
RCNN, GoogleNet structures, as well as XGBoost and Sup-
port Vector Machine (SVM) algorithms in machine learning
were selected to construct a comparative evaluation model.
The initialization mode of neuron parameters of each neural
network algorithm was completely consistent. The learning
rate, iteration times, and hyperparameter of a single batch of
training sizes were determined through multiple experimental
runs.

First, in needs to compare the changes of the loss func-
tion values of each comparison model during the training in
Figure 6. Because there were many comparison models in
Figure 6, the data that were divided into deep learning model
and machine learning model according to the algorithm type
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of building models were stored in sub graphs (a) and (b)
respectively. The horizontal axis of the two sub graphs repre-
sents the number of iterations, the vertical axis represents the
value of the loss function, and different line styles represent
different algorithm models.

It notes that ICNN1 and ICNN?2 in Figure 6 represent the
CNN image quality recognition model based on SI semantic
features and the CNN image quality recognition model mixed
with local detail perception designed in this study. From the
analysis of Figure 6, at the beginning of training, the loss
function of each algorithm model showed a trend of rapid
decline. When the number of iterations reached 20, the loss
function value of each model declined slowly, and then the
loss function value of each model stabilized near a certain
value. On the whole, the convergence speed of ICNN1 and
ICNN2 models designed in this study was not much different
from that of the comparison model, but the loss function
after convergence was significantly lower than that of other
models, which were 7.62 and 4.85 respectively.

It is the reanalysis of the changes in the SROCC and PLCC
total measure of each algorithm during the training. The sta-
tistical results of the SROCC total measure data are shown in
Figure 7. The same comparative model was divided into deep
learning models and machine learning models based on the
algorithm type used to construct the model. The data of both
models were stored in subgraphs (a) and (b), respectively.

The horizontal axis of the two subgraphs represents the
number of iterations, the vertical axis represents the SROCC
total measure, and different line styles represent different
algorithm models. Analyzing Figure 7, the overall SROCC
of each algorithm still exhibited a pattern of rapid growth
first, followed by a slowdown in growth rate, and fluctuat-
ing repeatedly around a certain value. And the convergence
speed of the SROCC total measure numerical values of each
algorithm was basically consistent with that in Figure 6.

Faster RCNN, GoogLeNet and XGBoost three models in
machine learning had the fastest convergence speed, and the
convergence was completed when the number of iterations
reached about 20, 28 and 21 respectively. The ICNNI1 and
ICNN2 models designed in this study had a slow conver-
gence speed, and the training was completed in the 52nd
and 46th iterations respectively, which was related to the
network hierarchy and internal calculation steps of ICNN1
and ICNN2 models. From the training effectiveness, when
the number of iterations was 100, all models had completed
training. At this time, the total SROCC measurement data of
ICNN1, ICNN2, Faster RCNN, GoogLeNet, XGBoost, and
SVM models were 0.925, 0.938, 0.910, 0.873, 0.907, and
0.826, respectively. By analyzing Figure 7 (b), the recognition
and evaluation quality of the two more traditional machine
learning algorithm models was worse than that of all neural
network algorithms.

The statistical results of the PLCC total measure data
for each algorithm during the training process are shown
in Figure 8. The horizontal axis, subgraph, and line styles
in Figure 8 were consistent with those in Figure 7, but the
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FIGURE 6. Changes in loss function values of various neural network
algorithms during training.

vertical axis had different meanings, representing the PLCC
total measure values of each algorithm during the training.
By analyzing Figure 8, the changes in the total PLCC measure
of each model during the training were generally consistent
with the changes in the total SROCC measure.

These graphs exhibited a pattern of rapid growth followed
by a slowdown in growth rate, and fluctuating repeatedly
around a certain value. However, the difference was that the
PLCC total measure data of each model after training was
slightly higher than the SROCC total measure data under the
same conditions. For example, when the number of iterations
reached 100, the PLCC total measure data of ICNNI1 and
ICNN2 models were 0.936 and 0.957, respectively, which
were 0.011 and 0.019 higher than the SROCC total measure.
Similarly, by analyzing Figure 8 (b), the PLCC recognition
evaluation quality of the two more traditional machine learn-
ing algorithm models was still worse than that of all neural
network algorithms.

