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ABSTRACT Electricity load and price data pose formidable challenges for forecasting due to their intricate
characteristics, marked by high volatility and non-linearity. Machine learning (ML) and deep learning
(DL) models have emerged as valuable tools for effectively predicting data exhibiting high volatility,
frequent fluctuations, mean-reversion tendencies, and non-stationary behavior. Therefore, this review article
is dedicated to providing a comprehensive exploration of the application of machine learning and deep
learning techniques in the context of electricity load and price prediction. In contrast to existing literature, our
study distinguishes itself in several key ways. We systematically examine ML and DL approaches employed
for the prediction of electricity load and price, offering a meticulous analysis of their methodologies and
performance. Furthermore, we furnish readers with a detailed compendium of the datasets utilized by
these forecasting methods, elucidating the sources and specific characteristics underpinning these datasets.
Then, we rigorously conduct a performance comparison across various performance metrics, facilitating
a comprehensive assessment of the efficacy of different predictive models. Notably, this comparison is
carried out using the same datasets that underlie the diverse methodologies reviewed within this study,
ensuring a fair and consistent evaluation. Moreover, we provide an in-depth examination of the diverse
performance measures and statistical tools employed in the studies considered, providing valuable insights
into the analytical frameworks used to gauge forecasting accuracy and model robustness. Lastly, we devote
significant attention to the identification and analysis of prevailing challenges within the realm of electricity
load and price prediction. Additionally, we delve into prospective directions for future research, thereby
contributing to the advancement of this critical field.

INDEX TERMS Electricity load forecasting, electricity price forecasting, deep learning, machine learning,
metaheuristics, smart grids.

I. INTRODUCTION
Electrical energy plays a fundamental role in every economy
around the globe [1], [2], [3]. Since every technology of
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the modern era depends on electricity, a country’s prosperity
(in terms of economic growth) is highly dependent on its
electricity infrastructure, grid, availability, and type of elec-
tricity generation (renewable and/or fossil fuel). Therefore,
electricity demand has increased in recent years, both in
the residential and commercial sectors. On the contrary,
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electricity prices fluctuate when the power grid cannot meet
the demand [3], [4], [5]. As a result, numerous studies have
been conducted to predict electricity demand and price so
that utilities and consumers can efficiently plan electricity
generation and consumption, respectively. However, the
prediction of the electric load remains a significant challenge
for power grids ever since the emergence of electricity
[3]. In addition, predicting the electricity price is also one
of the fundamental problems for energy consumers because
accurate price prediction helps consumers to make decisions,
for e.g., which time is suitable for which device (low
price) and which time is not suitable for maximum energy
consumption because of the high price [6], [7], [8].
As the demand for electricity rises and environmental-

energy conflicts evolve, the significance of electricity is
growing progressively [1], [9], [10]. Furthermore, due to
the fluctuation in electricity load, the price of energy
also fluctuates, which also complicates decision-making for
energy consumers. Several forecasting approaches have been
developed in recent decades based on mathematical or neural
network models. Based on the electricity price forecasts,
energy consumers canmake better decisions regarding energy
purchases; in contrast, utilities can make better decisions
regarding energy generation and sources based on the
electricity load forecasts. Therefore, both load and price
forecasting are necessary for each other.

There are several reviews in the literature that discuss deep
learning (DL)/ machine learning (ML) use within energy
management systems in relation to electricity load and price
forecasting [11], [12], [13], [14]. For example, the authors of
[11] review studies related to building energy consumption
(BEC) prediction using machine learning methods, focusing
on the scale of prediction. Another study provides an
overview of intelligent load forecasting approaches devel-
oped for efficient energy management systems [14]. Here,
the forecasting methods were divided into two classes: single
and hybrid computational intelligent methods. However,
in that paper, only the studies that consider electricity
load forecasting (ELF) are examined instead of considering
them together with electricity price forecasting (EPF). Nti
et al. also conducted a comprehensive study in which
they considered seventy-seven articles related to electricity
demand forecasting [3]. ML / DL models as well as accuracy
metrics are also discussed in their study. A short survey on
price and load forecasting is presented in [15] and [16], where
the authors reviewed existing studies (within the last four
years) related to DL /ML forecasting methods with a primary
focus on short-term prediction. In addition, conventional
forecasting models for predicting electricity load and price
are also examined. A study presented in [17] provides an
overview of EPF and presents several guidelines for using
state-of-the-art approaches and metrics for EPF with the
goal of increasing reliability. In addition, the paper focuses
on performance measures that have been adopted in the
literature to validate the effectiveness of ML / DL models

