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ABSTRACT Steel strip can develop surface defects during manufacturing and processing, affecting
structural integrity and usability. These defects can be caused by both internal and external factors.
However, traditional manual error detection techniques do not meet today’s accuracy standards. Therefore,
an improved version of the YOLOv7 algorithm for steel strip surface defect detection is proposed in this
work. A lightweight and inexpensive Coordinate Attention (CA) mechanism is built into the structure of the
head of YOLOv7. The SCYLLA-Intersection over Union (SIoU) loss function is used to improve detection
efficiency. Furthermore, to enhance the dataset, a vertical flip augmentation technique is applied to create
the optimal model:YOLOv7-CSF through fusion of CA and SIoU. It has been observed in the experimental
findings that the modified YOLOv7-CSF algorithm’s mAP value in the detection is 4.09% better than that
of the original YOLOv7 method, reaching 66.1% and a maximum of 96.9% accuracy in a single category
of defects. The efficacy and superiority of the updated model are shown by comparing it with the recently
announced YOLOv8, other steel strip datasets and other hyper-parameter tuned models, providing a novel
way for daily surface defect detection on steel strips.

INDEX TERMS Coordinate attention, SIoU, YOLOv7, steel strip, defect detection.

ABBREVIATIONS
YOLO You Only Look Once.
YOLOv7 You Only Look Once version 7.
SIoU SCYLLA Intersection over Union.
CNN Convolutional neural Network.
R-CNN Region based Convolutional Neural Network.
YOLOv2 You Only Look Once version 2.
YOLOv3 You Only Look Once version 3.
YOLOv4 You Only Look Once version 4.
YOLOv5 You Only Look Once version 5.
CSP Cross Stage Partial Network.
EELAN Extended Efficient Layer Aggregation Net-

work.
Conv Convolutional.
mm millimeter.
SVM Support Vector Machine.
LBP Local Binary Pattern.
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CV Computer Vision.
VGGNet Visual Geometry Group Network.
SDD Single Shot Detector.
CBAM Convolutional Block Attention Module.
RFB Receptive Field Block.
PANet Path Aggregation Network.
NEU-DET North Eastern University Steel Strip Dataset.
GIoU Generalized Intersection over Union.
ECA Efficient Channel Attention.
GC10_DET Dataset collected in the real industry.
BiFPN Bi-directional Feature Pyramid Network.
ML Machine Learning.
XSDD Steel Strip Defect Database.
CA Coordinate Attention.
CIoU Complete Intersection over Union.
ELAN Efficient Layer Aggregation Network.
SiLU Sigmoid Weighted Linear Unit.
MP MP Convolutional Layer in YOLOv7.
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SPP Spatial Pyramid Pooling.
SPPCSPC CSPNet with SPP Block.
SPPF Spatial Pyramid Pooling Fusion Network.
BN Batch Normalization.
NLNet Non-Local Networks.
GCNet Non-Local Networks meet Squeeze Excita-

tion Networks.
SE Squeeze and Excitation attention.
2D 2 dimensional.
ICIoU Improved Loss based on Complete Intersec-

tion over Union.
CPU Central Processing Unit.
GPU Graphics Processing Unit.
RAM Random Access Memory.
GB GigaBytes.
SGD Stochastic Gradient Descent.
FPS Frames Per Second.
GFLOPS Giga Floating Point Operations Per Second.
mAP Mean Average Precision.
P Precision.
R Recall.
P-R Precision-Recall.
AP Average Precision.
TP True Positive.
TN True Negative.
FN False Negative.
FP False Positive.
LBP Local Binary Pattern.
HOG Histogram Oriented Gradient.
SVM Support Vector Machine.
NNC Nearest Neighbor Classifier.
ROI Region of Interest.
IoU Intersection over Union.

I. INTRODUCTION-OBJECT DETECTION
Computer vision technology has advanced so rapidly that
object recognition and object segmentation tasks are widely
used in various real-world domains [1], [2], [3], [4], [5],
[6]. Over the past two decades, object detection has received
much attention as it is an important approach for locating
and identifying objects in visual images. The rapid devel-
opment of deep neural networks has greatly improved the
effectiveness of object recognition technology. State-of-the-
art object detection techniques based on deep learning can
be classified into two main types, namely, two-stage and
one-stage methods, depending on how candidate regions are
generated [7].
R-CNN [8] and its derivatives, like Faster R-CNN and

Mask R-CNN [9], [10], enhance object detection accuracy
by combining manual feature extraction with CNN-based
learning in a two-stage process. They select ROI and make
category predictions for detected targets. One-stage detec-
tors like YOLO and its derivatives immediately offer object
prediction on each position of the feature maps without the
need for the cascaded region classification step [11], [12],

[13]. YOLO series is ideal for real-time applications as it
can instantaneously train the entire input image and perform
the detection in a single neural network forward propagation.
The seventh version of YOLO was made available in 2022.
The model structure (CSP→EELAN), partial convolution
strategy method (Conv→RepConv), and label assignment
approach are the three areas where YOLOv7 differs signif-
icantly from previous versions [14].

