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ABSTRACT In a supply chain that consists of a supplier or manufacturer, a retailer, and a customer, the
supplier regularly offers the retailer a pay in later facility in terms of S periods, while the retailer then gives
their client a pay in later facility in terms of N periods to increase sales and decrease inventory. Offering
trade credit benefits the seller’s sales and profits, but it also increases default risk. As a result, understanding
the credit period is becoming widely acknowledged as a key tactic for boosting seller profitability. This
study suggests an EOQ model in the perspective of retailer point of view for which: (a) both the supplier and
the retailer supply up-stream pay in later facility; (b) downstream trade credit provided from the retailer to
the buyer increases opportunity cost and default risk in addition to sales and profitability; (c) items that are
degrading not only continue to degrade over time but also have an expiration date. We employed the well-
known metaheuristic algorithm Grey Wolf Optimizer (GWO) to solve the optimisation problem because
the objective function is high nonlinear nature. In addition, we have compared the results with some other
metaheuristic algorithm. In order to highlight the problem and provide managerial advice, we conclude by
using some numerical examples.

INDEX TERMS Inventory model, perishable goods, expiration dates, selling price, green level dependent

demand, grey wolf optimizer.

I. INTRODUCTION

In order to boost sales and lower inventory, sellers frequently
offer their buyers a legal payment delay. The buyer may
accrue income during the credit period and receive interest on
that amount. However, if the buyer is unable to pay the entire
purchase price within the credit period, the seller will charge
the buyer interest on the unpaid balance. Goyal’s [1] work
is among the earliest in this field of study. He identified the
retailer’s ideal economic order amount under circumstances
where the supplier provides a fair payment delay (EOQ).
Shah [2], on the other hand, later thought about a probabilistic
inventory system for degrading goods when payment delays
are acceptable. The EOQ model was then expanded by
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Aggarwal and Jaggi [3] to include decaying items. In order
to accommodate shortages, Using trade credit finance,
Jamal et al. [4] generalised the Aggarwal and Jaggi [3]
suggested model. Teng [5] then provided a straightforward
closed-form analytical solution of similar type model. Huang
[6] then broadened the scope of the credit policy issue to take
into account the case where a supplier offers a store a pay
in later facility, and the store in turn grants a second pay in
later facility to its clients. Additionally, Liao [7] added an
economic production quantity (EPQ) model for degrading
goods to Huang’s model. Teng [8] then offered the best
ordering guidelines for a business to cope with both good and
bad credit clients. On the other hand, Min et al. [9] proposed
an EPQ model with two levels of pay in later facility and
demand that is depending on stock. Subsequently, in an EPQ
model with damaged items under trade credit policy, Kreng
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and Tan [10] were able to determine the best replenishment
choice. After that, Teng et al. [11] were able to determine the
best ordering strategy for a demand that is stock-dependent
using a progressive payment system. The demand pattern was
further expanded by Teng et al. [12] changing throughout
time from steady to growing. Ouyang and Chang [13]
developed a production model with a flawless backlog and
an imperfect production process. All of the aforementioned
publications primarily studied the EOQ/EPQ models with
pay in later facility in the perspective of buyer point of
view. Only a few academics, like Teng and Lou [14] and
Chern et al. [15] have focused on how to calculate the seller’s
ideal credit period. The trade credit literature has currently
been organised by Seifert et al. [16], who also developed a
thorough plan for future trade credit research. Wu et al. [17]
studied a two-level pay in later framework, the appropriate
credit duration and lot size for degrading commodities with
expiration dates. Bhunia and Shaikh [18] solved a model by
using PSO in a two-warehouse system with various inventory
regulations and decaying items is permitted. Ouyang et al.
[19] studied a capacity-constrained integrated system and a
trade credit system that depends on order size. Yang et al. [20]
studied an allocating dynamic trade credits and preservation
technologies in the best possible way for a model of decaying
inventory. Wu et al. [21] proposed a models of inventory
for degrading goods having a maximum lifetime under
partial trade credits to clients with high credit risk. Shaikh
[22] introduced a two-storage inventory problem with a
flexible trade credit alternative for decaying goods. Shaikh
[23] studied a mixed-type inventory problem for degrading
items with frequent advertising and demand that is based
on selling price. Tiwari et al. [24] studied a price and
inventory problem is utilised for goods that are degrading,
have maximum lifetime, and partial backlogs. Two-level
pay in later facility are recommended for the supply chain.
Shaikh et al. [25] developed a deteriorating item with a three-
parameter Weibull distribution that has changeable demand
and is based on the item’s price and how frequently it is
advertised when it is being used as trade credit. Cdrdenas-
Barrén et al. [26] developed a nonlinear holding cost,
nonlinear stock dependent demand under pay in later facility.
Shaikh et al. [27] proposed an inventory model for degrading
products with trade credit and a ramp-type preservation
facility. Das et al. [28] examined a particle swarm optimised
inventory model for non-instantaneous deteriorating goods
that makes advantage of preservation technology and various
credit arrangements for trade credit financing. Das et al.
[29] introduced a model for manufacturing inventory that is
trustworthy and has a partial trade credit policy. Rahman et al.
[30] proposed a perishable commodities inventory model
that combines a price-and-stock dependency with discounting
options for in-advance payments. Taleizadeh et al. [31]
introduced a carbon-emitting inventory model with price-
related demand that operates with trade agreement credit and
partial backordering. Das et al. [32] studied a green product
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production system using an approach of parametric based on
intervals and meta-heuristic algorithms with a single-level
pay in later facility.