B. ANALYSIS OF TEST SET CALCULATION RESULTS FOR
THE MODEL

After the training was completed, the SROCC measurement
values of each algorithm on the test set would be analyzed
again. The statistical results are shown in Table 3. The total
SROCC measurement values of the ICNN1 and ICNN2 SI
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FIGURE 7. Change curve of SROCC total measure for each algorithm
during training.

quality evaluation methods designed in this study were signif-
icantly higher than those of other comparative models, with
values of 0.940 and 0.949, respectively.

The ICNN2 model with a mixture of local and global
image distortion abstract information was the highest. Sec-
ondly, the total SROCC measure values of the deep learning
model and the SROCC measure values on various distortion
problems were generally higher than those of the machine
learning algorithm. Only the XGBoost algorithm had slightly
higher values on the total SROCC measure values, WN,
JP2K, and FF measures than the GoogLeNet algorithm. The
total SROCC measure value of the SVM algorithm and the
SROCC measure value of various distortion problems were
the smallest, and the evaluation ability of stereo distorted
images was the worst.

The statistical results of the overall SROCC total measure
and PLCC total measure on the test set after each algorithm
training are shown in Figure 9. The horizontal axis of the two
subgraphs in Figure 9 represents different numbers of test
set samples, while the vertical axes of subgraphs (a) and (b)
represent the SROCC total measure and PLCC total measure,
respectively.

Different line styles represent different evaluation mod-
els. Observing Figure 9, when the number of samples
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FIGURE 8. PLCC total measure change curve of each algorithm during
training.

participating in the test was small, the total measurement
values of SROCC and PLCC of each evaluation model fluc-
tuated significantly. However, as the number of samples to be
tested increased, the total measurement values of SROCC and
PLCC of each model tended to stabilize. After the number of
test samples exceeded 300, the test indicators of each model
had completed convergence. At this time, the total mea-
surement values of SROCC and PLCC for the GoogLeNet
evaluation model were 0.92, 0.94, 0.89, 0.83, and 0.93, 0.95,
0.90, and 0.84, respectively. The overall values of each model
in subgraph (a) in Figure 9 were slightly better than the cor-
responding data in subgraph (b) under the same conditions.

After the training was completed, the PLCC measurement
values of each algorithm on the test set were analyzed again.
The statistical results are shown in Table 4. Table 4 showed
that the total PLCC measurement values of the ICNNI
and ICNN2 SI quality evaluation methods designed in this
study were still higher than the other models, with values of
0.951 and 0.960, respectively. At the same time, the ICNN2
model with a mixture of local and global image distortion
abstract information had the highest indicator value. At the
same time, the total PLCC measure value of SVM algorithm
and the PLCC measure value of various distortion problems
were still the smallest, and the evaluation ability of stereo
distorted images was the worst.
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TABLE 3. Statistics of SROCC measures for each algorithm on the test set.

TABLE 4. Statistics of PLCC measures for each algorithm on the test set.

Model Name ALL WN JPEG JP2K ~ BLUR FF Model Name ALL WN JPEG JP2K  BLUR FF
ICNN1 0940  0.925 0.663 0913 0.875 0.806 ICNN1 0.951 0.928 0.667 0.916 0.881 0.811
ICNN2 0.949  0.933 0.724 0.935 0.869 0.794 ICNN2 0960  0.939 0.731 0.939 0.876 0.804

Faster-RCNN  0.926  0.904 0.618 0.887 0.846 0.783
GoogLeNet 0.891 0.843 0.528 0.840 0.816 0.742
XGBoost 0902  0.855 0.514 0.842 0.811 0.763

Faster-RCNN  0.932  0.908 0.623 0.895 0.852 0.789
GoogLeNet 0.899  0.848 0.537 0.848 0.825 0.749
XGBoost 0912  0.862 0.527 0.847 0.817 0.768