A. STEEL STRIP DEFECT DETECTION
Defect detection and predictive maintenance are essential
practices to support sustainable production. Defect detection
helps reduce waste generation, optimize resource use, and
minimize environmental impact by identifying and eliminat-
ing defective products early in manufacturing. By proactively
addressing maintenance needs based on real-time monitoring
and data analysis, predictive maintenance ensures efficient
use of resources, extends equipment life and reduces waste
and downtime. These practices promote sustainable produc-
tion.

Steel is used as a rawmaterial in many other industries, and
its quality directly affects the final product, so in recent years,
the steel industry has sought stronger andmore effective qual-
ity control systems. Steel strip surfaces are used in various
applications in all fields. It is often used in automotive body
panels and engine parts and requires treatment to improve
corrosion resistance and paint adhesion. In the construction
sector, steel strip surfaces are used in structural members and
are often treated with galvanization or coatings to increase
durability and prevent corrosion. They are also applied to the
packaging of metal cans and lids where surface treatments
improve appearance and protect against corrosion. In the
electrical and electronics industry, steel strip surfaces treated
to improve electrical conductivity and prevent oxidation are
used for components such as wires and connectors. It is also
essential in metalworking, engineering and power generation,
where surface treatments are used to achieve precise dimen-
sions, optimal functional properties and resistance to high
temperatures and environmental influences.

Many surface defects in a steel strip greatly affect its
quality. One way to regulate quality is to implement a system
that can identify these defects early on. It is imperative that
this technology be non-invasive and able to detect surface
defects without causing any damage to steel strips. The main
drawbacks of manual inspection are:

• Time-consuming and ineffective: It takes a lot of time for
the interpreter to process a large number of recognition
images.

• High false and missed detection rate: Chronic fatigue,
poor judgment, operator error, missing data, etc., can
cause false positives and false negatives even for experts.

• Non-uniform evaluation findings: Some errors have sim-
ilar definitions, or even one error can be considered
two or three different types, so subjective considerations
greatly affect interpretation results.
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• Inaccurate assessment of defect grade: Using the already
prevalent video images on subjective assessment, it is
challenging for the interpreters to assess the extent of
the error.

For this reason, it is better to utilize an automated
inspection system that does not require human intervention
(although a human inspector can be used to ensure the sys-
tem is functioning properly or set it up to achieve higher
precision) and to develop a technique that can automati-
cally identify the pipeline defects, which lowers labour and
time costs while increasing the efficiency and quality of the
detection. As computing technology advances, artificial intel-
ligence approaches like machine learning and deep learning
are applied to defect identification for materials like metals,
semiconductors, fruits, etc. Computer vision-based detection
approaches outperform traditional detectionmethods in terms
of efficiency and accuracy while reducing labour expenses.
This also leads to the automation of the detection process.

FIGURE 1. Machine vision defect detection system.

Machine vision-detecting equipment typically includes
industrial cameras, light sources, protective devices, etc. The
device is mounted symmetrically on the top and bottom of the
steel strip. A series of industrial cameras must cover the entire
steel strip, so proper placement is required. In general, seven
cameras are sufficient to cover the entire surface of the steel
strip. The field of view of the steel strip camera increases as
the distance between the camera and the strip increases. If the
surface of the steel strip is larger, then the number of cameras
can be reduced. The speed of the strip moving on conveyor
rollers can reach 400m/min, so industrial cameras need to
record at high speeds to meet real-time needs. The images
captured by the industrial cameras are transmitted to the
server through optical fibre, suitable algorithms process the
images on the server, and the processed images are displayed
on the console panel. Fig. 1 shows how a steel strip is passed
through a machine vision device, and the detection process
is automated. An image library containing captured images
is accessed via a server. The control panel takes over access
to the collected images, which are subsequently processed
for image processing, defect identification, and detection.
Automatic detection aims to specify the type of defect and to
use a box to indicate the location of the defect. More detailed
information can be found in [15] and [16].

Many researchers have recently become interested in
detecting steel strip surface defects using machine learn-
ing techniques. For the purpose of identifying steel strip
defects, the k-nearest neighbour approach has been described
by Karthikeyan et al. [17] and Zaghdoudi et al. [18]. The
efficiency of various enhanced SVM versions for identifying
surface defects in steel strips was discussed by Schleif et al.
[19] and Gong et al. [20]. The LBP method was used by
Liu et al. [21] to identify steel strip surface defects. The
aforementioned standard machine learning techniques can
achieve good results. Yet, they usually at first request feature
extraction, leading to algorithms whose output is bound by
the outcomes of feature extraction. Since 2014, with the
advancement of deep learning technology, more and more
researchers are using deep learning methods along with soft
computing and computer vision to detect and label surface
defects in steel strips.