It is very obvious that many goods, including fruits,
volatile liquids, vegetables, blood banks, clothing, and high-
tech items, continuously degrade for a variety of reasons,
including evaporation, spoiling, and obsolescence. Assuming
an exponentially declining inventory, Ghare and Schrader
[33] suggested an EOQ model in this course. By Covert
and Philip [34], the continuous exponential deterioration rate
was transformed into a two-parameter Weibull distribution.
Subsequently, Dave and Patel [35] investigated a linearly
growing demand EOQ model for decaying item without
shortages. The EOQ model was then further expanded by
Sachan [36] to incorporate shortages. On the other hand,
a linear form of demand was generalised by Goswami
and Chaudhuri [37] from a continuous demand pattern
for decaying commodities. In parallel, Raafat [38] offered
a review of the literature on the continually depreciating
inventory model. For deteriorating goods with time-varying
demand, Hariga [39] investigated the best EOQ models.
Then, in 1999, Teng et al. [40] generalised the inventory
models with shortages and varying demand. Later, Goyal
and Giri [41] published an overview of current developments
in the modelling of depreciating inventories. To incorporate
partial backlogging, Teng et al. [42] further expanded the
model. In 2009, Skouri et al. [43] developed inventory system
that included ramptype demand rates and Weibull deteriora-
tion rates. The ramp-type demand and permissible payment
delay model for degraded goods was further generalised by
Skouri et al. [44] in a subsequent publication. A production
model for decaying item with retailer trade agreement
credit policy was put forth by Mahata [45]. A research
on the impact of technology investment on deteriorating
goods was conducted by Dye [46]. A rework policy and
probabilistic preventive maintenance production model for
deteriorating products was created by Wee and Widyadana
[47]. Bhunia et al. [48] proposed a two-warehouse system
for decaying commodities with partial backlog and allowable
payment delay. Sicilia et al. [49] introduced a model of
inventory for degrading goods with shortages and variable
demand over time. Ghiami and Williams [50] studied a
two-echelon production system for numerous customers of
decaying goods. Bhunia et al. [51] investigated a two-
storage inventory system with fluctuating demand and partial
backlog is used for items that are deteriorating. Wu et al.
[21] looked into inventory models for products having a
maximum lifespan under partial trade credits downstream to
clients who might have credit issues. Banerjee and Agrawal
[52] proposed the best ordering and discounting practises
for an inventory model for decaying commodities with
freshness- and price-dependent demand. Chan et al. [53]
investigated an integrated production-inventory model for
goods that deteriorate, taking the best production rate and
delivery deterioration into account. Pal et al. [54] introduced
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a stochastic production system with a finite life cycle for
products that are deteriorating. Sharma et al. [55] proposed
a time-varying holding cost and expiration date inventory
model for goods that degrade over time. Khan et al. [56]
studied an inventory model for degrading goods with two
warehouses, some backlog, and advance payment plan.
Panda et al. [57] introduced a credit policy technique for
degrading items in two-storage system with demand that is
price- and stock-dependent under partial backlog. Khakzad
and Gholamian [58] presented an inventory model to examine
the effects of inspection on the rate of deterioration of items
with advanced payment. Rahman et al. [59] introduced a
parametric technique for interval differential equations in
an inventory model for depreciating goods with demand
dependent on selling price. Shaikh et al. [27] investigated an
inventory model for degrading products with trade credit and
a ramp-type preservation facility. Mahata [60], [61] proposed
different inventory models based on the payment policy
for deteriorating item. Duary et al. [62] studied advance
and deferred payments for degrading goods under capacity
constraints and partially backlogged shortages are possible
with the price-discount inventory model. De and Mahata [63]
introduced an inventory model with backlogging situations
under disruption. Choudhury et al. [64] proposed an inventory
model for degrading goods that takes expiration date into
account using the Stackelberg game technique. Mahato and
Mahata [65] suggested two level trade credit policy in
an inventory system for deteriorating item. Mahato et al.
[66] investigated a models of inventory for depreciating
goods with fixed lifetimes, partial backordering, and carbon
emission regulations.

A collection of computational approaches known as “‘soft
computing” is created to handle issues that are challenging to
tackle with traditional methodologies. Soft computing algo-
rithms are frequently employed when the data is complicated
and challenging to represent, has a high level of uncertainty
or ambiguity, or both. Many different applications, such as
control systems, robotics, image processing, data mining,
and decision support systems, make extensive use of soft
computing algorithms. They are especially helpful when
more flexible and adaptive approaches are required or when
traditional methods are ineffective.

There are three different types of meta-heuristics: evo-
lutionary algorithms, physics-based algorithms, and swarm
intelligence based algorithms. Swarm intelligence algorithms
are based on the collective behaviour of social insects
and are used for optimisation and decision-making tasks,
whereas evolutionary algorithms are based on the principles
of natural selection and are used for optimisation and search
issues. GA is the most popular algorithm in this field. This
approach was put forth by Holland [67] and simulates the
concepts of Darwinian evolution. A thorough research into
the engineering applications of GA was done by Goldberg
[68], [69]. EAs frequently carry out the optimisation
by incrementally improving a beginning random solution.
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Every new populace is made by combining and altering
the members of the preceding generation. The following
generation is likely to be better than the one before it since
the best people are likely to contribute to its construction
(s). By doing so, it will be ensured that the starting random
population is increased over many generations. A few EAs
include genetic programming (GP) [70], [71], biogeography-
based optimizer (BBO) [72], evolutionary programming (EP)
[73], evolution strategy (ES) [74], [75], and differential
evolution (DE) [76].

Physicistically based methods make up the second major
subfield of meta-heuristics. Usually, these optimisation tech-
niques imitate physical laws. Some of the popular algorithms
that are reported by several researchers viz. Gravitational
Local Search (GLSA) [77], Big-Bang Big-Crunch (BBBC)
[78], Small-World Optimization Algorithm (SWOA) [79],
Central Force Optimization (CFO) [80], Gravitational Search
Algorithm (GSA) [81], Charged System Search (CSS)
[82], Artificial Chemical Reaction Optimization Algorithm
(ACROA) [83], Galaxy-based Search Algorithm (GbSA)
[84], Curved Space Optimization (CSO) [85] Ray Opti-
mization (RO) [86] algorithm and Black Hole (BH) [87]
algorithm. In contrast to EAs, these algorithms employ by
using the randomly search agents that interact and fly about
the search space in line with physical laws. For instance,
this movement is carried out by the forces of gravity, ray
casting, electromagnetic force, inertia force, weights, and
other forces.