SVM 0.831 0782 0503 0769  0.774 _ 0.724 SVM 0.843 0787 0508 0774  0.779  0.731
1.00 7 the average, standard deviation, minimum, and maximum
e values of the indicators. According to Table 5, the mean val-
80907 [ A N/ T ues of ICNN1 and ICNN2 on this SROCC were higher than
§ |\l those of other deep learning and machine learning models.
i 0.80 | From the perspective of distribution patterns, the standard
E deviation of the ICNN1 and ICNN2 models designed in this
§ 070 study was significantly lower than the other comparative
= T IONNT  FasterRCNN | models in mult1p1§ r.epeated experiments. Specifically, the
0604 ICNN2  GoogLeNet | total standard deviations of SROCC measures for ICNNI,
‘ ICNN2, Faster RCNN, GoogleNet, XGBoost, and SVM
0.50 1 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ models were 0.017, 0.014, 0.025, 0.028, 0.031, and 0.027,
0 50 100 150 200 250 300 350 400 450 500 respectively. Moreover, even from the perspective of the max-
Number of test samples imum and minimum values of the indicators, the two models
(a) SROCC Total Measure designed in this study still had better stability than other
1.00 7 algorithms.
o / g /\ P - — Next, it analyzed the computational efficiency and memory
Z 0.907 | \/ T consumption of each model. Statistical evaluation obser-
S| T T vation showed that the horizontal axis in Figure 10 was
:g 0.80 consistent with Figure 9, and the vertical axis represents the
; computational time in milliseconds. Icons of different colors
S 0707 and styles represent different evaluation models, while the
- —ICNNI - Faster-RCNN | corresponding colored lines represent the fitting lines of the
0604 ICNN2  GoogLeNet corresponding model’s data points.
The fitting lines were fitted using a cubic polynomial
0.50 equation style. Observing Figure 10, the time consumption of

0 50 100 150 200 250 300 350 400 450 500
Number of test samples
(b) PLCC Total Measure

FIGURE 9. SROCC total measure and PLCC total measure of each
algorithm on the test set.

Then, it needs to further compare the values and their
distributions of each algorithm on the two total measures.
The statistical results are shown in Table 4. It noted that
the statistical results were obtained under the condition of
taking the maximum of 500 test samples. To improve analysis
accuracy, each experimental plan was conducted 10 times
to calculate the average, standard deviation, minimum, and
maximum values of the indicators. According to Table 4, the
performance of each model on the mean of SROCC total
measure and PLCC total measure was basically consistent
with their performance on training results.

Then, the values and their distributions of each algorithm
on the SROCC total measure were further compared. The
statistical results are shown in Table 5. It noted that the statis-
tical results were obtained under the condition of taking the
maximum of 500 test samples. To improve analysis accuracy,
each experimental plan was conducted 10 times to calculate
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the ICNN1 and ICNN?2 neural network SI quality recognition
models designed in this study was generally consistent, but
the calculation time of the ICNN1 model was significantly
lower than that of ICNN2 under the same conditions, which
was related to the latter integrating more network structures.

The Faster RCNN evaluation model also had a linear curve
between the number of samples to be tested and the calcula-
tion time. However, the difference between the former and
ICNNI1 and ICNN2 models was that the former took less
time when calculating fewer samples, but the calculation time
started to be higher when calculating more samples than the
latter two. The number of samples to be tested - calculation
time consuming curve of GoogLeNet model showed expo-
nential growth, which was related to the highest calculation
complexity and more internal calculation levels of the model.

Finally, the calculation memory consumption of each
model was analyzed. The vertical axis in Figure 11 repre-
sents the calculation memory consumption, in MB. Icons of
different colors and styles still represent different evaluation
models. Observing Figure 11, the changes in computational
memory consumption of the ICNN1 and ICNN2 neural
networks designed in this study, as well as the compari-
son model Faster RCNN for SI quality recognition, were
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TABLE 5. The numerical values and distribution statistics of each algorithm on the SROCC total measure.