The CV community has seen the emergence of a num-
ber of new architectures, including the popular GoogleNet
[22], VGGNet [23], RCNN [8], Fast RCNN [9], and and
Faster RCNN [9]. The authors, Liang T. et.al [24], have
enhanced sparse R-CNN by incorporating a coordinate atten-
tion block with ResNet and constructing a feature pyramid to
modify the backbone. By utilizing this approach, they have
successfully developed an enhanced model for identifying
regions of interest in images. The model extracts relevant
features and prioritizes important information, thereby sig-
nificantly enhancing the accuracy of the detection process.
In their study, Bao et al. [25] employ the ClassDecoder tech-
nique to enhance category sensitivity and improve detection
performance specifically for autonomous driving applica-
tions. The distribution of object categories within particular
scene backgrounds aligns with the connection between
objects and the image context. Pan et al. [26] proposes an
anchor-free lightweight object detector called ALODAD for
autonomous driving, which incorporates an attention scheme
into the lightweight neural network GhostNet and builds an
anchor-free detection framework to achieve lower compu-
tational costs and provide parameters with high detection
accuracy. In the proposedmethod, the authors also add an IoU
branch to the decoupled detector to rank the vast number of
candidate detections accurately and have achieved significant
accuracy.

The above architecture has extensive applications in
medicine, alternative energy, and self-driving cars. However,
these architectures require additional training time and are
implemented in multiple phases, making them unsuitable for
real-time deployment. Therefore, lightweight architectures
are necessary to improve detection accuracy and optimize
inference speed.

Following the above premise, CV researchers are keen to
develop new lightweight architectures that can be deployed
on edge devices while utilizing limited computing resources.
The most popular designs that focus on speed and accuracy
for edge devices in this regard are SSD, MobileNet [27], and
YOLO. The YOLO architecture uses two fully connected
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layers, making it easier to deploy than differently-sized
convolutional layers in SSD networks. YOLO has evolved
through various iterations, such as YOLOv2, YOLOv3,
YOLOv4, YOLOv5, YOLOv6 and most recently YOLOv7.
The author’s Zheng.et.al [28] focus on inspecting industrial
products in semiconductor, steel and fabric manufactur-
ing processes. They investigated recent advances in deep
learning-based inspection algorithms. They presented their
applications in the steel, fabric, and semi-conductor indus-
tries and provided information on publicly available datasets
containing surface image samples to facilitate the research
on deep learning-based surface inspection. The use of deep
learning (DL) in intelligent machining and tool monitoring
for smart manufacturing is explored by Nasir et al. [29].
Furthermore, Various DL models, including autoencoders,
deep belief networks, convolutional neural networks (CNNs),
and recurrent neural networks (RNNs), are examined along
with their applications in this field. A novel defect detec-
tion approach based on K-nearest neighbour (KNN) and
Euclidean clustering segmentation to identify the surface
defects of lithium batteries is proposed by Liu et al. [30], and
an industrial application example of lithium battery produc-
tion is demonstrated, which meets the industrial application
requirements. Table 1 below shows the detection of strip
defects by YOLO in recent years.

TABLE 1. Existing YOLO-based steel strip defect detection.

Small target detection is a challenge for deep learning-
based approaches, and efficient model deployment to mobile
and embedded devices requires lightweight models that are
trainable, effective and have fast detection speeds. Under-
standing the effectiveness of object detection that leads to
predictive maintenance is one of the major challenges in
computer vision tasks that require the specification of a loss
function. A loss function measures how well an ML model
can predict the predicted outcome. Achieving standard accu-
racy requires fine-tuning the hyper-parameters. Especially
due to recent technological developments, YOLO seems to be
the technology that has received the most research attention.
From Table 1, we can see that most strip surface defect
detection is based on the NEU-DET and GC10-DET datasets.
The YOLO version that was actively experimented with in
this work was YOLOv7, which was the most recent version
at the time this work was carried out. YOLOv7 is trained on
COCO dataset that contains 80 classes. The current study

aims to provide a comprehensive solution to another steel
strip dataset i.e., on the XSDD dataset, by improving the
YOLOv7 baseline to balance accuracy and detection time.
The weights used in this study are pre-trained weights. Based
on the YOLOv7 method, a lightweight YOLOv7-CSF is
introduced by including the CA module and SIoU loss func-
tion. An optimizedmodel is then built by adding a vertical flip
data augmentation technique to address the problems with
small target detection. The experimental results show that
the proposed strategy outperforms YOLOv7 on the XSDD
dataset, highlighting its potential as a significant advance-
ment in object detection methods.

The contributions of this study are enumerated as follows
in the context of our experiments:

1) A CA mechanism is embedded to increase the detection
accuracy. The CA mechanism allows the networks to focus
more on errors by acting as a lightweight and cost-effective
attention strategy.

2) In order to accelerate network convergence, increase
detection effectiveness, address the issue of dataset imbal-
ance, and lessen the detection of false detection in steel
strips, an updated loss function for YOLOv7, SIoU is utilized
rather than the standard CIoU. Penalty metrics were revised
in SIoU to take the desired regression’s vector angle into
consideration.

3) Fine-tuning the hyper-parameters leads to better model
performance, fewer errors, better results, and optimization.
The model is trained with the vertical flipping data augmen-
tation technique.

An enhanced YOLOv7-CSF is proposed by combining
the CA mechanism, SIoU loss function with the YOLOv7
architecture and with the vertical flipping data augmentation
technique for balancing the classes. The remaining sections
of this study are organized as follows: the second section
describes methodology with the background of YOLOv7
detection framework, coordinate attention mechanism, SIoU
loss function, fine-tuning hyper-parameters and presented
YOLOv7-CSF model. The third section then introduces the
experimental dataset, evaluation indicators and metrics. Test
results are described in the fourth section. Finally, conclu-
sions are drawn and recommendations for further research are
made.