Swarm intelligence methods make up the third category
of meta-heuristics. These algorithms closely resemble the
social behaviour of natural swarms, herds, flocks, or schools
of living organisms. Although adopting a method that is
mostly physics-based, search agents navigate by mimicking
the collective and social intelligence of living things. PSO
is the SI approach that is most commonly utilised. Kennedy
and Eberhart [88] used the flocking of birds as the inspiration
for their PSO algorithm. The PSO method uses a number of
particles, each of which moves in accordance with the best
particle and its own most optimal places to date. In other
words, while moving a particle, it takes into account both its
own best solution and the best solution found by the swarm.
The graphic representation of several SI algorithms, physics-
based algorithms, and evolutionary algorithms is shown in
Fig.1.

This list demonstrates how many SI strategies have been
proposed thus far, many of which were influenced by
behaviours related to searching and hunting.

In order to determine the retailer’s ideal credit duration
and cycle time, this study suggests an EOQ model. (a) a
down-stream trade credit of S years is provided to the
buyer by the retailer, whereas an up-stream trade credit
of § years is granted to the retailer by the supplier; (b)
downstream trade credit provided from the retailer to the
purchaser raises opportunity cost and default risk in addition
to sales and revenue; and (c) A retailer’s goal functions are
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Evolutionary based
algorithms are GA:
(Holland [68],
Goldberg [69]), GP
(Rechenberg, [70],
Koza, [71]), BBO
(Simon, [72]), EP (Yao
et al. [73]), ES (Fogel,
[74], Hansen et al.
[75]), DE (Storm and
Price, [76])

Metaheuristic Algorithm

Physics based algorithms

are GLSA (Webster and
Bernhard, [77]), BBBC
(Erol and Eksin, [78]),
SWOA (Du et al. [79]),
CFO (Formato, [80]), GSA
(Rashedi et al. [81]), CSS
(Kaveh and Talatahari,
[82]), ACROA (Alatas,
[83]), GbSA (Shah-
Hosseini, [84]), CSO
(Moghaddam et al. [85])
RO (Kaveh and
Khayatazad, [86]) BH
(Hatamlou, [87])

SI algorithms are MBO
(Abbass, [89]), AFSA
(L1, [90]), TA (Roth and
Wicker, [91]), WSA
(Pinto et al, [92]), MS
(Mucherino and Seref,
[93]), BCPA (Lu and
Zhou, [94]), CS (Yang
and Deb, [95]), DPO
(Shiqin et al, [96]), FA
(Yang, [97]), BMO
(Askarzadeh and
Rezazadeh, [98]), KH
(Gandomi and Alavi,
[99]), FOA (Pan, [100])

FIGURE 1. Literature of different metaheuristic algorithms.

then established for a variety of probable circumstances.
An item that is decaying not only deteriorates continually
but also raises opportunity cost. Demand of the product is
considered here non-linear function of credit period, selling
price and green level of the product. In addition, purchase
cost also considered as the green level dependent. In Due
to high complexity of the objective function, we have used
soft computing technique GWO and compared with other
metaheuristic algorithms for numerical illustration.

A. NOVELTY AND CONTRIBUTION

In this model, we have incorporated trade credit and the green
level of the product together. According to the literature,
in most papers, downstream trade credit time is taken as an
input parameter. They also don’t take this impact as part of
the demand. The main contributions of this paper are given
below:
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i) Downstream trade credit is taken as a decision variable
in part of the demand. It is also taken as a nonlinear form
of the downstream trade credit period.

ii) The green level of the product is taken as a part of the
demand for the product. It is also taken as a nonlinear
form of demand.

iii) To solve this high nonlinear optimisation problem,
we have used a metaheuristic algorithm (Grey Wolf
Optimizer Algorithm (GWOA)).

To the best of our knowledge, no paper is published by taking
all the above mentioned key points together.

Il. NOTATION AND ASSUMPTIONS

For the purpose of building an EOQ interval inven-
tory model for perishable goods with cash and car-
bon tax, the following notation and presumptions are
introduced:
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A. NOTATION
The problem is developed using the ensuing variables and
parameters.
Notation Definition
K Setup cost /order
Selling price and
nonlinear green
D(N.s,.p)

g,a,b,c,dand x

P

Sn

q(®)

P

ATP

Decision variables:

N

level dependent
demand (units)
Demand related
parameters
Purchase cost
(units)

Purchase cost
parameters

Rate of interest
charged

Rate of interest
earn

Holding cost/unit
Maximum lifetime
of a product
Cycle length
Upstream credit
period

Total order
quantity (unit)
Inventory level at any
time ¢

Total profit of the
system ($)
Average profit of the
system ($/year)

Downstream credit
period

Selling price of the
item ($/unit)
Cycle length of
the buyer’s
replenishment in

units of time (year)

129918

B. ASSUMPTIONS

i. Anything that ages has an expiration date. Hence,
when the expiration date m draws closer, the rate of
deterioration must be reduced to 1. It’s reasonable
to suppose that the rate of decline is @ (§) =
m or @ (§) = e*% where u be constant.
To make the issue manageable, however, we make the
following assumptions about the pace of deterioration:

¢ &)= r<t=<é. ey

PPN b () S

I+&-0)

ii. Demand for a product is influenced by the product’s
green level, selling price, and credit period. Mathemat-
ically it can be presented as:

D(N,sp,p) =aN® +« —bsp+c,0d
where a, &, o, b, c,d > 0. 2)

iii. The retailer faces a greater default risk the longer its
down-stream credit duration is. We can estimate the
default risk rate given the retailer’s downstream credit
duration N is considered to be as follows for the sake of
simplicity:

UN)=1-e"N where k > 0. 3)

iv. Dollars obtained at time ¢ are comparable to dollars
received at time ¢ today if the annual compound interest
rate is e~%". The merchant grants the customer N days
of credit. After subtracting default risk and opportunity
cost, the retailer’s net income is as follows:

spD (N, sp, p) [1 = U (N)] e
=5, (aNg +oa—bs,+ c,od) e Ueto 4

v. Infinite time horizon is considered with negligible lead-
time.

vi. Once the permitted delay has ended, the supplier bills
the retailer at prime rate ¢.. The retailer, on the other
hand, is free to use the sales money to make investments
in the stock market or to produce new goods and generate
a profit of ¢, during the permitted wait time.

vii. Instant replenishments are available for a single product.
Purchase cost is also taken as the green level of the
product. It can be represented mathematically in the
following way

cp =c1+c2p” where ci,c2,y >0 5)

viii. Deterioration and shortages are not allowed.