for EPF. However, discussion related to datasets and their
presentation is not addressed in that study. Aslam et al.
present a comprehensive overview of energy management
systems and discuss in detail how the prediction of load
and energy generation (by solar panels and wind turbines)
affects energy management in smart grids [1]. They delve
extensively into the ML/DL models formulated over the
past two decades for load and power generation prediction.
Additionally, they make dedicated efforts to explore the
nature of data employed in forecastingmodels, distinguishing
between simulated/randomly generated data and real-world
data.

Table 2 explains the closely-related studies that reviewELF
and EPF and shows the novelty of our study. Based on the
literature review of existing studies (surveys) [1], [17], [18],
and to the best of our knowledge there is no survey/review that
focuses on EPF and ELF at the same time, considering the
presentation of datasets and performance metrics. Therefore,
this study is differentiated by its data-centric view and
analysis of performance metrics, along with the ML/ DL
models developed for ELF and EPF.

In an energy management system (EMS), demand side
management is one of the essential components and enables
energy consumers and utility operators to make efficient
management decisions regarding energy purchases and
generation, respectively. Within this framework, anticipating
electricity demand in advance becomes instrumental in
reshaping the load profile, ultimately leading to a reduction
in the energy demand curve. This dynamic restructuring
allows for more efficient energymanagement and distribution
within smart energy systems. In contrast, prior knowledge
of electricity prices can help energy consumers to make
energy purchase decisions, i.e., consumers can choose to
purchase electricity in the low price hour based on EPF.
Since ELF and EPF are important components of EMS for
both energy consumers and utilities, this study provides a
comprehensive overview of DL / ML approaches developed
in the recent literature to predict both electricity load and
price. This study also presents datasets that have been
used in the literature to predict ELF and EPF. Thus,
new researchers can follow and reuse the data to develop
new prediction applications. In addition, based on critical
analysis, the proposed review can serve as a technical guide
for selecting efficient and effective prediction approaches.
Lastly, this study outlines open research inquiries and
suggests future research trajectories within the realm of ELF
and EPF.

The remaining paper is organized as follows: Section II
describes preliminaries on popular DL-based forecasting
models and Section III reviews load forecasting, including
both short-term and long-term. Section IV reviews recent
studies related to electricity price forecasting. Section V
presents critical analysis and observations from this study.
Details related to performance matrices and statistical
analysis are presented in Section VI. We shed light on recent
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TABLE 1. Nomenclature.

challenges and future directions in Section VII. Finally,
Section VIII concludes this survey.

II. PRELIMINARY ON POPULAR FORECASTING
APPROACHES
This section discusses in detail several popular forecasting
methods that are recently developed in the literature.

A. BASIC MODELS
1) ARIMA
ARIMA is considered as an integration of autoregression
and moving average. When a time series has a seasonal
trend, the seasonal ARIMA approach is utilized to predict
future values. The main advantage of ARIMA is that it
can effectively predict stationary time series. However, the
major limitation of the model is the assumption of a linear
relationship between current and future values. As a result,
the performance of the model is not satisfactory for a number
of real-world examples, such as financial time series and
electricity price series, etc. In real data, it is not necessary
that all time-series values are stationary, and to determine
whether the series is stationary or not, Augmented Dickey-
Fuller (ADF) is performed.

2) SUPPORT VECTOR MACHINE (SVM)
SVM stands out as a widely utilized machine learning
model within the realm of supervised learning, capable
of addressing both classification and regression challenges.

The main difference between a support vector classifier
and a support vector regressor is determined by the loss
function. The goal of SVM is to discriminate data elements
by introducing a hyperplane into the N-dimensional feature
space. A hyperplane functions as the decision boundary,
distinguishing the data points of one class from those of
other classes. Its linearity or nonlinearity depends on the
distribution of the data points. Also, kernel tricks can be used
to distinguish non-separable elements of the opposite classes.
Different kernel features for SVM design selection are linear,
non-linear, rbf, sigmoid, etc. Figure 1 shows an example of
SVM classification and regression. The main advantage of
SVM is its usefulness in high-dimensional space.