II. METHODOLOGY
This section provides insights into the background of
YOLOv7 network, the functioning of Coordinate attention
module, SIoU loss function, and understanding of optimiza-
tion with fine tuning of hyper-parameters.

A. BACKGROUND OF YOLOV7 NETWORK
Alexey Bochkovskiy created the latest YOLO object detec-
tion model, YOLOv7 [38]. This architecture is faster and
more accurate than all previous iterations. The authors mainly
made two contributions: (1) their ultimate aggregation layer,
E-ELAN, which is an improved version of the ELAN com-
putational block; and (2) an innovative method for scaling
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models that allows for parallel scaling of model depth and
width by concatenating layers.

The input, backbone, and head networks are the three
components that make up the YOLOv7 network. The image
was first preprocessed by the YOLOv7 network then scaled
to 640∗640∗3 and fed the backbone network as input. Similar
to YOLOv5, SiLU was used as the activation function in
YOLOv7. Fig.2 shows the architecture of YOLOv7 with
added CA module in the head part.

Fig. 3 shows the structure of the ELAN, RepConv and
SPPCSPC modules. In YOLOv7, the ELAN module, which
was made up of various convolutions, was added. Expand,
shuffle, and merge cardinality of the image features are
utilized to continuously improve the network’s learning
ability without erasing the original gradient route, thus boost-
ing the network’s accuracy. ELAN modules offer scalable
and high-performance solutions for local area networks,
incorporating features such as redundancy and centralized
management. These capabilities elevate network reliability
and adaptability to new levels.

The upper branch of theMPmodule reduced the length and
width of the feature map in half by using the max-pooling
operations and convolution. The channels were split in half
by the first convolution on the lower branch, and the length
and width were also cut in half by the second convolution on
the feature map with 3 size kernel and a 2 stride. The upper
and lower branches were joined and the final product was a
feature map with half output length, half width, and equal
input and output channels.

Convolution was applied with a kernel size of 1 (1∗1) and
3 layers. The main network consists of an SPPCSPC mod-
ule, some CBS modules, an MP module, a CatConv module
and three consecutive RepConv modules. Just as YOLOv5
uses the SPPF module, the SPPCSPC module extends the
receiving field of the network. While preserving the integrity
of feature map size, the SPPCSPC module may capture
multi-scale object data. A more standardized model with
a new parameterized structure, the RepConv structure, was
developed in YOLOv7 [39]. The precision of computations
is enhanced by RepConv without requiring additional com-
putational resources. Furthermore, RepConv does not impose
restrictions on the original convolution modules in terms of
their type, quantity, numerical precision, and specific param-
eters.

The RepConv module updated the entire output channel
to create a bbox prediction task, class, and objectivity results
for image recognition. It enhanced the inference effect and
increased the training time [40]. During training, the entire
module is split into several identical or different module
branches. Then 3∗3 convolutional BN, 1∗1 convolutional
BN and BN layers were added to the training model. Dur-
ing inference, the three components were re-parameterized,
using a 3∗3 convolutional output to transform their param-
eters into another set of parameters equivalent to them.
A fast single-branch inference model was built from the
multi-branch training model. The SPPCSPC module is more

efficient than other methods as it reduces the number of
parameters and calculations needed for feature extraction.
One can boost the precision of detecting small objects by
maintaining the sensing field of the model intact. This allows
for accurate localization of various small targets, regardless
of their sizes. It is lightweight and seamlessly integrates
into existing models with minimal modifications needed.
In addition to maintaining the high efficiency and other good
features of the multi-branch model, YOLOv7 can improve
network performance by balancing speed and accuracy.

B. COORDINATE ATTENTION MECHANISM
MODULE-PAYING SPECIFIC ATTENTION TO INFORMATION
Non-local/self-attention networks have recently received a lot
of attention due to their ability to develop spatial or channel-
wise attention. Examples of common networks that collect
many types of spatial data via non-local techniques include
NLNet [41], GCNet [42], A2Net [43], ScNet [44], GSoP-
Net [45], or CCNet [46]. CIFAR-100 [47], and self-attention
modules [48] are commonly used in big models, but are not
suitable for mobile networks due to their computational com-
plexity. In deep neural networks, the weights are the resources
that are allocated as part of the attention mechanism. The
following attention mechanisms are common in the area of
vision: spatial domain [49], [50], [51], channel domain [52],
[53], and mixed domain [54], [55], [56]. The SE channel
and the dependencies between channels, that are moderately
typical in the field of vision. The CBAM, an extension of
SE, now includes a two-dimensional spatial attention matrix.
CA transforms channel attention into two one-dimensional
feature encoding processes that associate features in two
spatial directions. One spatial direction can be used to store
remote dependencies, while the other can be used to store
precise location information. The created feature maps are
then formulated as a pair of location-sensitive attention maps
and direction-aware attention maps, respectively.