Ill. MATHEMATICAL DERIVATION OF THE MODEL

According to the merchants’ perspective, this model is
designed based on the aforementioned hypotheses. Initially,
a retailer place an order of S units and kept in his store room.
Demand and degradation over the replenishment cycle cause
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the inventory level to decrease over [0, 7], and is therefore
controlled by the differential equation shown below:

dq(t
%+w(§):—D(N,sp,p),0<t§r (6)
With the condition ¢(0) = S and ¢g(t) = 0. ©)

From the equations (6) and (7), we get

1+&—1¢
q(t) =D (N, sp, p) (1 +& —1)log (1+§——r)
0<t<r. (®)

Hence for finding the ordering quantity, we have used

1+§&
S =¢q0)=D(N,syp, 1 1 —,
q(0) =D ( spp)(+€)0g(l+§_r)
O<t<r )
Sales revenue throughout the cycle is
(SR) = s,D (N, sp, p) - (10)

Holding cost to the entire cycle

(1+6)7* 1+¢
(HC):M 2 Og(l-i-f—f)
T 2 (A48T
4 2
(11)
. K
Ordering cost (OC) = - (12)

According to the vales of N and S, following cases may arise.
(i) Case 1: N < S and (ii) Case 2: N > §

Casel: N < S

There are two alternative sub-cases that are according to
the time S (i.e., the date by which the retailer shall have make
payment to the supplier the entire cost of the purchase in
order to avoid paying interest) and t 4+ N (i.e., the cut off
date for when the store will receive payment from the final
client). The retailer pays off all units sold by S — N at time S,
keeps the profits, and begins paying for the interest charges
on the products sold after S — N, that are available [17], if T
+ N > § (i.e., interest charge is applicable). The store will
receive the entire revenue at time T + N and will repay the
entire purchase price at time S if t + N < S (i.e., there is no
interest charge). Again two situations may arise. Now, all the
situations are discussed in details.

Situation1.1: S <t + N

The supplier’s offers up-stream pay in later facility period
S < 7 + N in this sub-case which is less than or equal to the
customer’s most recent payment time t + N. This means that
the shop will have to finance all things sold after time S-N at
an interest rate of ¢, per dollar per year as they cannot pay off
the purchase price at time S. As a results retailers must pay
an interest on that amount and which is given by

cpde (aN® + o — bsp + cp?) (t +N = S)
2t '
This calculation is done as per [17].

(13)
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In the meantime, retailers start to sells decaying goods at
time zero, but is paid at time N. As a result, the store builds
up earnings in an account that generates with the rate ¢, from
N to § annually. Hence, retailers earn interest during the time
period is given by

Sp@e (aNe +o —bs, + cpd) (S — N)?
21 '
Hence the objective function can be written as
[sp (aNg +a —bs, + c,od)
ch (aNs +o —bs, + c,od)

(1+¢)? 11+€)
log
2 1+&—-1

LT _fde

ATPy 1 (N, sy, T)=| K ! 2

T
cod aN®¢ +
PN ~bsy + cp?
2T

5 (aN8+ot
P¥e\ —bs, + cp?
n p

L 2T

(14)

)('L’-I—N—S)

)6—m2

15)
The corresponding optimization problem can represent
mathematically in the following way

Maxmize ATP1 1 (N, Sp, r)
subjectto N > 0,5, > 0,7 >0 (16)

Situation 1.2: S > T+ N

In this particular situation, the retailer is able to make
payment the entire purchase price at time S after receiving
the total revenue at T + N. Hence, no interest will be
imposed to the retailer, and instead, as calculated from
[17], with the rate ¢, over the time period [N, S].
Hence, the annual interest collected by the retailer is
Spbe (aNS +oa —bs, + c,od) (S —N— %)

Hence the objective function can be written as

ATPy 5 (N, 5p, T)

[ sp (aNE +o —bs, +c,0d)
ch (aNs +o—bs, + cpd)

(1+s)210 ‘ 1+&

- 2 e\ie-¢ (17)
2 (148t
tT T

The corresponding optimization problem can represent
mathematically in the following way

Maxmize ATP1 > (N, Sp, r)
subjectto N > 0,5, > 0,7 >0 (18)
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Casel: N > §

N > § means that the store does not earn interest. The
retailer must also finance the total amount of the purchase at
time S and repay the loan from time N to time t + N. As a
result, the interest charged with the rate ¢, every cycle is on
the interval [S, T + N]. As a result, the annual interest rate is
provided by

cpbe (aN® +a —bsy +cpd) [2(N — S) + 7]
2
Hence the objective function can be written as

ATP13 (N, Sp, 7,')

[ sp (aN€ +oa —bs, + cpd)
ch (aNe +o —bsp,+ cpd)

(1482 T( L+6 )

2 1+&—-7
= +T;_% (20)
K

T
aN®¢ +«
cp¢c(_bsp+cpd)[2<N—S>+r]

L 2 i
The corresponding optimization problem can represent
mathematically in the following way

(19)

Maxmize ATP 3 (N, Sp, 1:)
subjectto N > 0,5, > 0,7 >0 21

Now, we have employed a meta-heuristic method called Grey
Wolf Optimizer to resolve the aforementioned three issues
(GWO). It is arecently created, widely used, and well-known
optimisation approach. The metaheuristic algorithm known
as Grey Wolf Optimization (GWO) was influenced by the
social structure and hunting methods of grey wolves. This
algorithm is frequently used to resolve different optimisation
issues, including issues with inventory management. The
following justifies why GWO might be a wise decision for
handling inventory issues:

(1) It has been demonstrated that the effective optimisation
algorithm GWO performs effectively on a range of
optimisation tasks, including challenging inventory
management issues.