SROCC total measure

Number Model Name Mean =+ standard deviation maximum-minimum values

#01 ICNN1 0.940+0.017 0.920-0.959

#02 ICNN2 0.949+0.014 0.931-0.968

#03 Faster-RCNN 0.926+0.025 0.893-0.967

4#04 GoogLeNet 0.891+0.028 0.861-0.925

#05 XGBoost 0.902+0.031 0.854-0.938

#06 SVM 0.831+0.027 0.802-0.864
5. 32007 = ICNNI — ~ICNNI Fitting curve 2865 experts were selected to manually evaluate the 50 randomly
= —— 1tt1 . . . . .
£ 2900 - E}CNNLZN .._Ig(ﬁgﬁ&“gn nfﬁfgiurve v selected images in this dataset. The higher the score, the
B 6004 ©Yo0ogleNet —.—TFaster-RCNN Fitting curve , higher the quality of the images. The designed model and
Q 4 Faster-RCNN 5434 . . .
£ 2300 (L various comparison models were used for the same ten point
= 7/ .
§ 2 2000 1 Y.w/" scale. The scoring results showed that the average absolute
= 5 o 17 difference between the evaluation results of the designed
g 21700 _ R : .
= 5 1400 PR _= model and the manual evaluation score was 0.36 points,
3] 1 Ve [ — s 4 . . “ e . .
2 = e —" - T1437 which was significantly lower than the difference in evalu-

_ ~ A - - . .
2 1100 -5 " ation scores between other comparison models and manual
— —
g 800 - /T//‘f el models.
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~
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FIGURE 10. Comparison of calculation time consumption of each
algorithm on the test set.
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FIGURE 11. Comparison of computational memory consumption of
various algorithms on the test set.

still generally consistent. Both of these models had a slow
increase in memory consumption as the number of samples
to be calculated increased.

The growth rate of the GoogLeNet model’s sample size
calculation memory consumption curve was significantly
faster, indicating that the internal structure of the model was
relatively not suitable for calculating a large number of sam-
ples and was related to the high level of internal calculation.
When the number of contemporary calculation samples was
500, the total computational memory consumption of ICNNI1,
ICNN2, Faster RCNN, and GoogleNet evaluation models
were 182MB, 189MB, 170MB, and 349MB, respectively.

To further compare the evaluation ability of the model
designed this time, a subjective evaluation experiment was
designed, in which 40 domestic and foreign SI evaluation
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This study was divided into four parts. The first part intro-
duced the basic concepts and main technical routes of SI
quality evaluation and recognition. The second part provided
a detailed introduction to the improved ResNet image recog-
nition model for hybrid SI semantic features, local detail
perception module, and visual attention mechanism. The
third part conducted experimental verification on the model
and compared it with other models. Finally, the fourth part
summarized the entire article and provided prospects for
future research directions.

The test results showed that the convergence speed of the
model designed in this study was not significantly differ-
ent from the comparison model, but the loss function after
convergence was significantly lower than other models. The
SROCC total measure values of the ICNN1 and ICNN2 SI
quality evaluation methods were significantly higher than
other comparison models, with values of 0.940 and 0.949,
respectively. The ICNN2 model, which mixed local and
global image distortion abstract information, had the highest
total measure value, and the PLCC total measure values of
both models were still higher than the other models, with
values of 0.940 and 0.949, respectively.

When the number of samples to be tested was 500, the
total SROCC and PLCC measures of ICNN1, ICNN2, Faster
RCNN, and GoogleNet evaluation models were 0.92, 0.94,
0.89, 0.83, and 0.93, 0.95, 0.90, and 0.84, respectively.
At this time, their total computational memory consump-
tion was 182MB, 189MB, 170MB, and 349MB, respectively.
The experimental data showed that the SI quality evaluation
method designed in this study had high evaluation accuracy
and stability, and had certain application value. However,
the drawback was that it consumed a lot of computational
memory. Due to limitations in research conditions, this study
was unable to collect more real samples for broader valida-
tion experiments, nor did it explore whether deep learning

VOLUME 11, 2023



X. Han et al.: Stereoscopic Image Quality Evaluation Method for Visual Communication Design

IEEE Access

structures that integrate prior knowledge can further enhance
model capabilities. Improving the model based on prior
knowledge of previous optimization and design similar to
neural networks is another direction for future research.
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