A 1∗1 convolutional layer is added after the global aver-
age pooling layer and the fully connected layer is removed.
ECA is an enhanced version of SE that successfully captures
cross-channel interactions without dimensionality reduction.
Convolutions can only model short-range dependencies,
which are inadequate for vision tasks, and can only capture
local connections. For mobile networks, the computational
cost incurred by the majority of attention mechanisms is too
expensive.

A powerful new attention mechanism known as ‘‘coordi-
nated attention’’ was first described in 2021. The CA mech-
anism outperforms existing lightweight attention approaches
(e.g., SE, CBAM) by factoring the 2D global pooling oper-
ations into two 1D encoding processes. This allows for the
capturing of long dependencies along with one spatial dimen-
sion while maintaining the accuracy of data localization
information with other one. The two direction-aware and
position-sensitive attention maps are then created separately
from the output feature maps and can be used to improve
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FIGURE 2. YOLOv7 network structure with added CA module.

the representations of the target objects in the input feature
map. CA can be easily integrated into well-known mobile
networks like MobileNetV2, MobileNeXt, and EfficientNet
with almost no additional computational cost. The advantages
of CA are as follows.

• Collects cross-channel data and direction- and position-
sensitive data, which help models more accurately find
and identify objects of interest.

• As a pre-trained model, CA can significantly improve
task performance when using downstream cellular net-
works, especially for dense prediction problems (e.g.,
semantic segmentation).

• The composition block diagram of the CA mechanism
is shown in Fig. 4. Coordinate information embedding
and attention generation [52], are the two phases in
which the CA mechanism encodes channel correlation
and coordinates information.

The average value of each line and column of a channel is
calculated using one of the two formulations below given a
feature map X:

Zh
c(h) =

1
W

∑
0≤i≤W

xc(h, i) (1)

ZW
c (W) =

1
h

∑
0≤i≤h

xc(j,W) (2)

where xc designates the c-th channel of the feature map, zh
is the output of the transform at height h and has the shape
(c,W), and zw is the output of the transform at width w and
has the shape (c,h) and W and H stand for the feature map’s
individual width and height.

FIGURE 3. Structure of (a) ELAN module (b) RepConv module and
(c) SPPCSPC module.

FIGURE 4. Coordinate attention mechanism composition block diagram.

The dimension of the combined feature map is compressed
by a 1∗1 convolution layer followed by a ReLU activation
layer, which can be written as:

f = ReLU(Conv1∗1(concat(Zh,ZW))) (3)

where concat refers to the manipulation of concatenation and
f is the shape (C/r, h+W). After that, f is divided into the
tensors fhϵR

c
rXhandfWϵR

c
rXW. Two 1∗1 convolution layers

are defined as follows for fh and fW, respectively, in an effort
to restore them into the same shape as zh and zW.

gh = σ (Fh(fh)) (4)

gW = σ (FW(fW)) (5)

Here, Fh and FW are the convolution manipulations for
fh and fW independently, and and σ is the sigmoid activa-
tion function. Expanded feature maps for the horizontal and

129498 VOLUME 11, 2023



G. Deepti Raj, B. Prabadevi: Steel Strip Quality Assurance With YOLOV7-CSF

vertical coordinates, respectively, are employed as attention
weights by first obtaining feature maps gh and gW.
Reweighing each value on the original feature map x is

described as follows:

yc(i, j) =yc(i, j)Xghc(i)Xg
W
c (j) (6)

where yc is the cth channel feature map generated by the
attention block.

The utilization of CA holds great significance in defect
detection as it empowers the model to concentrate on partic-
ular spatial regions within an image. The CA integration to
the base model assists in identifying areas of focus that have
a higher probability of containing defects. This ultimately
enhances the accuracy of the model in detecting and localiz-
ing defects. By enabling themodel to focus on the coordinates
or locations where defects are more susceptible to manifest,
CA improves the model’s ability to accurately and swiftly
identify defects in images. The structure of the embedded CA
module in the neck of YOLOv7 is shown in Fig. 5. The CA
module is inserted after the MP block instead of the Conv
module, as seen in the Fig. 5b. The CA mechanism makes it
possible for the neural network to focus on valid coordinates
while suppressing invalid coordinates, thus improving the
efficiency of information flow. This reduces the number of
parameters and GFLOPS in our experiment.

C. SIoU LOSS FUNCTION
Estimated and ground truth box’s aspect ratio, overlap area,
distance, and other bounding box regressionmetrics, form the
basis of conventional object identification loss functions (i.e.
GIoU, CIoU, ICIoU etc). According to Gevorgyan et al. [57],
the addition of SIoU (SCYLLA-IoU) greatly facilitates the
training process because it makes the prediction box to drift
to the nearest axes quite quickly, requiring only the regression
of one coordinate, either X or Y.

Equation (7) depicts the loss function, which has three
parts: Bounding box regression loss function Lbox , classifi-
cation loss function Lcls, and confidence loss function Lobj.

LOSSFun = Lobj + Lcls + Lbox (7)

The bounding box regression loss function in the YOLOv7
source code is CIoU.The only dimensions that CIoU can con-
sider are the overlap area, centroid distance, and aspect ratio
of the real frame and the predicted frame. Since SIoU can
better reflect the variations in width, height, and confidence
level, it was chosen over CIoU.