(ii)) GWO is a population-based method, allowing for a
more complete exploration of the solution space than
single-point algorithms. This is particularly crucial in
inventory management, where it is frequently necessary
to identify numerous optimal solutions.

(iii)) GWO s a strong algorithm that can deal with erratic and
noisy data. This is especially important for inventory
management because demand, lead times, and supply
chain disruptions can all cause the system to become
unpredictable.

(iv) GWO is simple to use and may be modified to meet
the unique requirements of the current inventory issue.
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Examples of constraints that can be easily added into

the algorithm include inventory capacity, lead time

specifications, and safety stock levels.
In summary, we can say that GWO is a strong optimisation
technique and can be an excellent option for issues relating
to inventory management. It is a useful tool for inventory
optimisation because of its capacity to efficiently explore
the solution space, manage uncertainty, and take restrictions
into account. The solution process section includes a detailed
overview of GWO.

IV. SOLUTION PROCEDURE
The GWO technique has been covered in this section.

A. MOTIVATION

The grey wolf is a member of the canid family (Canis lupus).
Grey wolves are thought of being apex predators since they
are at the top of the food chain. Grey wolves typically
like to live in packs. There are typically 5 to 12 people
in each group. They have a rather tight social dominance
structure, which is quite interestingly and that are available
in Mirjalili et al. [101].

The leaders, or alphas, might be either male or female. The
alpha is mainly in charge of choosing where to sleep, when to
wake up, how to hunt, and other factors. The alpha’s instruc-
tions must be followed by the pack. Nonetheless, an alpha
has also been observed to act democratically by sticking with
the additional wolves in the group. At gatherings, the entire
pack bows to the alpha by keeping their tails down. The
alpha wolf is also known as the dominating wolf because
the group is expected to follow his orders. The only wolves
allowed to mate are the alphas. It’s fascinating to notice
that the alpha is frequently the pack’s best leader rather
than its strongest physical member. This demonstrates that
a pack’s organisation and discipline are far more crucial than
its physical power.

The position after alpha in the grey wolf hierarchy is beta.
The wolves below the alpha that help him make decisions
or take part in other pack activities are known as betas.
In the case that one of the other wolves dies or becomes
too old to function as alpha, the beta wolf, which can be
either male or female, is most likely the best candidate. The
beta wolf should respect the alpha as well as lead the other
subordinate wolves. It acts as both the alpha’s advisor and the
pack’s disciplinary authority. The beta reinforces the alpha’s
directives throughout the pack while also giving input to the
alpha.

The grey wolf with the lowest ranking is named Omega.
The perpetrator is the omega. Omega wolves usually get the
upper hand over all other dominating wolves. These are the
last wolves that are allowed to eat. Although the omega may
appear to be a relatively unimportant pack member, it has
been observed that when the omega is lost, the complete pack
experiences internal conflict and problems. The aggressive
and enraged wolf outbursts of the Omega are to blame for
this (s). This helps to maintain the hierarchy of authority and
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please the entire pack. The omega are occasionally the pack’s
nannies.

One who is not an alpha, beta, or omega wolf is referred to
as a “‘subordinate” wolf (or delta in some references). Delta
wolves, who are subjugated by alpha and beta wolves, rule
over omega wolves. Scouts, sentinels, seniors, hunters, and
carers are among those who belong to this category. Scouts
are in charge of keeping an eye on the limits of the area and
warning the pack if something is amiss. Sentinels keep an
eye on and ensure the group’s security. Older wolves that
have previously been alpha or beta are known as elders. The
betas and alphas are assisted by hunters in capturing game
and acquiring nourishment for the group. The weak, ill, and
injured wolves are also taken care of by the pack’s carers.

Group hunting is another distinctive aspect of grey wolves’
social conduct, in addition to their social hierarchy. The
following are the key stages of grey wolf hunting.

« Locating, pursuing, and approaching the prey.

o After the target stops moving, it is pursued, cornered,

and threatened.

« Direct your attack at the prey.
These actions are available in Mirjalili et al. [101].

B. ALGORITHM REPRESENT MATHEMATICALLY

In this section of the article, mathematical formulas are given
for the social structure, prey detection, prey surround, and
prey hunting. The GWO algorithm is then explained.

1) SOCIAL STRUCTURE

Using the fittest solution, or the alpha, we mathematically
simulate the social structure of the wolf’s alpha when
developing GWO (a). Hence, the second- and third-best
responses, beta (b) and delta (d), are given those names.
The last candidate is assumed to be omega (x). The GWO
algorithm uses alpha (a), beta (b), and delta (d) as a guide for
its hunting (optimisation). The omega (x) wolves come after
this pack of three wolves.

2) ENCIRCLING OF PREY

Grey wolves, as was already said, circle their victim while
hunting. The following equations are presented to predict
accurately encircling behaviour:

E.=|LU, () — U (1) (22)
U@+1)=U, ) —M.E, (23)

where t denote the current iteration, L and M be the
coefficient vectors. The position vector of prey U » (1) and the
position vector of the Grey U ).