FIGURE 1. SVM classification and regression example.

3) ELM
ELM belongs to a single hidden layer feed forward NN and
the main difference between ELM and other NN is that the
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TABLE 2. Comparison of the current survey with existing survey/review studies.

parameters (such as hidden nodes, biases, and input weights)
can be randomly assigned. This feature makes the learning
process fast compared to other NNs. Another important
advantage of ELM is that less human intervention is required,
i.e., ELM can be used for feature assignment. However, the
performance of ELM may degrade when the dimensions and
the amount of data are large. Figure 2 presents the structure
of ELM.

FIGURE 2. Architecture of an ELM.

B. NEURAL NETWORKS
An NN is a complex network consisting of interconnected
nodes that resemble the biological structure of neurons.
Because of their complex structure, NNs are able to

effectively solve analytical problems where typical machine
learning methods fail. According to Hykin [19], an NN has
the ability to process information similar to the human brain.
The learning process in NNs starts with an input data set.
The neurons in each layer learn the underlying patterns and
information associated with the data, and adjust the weights
between the interconnected neurons to improve the learning
process. Based on our study of electricity load and time
forecasts, NNs are the most efficient algorithms to forecast
based on electricity load and price data. However, their
applications are not limited to forecasting. Other applications
of NNs include preprocessing, clustering methods, etc.

1) LSTM
LSTM, an extended iteration of a recurrent neural network
(RNN), finds application in a diverse range of problems
according to the source [20]. The main difference between
RNN and LSTM is that RNN overwrites the information,
while LSTM decides whether to keep or discard the
information. It solves the problem of vanishing/exploding
gradient in RNNs. The main feature that distinguishes LSTM
from other NNs is the memory cells instead of hidden units.
This feature allows the LSTM to capture any long-range
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dependencies in the input data. Figure 3 shows the structure
of LSTM NN, which consists of three gates: i) input gate,
ii) output gate, and iii) forget gate. The input gate tracks and
updates the information in the memory cell. It also decides
whether to keep or discard the information. Equation 1 shows
the state of the input gate at a given time ‘‘t’’. The output
gate tracks the flow of information from the memory cells.
Equation 3 shows the state of the output gate at a given time
‘‘t’’. The forget gate tracks the flow of information from the
memory cells. Equation 2 shows the state of the forget gate at
a given time ‘‘t’’.

itG = σ (Wi.[ht−1, xt ] + bi) (1)

f tG = σ (Wf .[ht−1, xt ] + bf ) (2)

otG = σ (Wo.[ht−1, xt ] + bo) (3)

In Equation 1,2 and 3 xt is the input series, ht−1 represents
the previous hidden state, σ represents the activation function.
The activation function for each gate is sigmoid.W represents
the weight metrics connecting the input with each gate
whereas b represents the bias at each gate.

FIGURE 3. Structure of a LSTM cell.

2) GRU
GRU is a modified RNN and a variant of LSTM that it solves
the vanishing/exploding gradient problem. Figure 4 shows the
structure of a GRU NN. The structure of the GRU consists
of a reset gate, an update gate, a memory unit, and a hidden
state. The reset gate determines the meaning of the historical
information in the previous hidden state and determines how
much information needs to be discarded. Equation 4 shows
the mathematical equation for updating the reset-gate. The
update-gate determines the influence and helps in discarding
specific information. Equation 5 shows the mathematical
equation for updating the update gate. The training process of
GRU is performed by backpropagation and gradient descent.

ztG = σ (
∑
j

(Wzxt ) +

∑
j

(Uzht−1)) (4)

r tG = σ (
∑
j

(Wrxt ) +

∑
j

(Urht−1)) (5)

In Equation 5 and 4 xt is the input series, ht−1 represents the
previous hidden state, σ represents the activation function and
W represents the parameters of the input variable.

FIGURE 4. Structure of a GRU cell.