The SIoU [57] loss function mainly includes the following
four parts: Angle cost 3, Distance cost 1, Shape cost �, and
IoU cost. Angle cost is defined by equation (8).

3 = 1 − 2∗sin2(arcsin(x) −
π

4
) (8)

where x =
ch
σ
, σ is the distance between the ground truth

box and the prediction box’s center point, ch is the vertical
distance between the prediction box’s and the ground truth

FIGURE 5. Structure of (a) YOLOv7 head, (b) YOLOv7+CA head.

box’s center points. Equation(9) defines the distance cost
based on the angle cost.

1 = 2 − e
(3−2)×

(
ch
ch1

)2
− e

(3−2)×
(

cW
cW1

)2
(9)

x =

max
(
bgtcy, bcy

)
−min

(
bgtcy, bcy

)
√(

bgtcx − bcx
)2

+

(
bgtcy − bcy

)2 (10)

Equation (10) gives the average distance between the hor-
izontal and vertical coordinates of the ground truth box and
centre point of the prediction box. cW is the horizontal dis-
tance between the ground truth box and the prediction box’s
center point, the prediction box’s center point’s horizontal and
vertical coordinates are bcx and bcy; the ground truth box’s
center point’s horizontal and vertical coordinates are bgtcx and
bgtcy; Equation (11) defines shape cost as follows:

�=

1 − e
−

|w−wgt |
max(w,wgt)

θ

+

1 − e
−

|h−hgt |
max(h,hgt)

θ

(11)

hgt and wgt are the ground truth box’s width and height, w and
h are the prediction box’s width and height.

The genetic algorithm calculates the value of θ , which
establishes how much to focus on the shape’s cost. The value
varies between 2 and 4 in different data sets. Equation (12)
defines the IoU cost as follows:

IoU =
A ∩ B
A ∪ B

(12)

where A is the prediction box’s area and B is the area of the
ground truth box.
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Equation (13) is obtained as the concluding loss function
SIoU.

SIoU = 1 − IoU+
� + 1

2
(13)

SIoU significantly improves the model’s precision in iden-
tifying defects of varied sizes. This is especially valuable
when dealing with defect detection tasks that involve varying
scales of defects within images, ultimately enhancing the pre-
cision and robustness of the base model. In our investigation,
it is observed that embedding the SIoU loss function improves
training accuracy.

D. OPTIMIZATION WITH FINE-TUNING
HYPER-PARAMETERS
An example of an optimization problem is the tuning of
machine learning models. To tune the hyper-parameters of a
learning algorithm, one must specify a set of ideal values and
then apply the tuned method to any set of data. All parameters
that the user can arbitrarily set before starting the training
are called hyper-parameters. Hyper-parameters control the
original structure of the model. Setting the hyper-parameters
is necessary to determine the minimum (for example, loss) or
maximum (for example, precision) of the function.

In this study, vertical flipping is taken as a hyper-parameter
for our model. By completely inverting the rows and columns
of pixels in an image, vertical flip augmentation is achieved.
As a result, the image along the x-axis will be upside down.
The input image is rotated vertically 180 degrees when it
is vertically flipped. The total number of input images for
the model increases to 2292 when the vertical flip is applied
during the pre-processing stage on our dataset (total images=

1360). YOLOv7-CSF: An optimized YOLOv7-CSF is cre-
ated by adding CA module, taking the SIoU loss function
(S), and adapting the hyper-parameter vertical flip (F). The
modified YOLOv7-CSF framework is shown in Fig. 6.

FIGURE 6. Modified YOLOv7-CSF framework.

III. INTRODUCTION TO DATASETS, EXPERIMENT
CONFIGURATION AND METRICS
This section gives the overview of XSDD dataset, experimen-
tal configuration, metrics and indicators.

A. XSDD DATASET
The XSDD dataset, used in this study, is available
at https://github.com/Fighter20092392/X-SDD-A- New-
benchmark. The steel surface XSDD dataset has seven dif-
ferent types of defects, including ash sheet (As), inclusion
slag (Is), iron red (Ir), oxide plate (Op), oxide temperature
(Ot), roll printing (Rp), and scratch surface (Ss). Raw images
of the steel strip can be found at the dataset link.

TABLE 2. Images distribution of XSDD dataset.

FIGURE 7. Dataset classes distribution.

The annotation of the defective images with bounding
boxes is done using the developer tool ROBOFLOW. Table 2
and Fig. 7 display the distribution of images in the XSDD
dataset.The below Table 3 is a description of each XSDD
dataset defect category in detail.

B. EXPERIMENTAL CONFIGURATION, EVALUATION
METRICS AND INDICATORS.
The experimental evaluation setup is shown in Table 4 with
the hardware environment and software versions and the
evaluation index information is shown in Table 5. The pro-
cessing platform is a desktop computer running the Windows
10 operating system. CPU: Intel(R) Core(TM) i5-1035G;
memory: 12GB. The Google Colaboratory notebook with an
NVIDIA T4 Tensor Core GPU, Python version 3.7.13, and
the Torch framework version 1.11.0+cu113 was used as the
implementation platform for this work.