The calculation of the vector L and M are in the following
way:

-

2
2

Nl

L7 (24
7 25)

~ R
I

where [ be decreased linearly from 2 to O throughout
iterations and 7, 7> be random number [0, 1].
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3) HUNTING OF PREY

Grey wolves have the ability to detect prey and encircle them.
The alpha usually takes the lead in the search. The beta and
delta may occasionally engage in hunting as well. Yet, we are
unaware of the location of the ideal site within a hypothetical
search space (prey). We assume that the alpha, beta, and delta
have superior knowledge of the probable locations of prey
in order to mathematically recreate the hunting behaviour of
grey wolves (the best candidate answer). To encourage the
other search agents, including the omegas, to update their
locations in line with the position of the best search agents,
we save the first three best solutions that we have so far
identified. The following formula is used to calculate the
position’s update:

Ecaz Aa _'a aECb: ‘Z,bf]b (t)_l_j(t) »
Ee = |Lala ) = U 0) 6)

Ui (t +1) = Uy (1) = My.Eeq,
Uy (t+1) =Up (t) — Mp.Egp,

Us(t+1) = Uy (t) — My .Eeq 27
0(t+1)=U1(t~|—1)~I—U2(t3~I-1)~I-U3(t~I-1) (28)

4) ATTACKING OF PREY

As already mentioned, the prey is attacked by the grey wolves
when it stops moving to conclude the chase. By reducing
the value of I, we could simulate going after the prey
mathematically. Remember that an additionally narrows the
range of fluctuation of M. Alternatively, let’s say, M is a
number chosen at random from the available options [- 21,
2[] where a decreases from 2 to O during the iterations. Any
position between the current location of a search agent and
the location of the prey is feasible if the random values of
M are in the range [1, -1]. If the value of ‘1\71’ < 1 then the
wolves attack on prey.

5) SEARCHING OF PREY

Grey wolves primarily conduct their search according to the
order of alpha, beta, and delta positions. They disperse from
one another to hunt prey; they assemble to attack prey. To get
the search agent to leave the target and go elsewhere, we use
M to represent divergence mathematically, we use random
numbers larger than 1 or smaller than -1. This promotes
exploration and makes it possible to find the GWO method
globally. When M>1, grey wolves must break away from
their victim in order to find a better prey. GWO’s component
L also encourages investigation. Eq. (25) shows that the
L vector has random values in the range [0, 2]. This part
offers random weights for the prey, which can be used to
stochastlcally accentuate (L > 1) or deemphasize (L <1
the prey’s contribution to determining the distance in Eq.
(22). Due to a more irregular behaviour during optimisation
that emphasises exploration and steers clear of local optima,
GWO benefits from this. It should be noted that, unlike
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M, the decline in L is not linear. We purposely force L to
supply random values at all times to place an emphasis on
exploration both during initial rounds and final iterations.
This component is quite helpful when local optima stagnate,
especially in the last iterations.

Alternately, the effect of natural obstacles on moving
prey might be considered L vector. Wolves generally run
into problems with nature along their hunting routes, which
makes it difficult for them to approach prey quickly and
conveniently. The vector L functions in just this way.
Depending on where a wolf is positioned, it may be
randomly assign the prey a weight that makes it harder
and more difficult for wolves to reach, or it can do the
opposite.

In conclusion, as the first phase in the search process,
the GWO algorithm generates a random population of grey
wolves (potential solutions). The potential position of the
prey is calculated by the alpha, beta, and delta wolves across a
number of iterations. Each possible response alters the prey’s
distance from it. To highlight the importance of exploitation
and exploration, the value 1is dropped from 2 to 0. With
‘]VI ‘ > 1 and ‘]\71 ‘ < 1, candidate solutions usually
depart from the prey and then return to it. The GWO
algorithm is eventually completed when an end criterion
is met. There is information about the pseudocode and
specifics in [101].

6) COMPLEXITY OF TIME OF GWO
The GWO'’s time difficulties can be summed up as follows:

1) The GWO require O (N x m) time during the initializa-
tion phase, where N stands for the population size and m for
the problem’s dimension.

ii) The GWO’s control parameters must be calculated in
O (N x m) time.

iii) It takes O (N x m) time to update the agents’ positions
in the GWO equations.

iv) It takes O (N x m) time to evaluate each agent’s fitness
value. Based on the aforementioned analysis, the overall time
complexity for each generation is O (N x m), and the total
time complexity of the GWO, given a maximum number
of iterations, is O (N x m x Maxit), where Maxit is the
maximum number of iterations.

7) ADVANTAGE AND DISADVANTAGE OF GWO

The Grey Wolf Optimizer (GWO) is an optimization
algorithm inspired by nature and based on the social structure
and hunting habits of grey wolves. Like other optimization
algorithms, GWO has benefits and drawbacks that might
affect how well it works to solve optimization issues. The
following are some of the main benefits and drawbacks of
the Grey Wolf Optimizer:

Advantages of GWO:

> Compared to certain other optimisation methods, GWO
is comparatively easy to use and comprehend. It is
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founded on instinctive ideas drawn from grey wolves’
behaviour.

> GWO is simpler to configure than algorithms with many
hyper parameters because it has a small number of
control parameters.

> GWO frequently finds solutions rapidly and in a
manageable length of time, which might be helpful when
trying to solve issues with constrained computational
resources.

> GWO strikes a balance between exploration and
exploitation, allowing it to both explore the search space
for global optima and improve viable solutions close to
them.

> Numerous optimisation issues, including continuous,
discrete, and mixed-integer issues, can be solved with
GWO.

The algorithms GWO have some limitations which are given
below:

> Although GWO includes fewer parameters than some
other algorithms, the selection of these factors, such as
the number of wolves and the initial values, can affect
how well the system performs.

> The performance of the algorithm can be greatly
influenced by the quality of the starting grey wolf
population. Slow or inefficient convergence may result
from poor initializations.

> In certain circumstances, especially in multimodal
or deceptive fitness landscapes, GWO may converge
prematurely to local optima and struggle to escape from
them.

8) PSEUDO CODE OF GWO
The pseudo code of GWO algorithm are given below:

Initialize the population of Grey wolf U;(i = 1,2, 3,4,

.., n)

Initialize the values of [, M and L

Calculate the fitness of each search agent

U, be the best search agent

Upg be the second best search agent

Us be the third best search agent

while (r < Max_it)

for each search agent
update the current search agent with the help of

equation (25)

end for

Update the values of /, M and L

Calculate the fitness of all search agent

Update Uy , Ug and Us .

r=t+1

end while

return U,

V. NUMERICAL EXAMPLE
Three examples are taken into consideration for each of the
three difficulties to show and solve them, and each problem
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FIGURE 2. Concavity of the objective function of problem 1 with respect
to Example-1.
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FIGURE 3. Concavity of the objective function of problem 1 with respect
to Example-1.

is then resolved using GWO in the MATLAB programming
interface.

Example 1: The values of the various inventory param-
eters are based on assumptions. These numbers appear to
be plausible, though. We have used an example for each
issue to help us tackle the corresponding optimisation issue.
Also, for each objective function’s corresponding examples,
we plotted the 3D figures. Below are the values for the various
parameters:

o =180;e =0.06; ¢, =2; a=500;b =2.5;k=0.15;
c1 =40; 2 =0.5; y=0.2; ¢, = 0.04; ¢, = 0.06; K =500;
S=0.15&=12;0=0.89;0 =0.05;,c=1;d =0.5;

The optimal solutions of Example 1 are presented in the
following Table 1.

The concavity of the objective function is shown in
Fig.2. This figure is drawn with respect to the decision
variable sp, T.

The concavity of the objective function is shown in
Fig.3. This figure is drawn with respect to the decision
variable s,, N.

The concavity of the objective function is shown in
Fig.4. This figure is drawn with respect to the decision
variable 7, N.
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TABLE 1. Best found results of Example-1 by using GWO.

Cases/Sit  Variables/

Optimal values

uations unknown

parameter

N 0.3625 years
s, $ 154.6384
Situations T 0.3630 years
1.1
V 105.0744 unit
ATP, (N g 24771.0826
. P p
Cases/Sit | Variables/u Optimal values
uations nknown
parameters
N 0.2970 years
s, $ 152.9555
Situations T 0.3515 years
1.2
V 100.5923 unit
ATP,, (N 3 24378.9874
. >Pp
Cases/Sit | Variables/u Optimal values
uations nknown
parameters
N 0.3443 years
s, $ 154.2606
Case 2.1 T 0.3751 years
V 108.7198 unit
ATP, | (N g 24798.4593
. >P p

VI. SENSITIVITY ANALYSIS
To investigate the impact of the different inventory param-
eters on the centre of average profit (APC), selling price
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TABLE 2. Best found results of Example-1 by using AEFA.

Cases/Situ

ations

Variables/un
known

parameters

Optimal

values

N 0.3615 years

s, $154.6184

Situations T 0.3520 years

1.1

V 105.0644 unit

ATP].I(N’Sp’T, 24771.0412

Cases/Situ | Variables/unk Optimal
ations nown values
parameters

N 0.2868 years

s, $ 152.8955

Situations 7 0.3482 years

1.2

V 100.5713 unit

ATP,, (N,sp,f 24378.8765

Cases/Situ | Variables/unk Optimal
ations nown values
parameters

N 0.3337 years

s, $ 154.1908

Case 2.1 T 0.3689 years
V 108.6997 unit

ATP, | (N, ST 24798.4481

(p) and total length of replenishment cycle (t),the sensitivity
analyses are executed and supplied in Table 4.
The following implications are observed:

(i) From Table 4, it follows that average profit (ATP) is
highly sensitive with respect to a, £, o whereas it is
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TABLE 3. Best found results of Example-1 by using WOA.

Cases/Situ  Variables/un Optimal
ations known values
parameters
N 0.3604 years
s, $ 154.6179
Situations T 0.3525 years
1.1
V 105.0634 unit
ATP, | (N, $poT) 24771.0426
Cases/Situ | Variables/unk Optimal
ations nown values
parameters
N 0.2867 years
s, $ 152.8856
Situations r 0.3484 years
1.2
V 100.5923 unit
ATP,, (N, ST 24378.9664
Cases/Situ | Variables/unk Optimal
ations nown values
parameters
N 0.3347 years
s, $ 154.1808
Case 2.1 T 0.3670 years
V 108.6887 unit
ATP, (N, ST 24798.4572

less sensible with respect to the rest of the inventory

parameters.

(ii) It is observed from Table 4 that the selling price (sp)
is equally sensitive with respect to a, &, o whereas it
is less sensible with respect to the rest of the inventory

parameters.
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TABLE 4. Post optimality experiment of Example 1.

Inventory Decision Change in percentages
variables/average

parameters profit -20% -10% 0% 20% 10%
ATP 24 1.2 0 -1.18 -2.37

N -1.24 -0.29 0 0.2 114

€ T 1.09 0.03 0 -0.14 -1.08
Sp 10.02 5.01 0 -5.02 -10.01

4 2.12 L13 0 -1.28 -2.33

ATP 1.6 0.8 0 -0.79 -1.58

N 13 0.2 0 -0.2 -1.1

x r L17 0.25 0 -0.36 -1.01

Sp 1.05 0.05 0 -0.03 -0

4 L.15 0.27 0 -0.34 -1.04

ATP -37.38 -18.68 0 18.69 37.37

N 1.06 0.18 0 -0.08 -1.04

a T 0.09 0.09 0 0.07 0.17
S 5.03 1.02 0 -1.01 -4.02

v -35.43 -17.63 0 17.77 35.67

ATP 9.49 4.75 0 -4.74 -9.49

N -1.04 -0.51 0 0.12 2.09

¢ T 2.07 1.05 0 -0.95 -1.28
Sp 5.20 2.03 0 -2.13 -4.20

V 1.07 0.51 0 -0.32 -1.10

ATP 1.07 0.54 0 -0.54 -1.08

N -1.08 -0.20 0 0.50 1.15

1% 7 2.07 1.09 0 -1.05 -2.29
S 0.92 0.22 0 -0.12 -1.02

v 1.03 0.38 0 -0.41 -1.27
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TABLE 4. (Continued.) Post optimality experiment of Example 1.