Precision, recall, and mAP serve as the primary eval-
uation metrics employed to assess the model’s capability
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TABLE 3. Elaboration of XSDD dataset defects.

to accurately classify or detect objects/defects. These met-
rics ensure a balance between identifying true positives and
avoiding false positives, thus enabling an all-encompassing
quantification of the model’s accuracy and resilience [58],
[59]. The other evaluation metrics used in this study to show
that the updated YOLOv7 model performs better include
mAP, latency, FPS, parameters, GFLOPS, and others. The
terms Fps, GFLOPS, latency, and parameters refer to the

TABLE 4. Experimental evaluation setup.

TABLE 5. Evaluation indices.

number of images processed per second, 1 billion floating
point operations executed per second, the time required for
inference, and the total number of parameters, respectively.
By computing the region covered by the precision, equation
(14) and recall, equation (15) curves (P-R curves) using the
coordinate axes, AP values, and equation (16) for each cate-
gory are obtained. The mAP, equation (17) is then calculated
by averaging the AP scores of the seven different classes. The
following is a list of performance metrics:

P =
TP

FP + TP
(14)

R =
TP

FN + TP
(15)

TP denotes that the model predicts positive cases and that
the sample’s actual class is positive; FN predicts negative
results despite the fact that the example should be positively
classified; Although the prediction is positive, FP indicates
that the true class of the sample is negative.

AP =

∫ 1

0
p (R) dR (16)

mAP =
1
k

∑k

i=1
AP (i) (17)

FPS is a metric used in real-time applications to measure
how fast a model can process data. Equation (18) is used
to estimate the FPS, while equation (19) determines the F1
Score.

FPS =
No of frames

Total detection time(s)
(18)
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F1 =
2 × Precision × Recall
Precision + Recall

(19)

IV. RESULTS
Table 6 compares the mAP, Precision, Recall, and F1 scores
of several models. The detection Inference is represented
as DI in Table 6 and 9. In YOLOv7-CA, the coordinate
attention mechanism is integrated into the network struc-
ture. YOLOv7-SIoU uses the SIoU loss function instead
of the traditional CIoU, in YOLOv7-CA+SIoU, CA and
SIoU are combined, and YOLOv7-CSF is formed by tak-
ing CA, SIoU, hyper-parameter vertical flipping. As we can
see our modified YOLOv7-CSF model increased the aver-
age accuracy by 4.09% compared to the original YOLOv7
model. This resulted in a 5.78% recall increase. The F1
score of YOLOv7-CSF is 67.88%. Although the precision
value of YOLOv7-CA is higher at 75.1%, other indicators of
YOLOv7-CSF were much better. When the detection infer-
ence is calculated with a confidence threshold of 0.25, it can
be seen that the original YOLOv7 model, YOLOv7-SIoU,
has detection inferences of 11.8ms and 11.9ms, respectively,
while YOLOv7-CSF has a detection inference of 12.0ms.
Although the inference has been slightly raised and the F1
score is little bit lowered, it can still detect steel strip defects in
real-time engineering. The confusion matrix summarizes the
results of a classifier. The number of accurate and incorrect
predictions for each class is expressed as count values.

TABLE 6. Metrics comparison for different models.

TABLE 7. Detection effect of YOLOV7-CSF on each category.

Figures Fig.8a and Fig.8b show the confusion matrix of
YOLOv7 and YOLOv7-CSF. The defect detection perfor-
mance for every class of defect on the X-SDD dataset is
shown in Table 7. According to Table 7, the scratch surface
has a 100% recall and 96.9% mAP rate, while the oxide

TABLE 8. Comparison of model parameters.

plate has the highest precision value. The precision, recall,
and mAP values for the oxide temperature class are lower-
25.1, 24.5, and 16.3, respectively. This indicates that the
model cannot accurately detect this particular class. Table 8
compares the parameters of the different models. By adding
the CAmechanism, the parameters and GFLOPS are reduced
by almost 5.69% and 61.4%, respectively. The FPS rate of
YOLOv7-SIoU is 84.03s which is almost the same as of the
original YOLOv7 84.7s.

To exemplify the appropriateness of our model, a com-
parison of other hyper-parameters is made. Momentum and
HYP are the hyper-parameters discussed in this work. The
gradient descent optimization method has a characteristic
called momentum which allows the search to navigate flat
areas of the search space and avoid noisy gradient oscil-
lations. Momentum in YOLOv7 has a default value of
0.937. Hyper-parameters like warmup epochs, class loss
gain, object loss gain, and image copy-paste are denoted
by the acronym HYP. The default settings in YOLOv7
for the above hyper-parameters are 3, 0.3, 0.7, and 0.0,
respectively. We selected warmup epochs=2.5, class loss
gain=0.25, object loss gain=0.6, and copy-paste=0.1 for
adjusting YOLOv7 to YOLOv7-CSF+HYP.