ATP 0.03 0.02 0 -0.02 -0.03

N 0.24 0.06 0 -0.02 -0.28

¢, T 0.13 0.03 0 -0.19 -0.25
S 0.13 0.04 0 -0.06 -0.13

14 0.11 0.02 0 -0.01 -0.15

ATP -0.05 -0.03 0 0.03 0.05

N 1.02 0.16 0 -0.21 -1.12

> 4 1.04 0.13 0 -0.11 L18
Sp 2.02 0.5 0 -0.3 -1.03

v 1.01 0.12 0 -0.14 -0.94
ATP -14.34 2717 0 7.17 14.34

N -0.28 -0.1 0 0.01 -0.27

: T -0.12 -0.08 0 0.13 0.2
S -18.01 -5.02 0 5.01 17.01
4 -13.73 -6.76 0 6.94 13.82
ATP 30.74 15.36 0 -15.35 -30.71

N -2.57 -0.31 0 0.21 3.34

“ T 0.11 0.1 0 -0.03 -0.12
Sp 20.05 10.21 0 -10.03 20.95
14 29.24 14.67 0 -14.58 -29.14

(iii) From Table 4, it follows that the credit period (V) is
less sensible with respect to the rest of the inventory
parameters.

(iv) From Table 4, it follows that the cycle length (7) is is
less sensible with respect to the rest of the inventory
parameters.

A. MANAGERIAL INSIGHT
Trade credit dependent demand refers to a situation
where a firm’s customers rely heavily on trade credit to
finance their purchases. This type of demand can have
both positive and negative effects on a firm’s financial
performance.

On the one hand, offering trade credit can increase sales
and help a firm gain market share by making it easier for
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customers to purchase its products. However, trade credit
also carries risks, such as the possibility of bad debt and the
potential for cash flow problems if customers do not pay their
bills on time.

As a manager, it is important to carefully consider
the trade-offs involved in offering trade credit to cus-
tomers. To minimize the risks of bad debt and cash
flow problems, it is important to establish clear credit
policies and procedures, including credit limits and payment
terms.

Additionally, managers should closely monitor customer
payment behavior and take action when necessary to ensure
timely payment. This may involve implementing collection
policies, such as offering discounts for early payment or
charging late fees for overdue balances.
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FIGURE 4. Concavity of the objective function of problem 1 with respect
to Example-1.

Green level dependent demand refers to a situation where
a firm’s customers demand products that are environmentally
sustainable or “green”. This type of demand can have
both opportunities and challenges for a firm’s financial
performance.

On the one hand, catering to green demand can help a firm
gain a competitive advantage by differentiating its products
and appealing to environmentally conscious consumers. This
can result in increased sales and market share. Moreover,
investing in environmentally sustainable practices can also
result in cost savings over time, for instance through reduced
energy usage or waste reduction.

However, meeting green demand can also require sig-
nificant investments in research and development, product
redesign, and operational changes. These investments may
be difficult to justify if the expected increase in sales does
not materialize. Additionally, environmental regulations and
standards may vary by region, making it challenging for firms
to navigate the regulatory landscape and ensure compliance.

As a manager, it is important to carefully evaluate the
potential benefits and costs of meeting green demand. This
may involve conducting market research to assess the level
of green demand in target markets, as well as assessing
the feasibility and cost-effectiveness of environmentally
sustainable practices.

Managers should also consider partnering with suppliers,
industry associations, and regulatory bodies to stay up-to-date
on best practices and compliance requirements. Additionally,
investing in employee training and engagement can help
to build a culture of sustainability within the organization
and ensure that sustainability practices are embedded in all
aspects of the firm’s operations.

Selling price dependent demand refers to a situation
where a firm’s customers are sensitive to changes in the
price of its products. This type of demand can have
both opportunities and challenges for a firm’s financial
performance.

On the one hand, lowering prices can help a firm gain
market share by making its products more affordable and
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appealing to price-sensitive consumers. Additionally, raising
prices can increase profit margins and allow a firm to invest
in research and development, marketing, and other areas that
can enhance its competitive position.

However, changes in price can also result in changes in
demand that can be difficult to predict and manage. For
instance, if a firm raises its prices too much, it may lose
customers to competitors with lower prices. Conversely, if a
firm lowers its prices too much, it may struggle to maintain
profitability.

As a manager, it is important to carefully evaluate the
relationship between price and demand and develop pricing
strategies that balance the need for profitability with the need
to remain competitive in the marketplace. This may involve
conducting market research to assess customer sensitivity to
price changes, as well as analyzing data on historical sales
and pricing trends.

Managers should also consider implementing dynamic
pricing strategies that adjust prices based on factors such
as seasonality, demand fluctuations, and competitor pricing.
Additionally, implementing effective marketing and promo-
tional strategies can help to increase demand and mitigate the
potential negative effects of price changes.

Overall, while trade credit can be an effective tool for
increasing sales, it is important for managers to carefully
manage the associated risks and take steps to ensure timely
payment from customers. While meeting green demand can
offer significant opportunities for firms, it is important for
managers to carefully evaluate the potential costs and benefits
and take a strategic approach to managing sustainability
practices within the organization. Selling price dependent
demand can present challenges for firms, it also presents
opportunities for managers to develop effective pricing and
marketing strategies that can enhance the firm’s competitive
position and financial performance.

VIi. CONCLUSIONS AND FUTURE SCOPE
Credit financing is an interesting strategy for inventory
management. In this study, we develop a price- and green-
level-dependent inventory model for demand. The product’s
greenness has an impact on production costs as well. There
is extensive coverage of a variety of conceivable situations
and subsituations concerning credit facilities. Due to the
nonlinearity of the objective function, these optimisation
problems are resolved using the Grey Wolf Optimizar (GWO)
technique and compared with some other algorithms. It is
observe that GWO perform better for solving the optimiza-
tion problem. The concavity of the objective function is
graphically represented using the MATLAB 2018a tool. The
numerical results suggest that, from an economic standpoint,
circumstance 2.1 is more profitable. This business strategy
can be used to produce commodities for bakeries, pharmacies,
cosmetics, cement, chemicals, food products (such sugar and
powdered milk), alcoholic beverages, and other industries.
By incorporating nonlinear stock dependant demand,
preservation technologies, carbon cap and trade legislation,
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trade credit (both single and two level), etc., anyone can
broaden a study. When tackling this challenging problem
using the soft computing technique, anyone can add an
interval objective.
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