A comparison of YOLOv7-CSF with different hyper-
parameters is shown in Table 9. The YOLOv7-CSF+

Momentum+HYP model has updated hyper-parameters and
a momentum value of 0.92. The YOLOv7-CSF+HYP
model is a CSF model with only updated hyper-parameters.
Table 9 shows that, in terms of training accuracy, all of the
YOLOv7-CSF+ Momentum+HYP, YOLOv7-CSF+HYP,
and YOLOv7-CSF+Momentum models outperformed the
basic YOLOv7 model by a range of 0.6% to 3.3%. The pro-
posed YOLOv7-CSF outperforms all previous models with a
detection accuracy of 66.1%.

The visual detection results of XSDD dataset are shown in
Fig. 9.
Fig. 10 show the results values graph for the YOLOv7-CA

and YOLOv7-CSF on the XSDD dataset. Figs. 11 (a) and (b)
show the P-R curves of YOLOv7-SIoU and YOLOv7-CSF,
respectively.

Validation of the model can only show that the modified
approach presented in this study is successful compared with
the traditional image processing techniques Local Binary Pat-
tern (LBP), Nearest Neighbor Classifier (NNC), Histogram
Oriented Gradient (HOG), Support Vector Machine (SVM)
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FIGURE 8. Confusion matrix of (a) YOLOv7, (b) YOLOv7-CSF.

TABLE 9. Comparison of yolov7-csf with other hyper-parameters.

and the recently publishedYOLOv8model. From the table 10
we can see that the proposedYOLOv7-CSF attains highmAP,
Recall when compared to other models on XSDD dataset.

FIGURE 9. Visual detection results on XSDD Dataset. In sequence, the
pictures are: (a) oxide plate(Op), (b) inclusion slag (Is), (c) iron red (Ir),
(d) ash sheet (As), (e) roll printing(Rp) and (f) oxide temperature (Ot).

FIGURE 10. Results graph for YOLOv7-CSF.

TABLE 10. Metrics comparison between different models.

Also, comparing our proposed model to other datasets is
crucial for evaluating its ability to generalize and perform
well across various data sources.

The effectiveness and versatility of our proposedmodel can
be observed in the results showcased in table 11. Regardless
of the data environment, it has consistently proven to perform
successfully on different datasets, highlighting its robustness.
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FIGURE 11. (a): P-R Curve of YOLOv7-CSF+Momentum (b): P-R Curve of
YOLOv7-CSF.

TABLE 11. Comparison between different datasets.

Manufacturers benefit from defect detection and predictive
maintenance by maintaining product quality, reducing costs,
improving productivity, meeting regulatory requirements,
and improving customer satisfaction. Reducing manufactur-
ing costs, eliminating defective products, reducing recalls and
complaints, streamlining procedures, providing suggestions
for process improvement, and ensuring regulatory compli-
ance are added advantages. Defect detection ultimately helps
build a good brand reputation and competitive advantage,
leading to sustainable manufacturing. Over the last few
years, advanced deep learning-based computer vision algo-
rithms are revolutionizing the manufacturing field. Thus,
several industry-related hard problems can be solved by train-
ing these algorithms, including defect detection in various

materials. Therefore, identifying steel surface defects is con-
sidered one of the most important tasks in the steel industry.
According to the comparison and analysis of the set of
experiments in this paper, the improved YOLOv7 algorithm
proposed in this study shows remarkable advantages in
detection accuracy. Autonomous Vehicles, Surveillance &
Security, Retail & Inventory Control, Manufacturing &Qual-
ity Control, Healthcare, Agriculture, Robotics & Drones,
Sports Analytics, etc. Are some of the industries where our
proposed YOLOv7-CSF can be used.

V. CONCLUSION
This study proposes YOLOv7-CSF, which is an improved
version of the basic YOLOv7 model, to identify steel strip
defects with complex backgrounds in the XSDD dataset.
CA mechanism is combined in the head region of YOLOv7
to improve the ability of the feature graph to express
itself and SIoU loss function is used to determine the gap
involving the actual box and the predicted box for speed-
ing up the network’s convergence. In addition, the vertical
flipping augmentation technique is added to fine-tune the
model. Experimental results show that by incorporating the
above tactics, the updated model, known as YOLOv7-CSF,
increases recall and mAP@0.5 by 5.78% and 4.09%, respec-
tively, compared to the original network. For a particular
defect category, scratch surface, there is 100% recall and
96.9% mAP indicating that the improved model is better
than other models. To achieve industry standards in defect
detection, the model strikes a reasonable balance between
detection accuracy and speed. The newly released YOLOv8
is also compared with the model, showing that the YOLOv7-
CSF leads in detection on the XSDD dataset. Furthermore,
the model performance is evaluated with benchmark steel
strip datasets namely, NEU-DET andGC10-DET. This model
can be used in many future industrial and agricultural
small-target detection scenarios. The head portion of the
network is where YOLOv7 model improvement mostly takes
place—adding a coordinate attention mechanism. The model
fusion characteristics also depend on the backbone structure.

Thus, in the future, our research plan will be extended to
better understand the network model and pay more attention
to the backbone. Grayscale images of the dataset are used
in this study. Therefore, our investigation will further look
into the use of hyper-spectral images, real time industrial
images and evaluate the power of the model. Also, the images
diversity and quality can be further improved by employing
Generative Adversarial Network, which in turn, enhance the
model’s defect detection accuracy.
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