3) CNN
A CNN is designed specifically for handling grid-like
structures of information, such as images. CNNs have found
a wide variety of uses, including but not limited to image
classification, time series analysis, video classification, NLP,
crowd estimation, and ML. Several studies employing CNN
in the field of price prediction have been presented, showcas-
ing intriguing potential [21], [22]. These studies contribute to
expanding options for optimizing scheduling BTM operating
systems. The paper by Khan et al. [21] suggests an enhanced
CNN for price forecasting and electricity load, demonstrating
respectable forecasting performance. However, the enhanced
CNN, despite its notable performance, appears to be similar
to an ordinary CNN, and the specific distinctions are not
explicitly explained, except for the use of 1-dimensional
input. An alternative strategy suggested in [22] integrates
GRU and CNN to produce probabilistic price predictions.
Despite leveraging the strengths of both CNN and GRU,
which enhances accuracy, the iterative computation process
of GRU contributes to an overall increase in computational
time costs.

4) GRNN
GRNN is a parallel radial basis function NN based on a one-
pass algorithm, and does not require an iterative mechanism
to compute the results. GRNN achieves satisfactory results in
solving both regression and classification problems. Figure 5
shows the structure of a GRNN, which includes the following
layers input, pattern, summation, and output layer. Complete
details of GRNN can be found from [1]. Equation 6 represents
the mathematical formulation of GRNN.

Ȳ (X ) = E(y|X ) =

∑n
j (Yj)[exp−

(X−Xj)T (X−Xj)
2σ 2 ]∑n

j [exp−
(X−Xj)T (X−Xj)

2σ 2 ]
(6)

In Equation 6, Ȳ (X ) represents the weighted average, X
represents the input, and Xj represents the corresponding
learning sample at the jth neuron. σ represents the smoothing
function. It is the most critical parameter of GRNN as the
forecasting performance of GRNN depends on σ . If the value
of σ is too large, a large number of training samples are
considered, and vice versa.
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FIGURE 5. Architecture of a GRNN.

III. LOAD FORECASTING
Predicting load is essential for efficiently managing and
balancing the demand for electricity and power generation.
In broad terms, load forecasting involves predicting the
anticipated load requirements by employing a systematic
approach to define future potential loads based on sufficient
quantitative information. This information is subsequently
used to inform decisions related to system expansion. Fig-
ure 6 depicts the generic steps involved in load forecasting.
In this section, recent studies dealing with electricity load
forecasting are analyzed and discussed in detail. Table 3
summarizes the load forecasting methods while Table 4
presents the datasets used in those studies.

A. SHORT-TERM FORECASTING
1) HYBRID FORECASTING MODELS
An ARIMA-based load prediction model is developed in
[23]. The load data was categorized into six clusters, deter-
mined by the hourly load distribution throughout the year.
Subsequently, the ARIMA model was applied to forecast
the electricity load within each cluster. The effectiveness of
this model was validated through real-time experiments. The
outcomes indicate that the suggested model demonstrates
superior forecasting accuracy in comparison to ARIMA on
its own. Based on the accurate forecasts, the management
authorities have managed the electricity demand, especially
during peak hours. The authors of [24] put forward a hybrid
model designed for short-term load prediction, where they
employ a stacked denoising auto-encoder (SDA) to refine
features extracted from actual electricity load data. After-
ward, SVR is fine-tuned to forecast the electricity load for the
subsequent day. In a separate investigation detailed in [25],
a forecasting model called CLSAF, relying on convolutional
(LSTM, is created to improve the precision of short-term res-
idential electricity load predictions. This model incorporates
selected autoregressive features. Additionally, three strategies
are introduced: the selection of autoregressive features, the
choice of exogenous features, and the implementation of
a ‘‘default’’ state to prevent overfitting. The experimental
outcomes demonstrate the efficiency of the proposed method
over its counterparts. In [26], another method for short-term
residential electricity load forecasting is developed by fitting

aMarkov chain mixed distribution model (MCM). This study
conducts one-step ahead load forecasting, and the approach
is applied to real-time datasets gathered from the Australian
power market. Moreover, persistence and quantile regression
(QR)models are implemented as benchmark methods and the
simulation results confirm the effectiveness of the proposed
model. In [27], an improved version of EMD, namely sliding
window EMD (SW-EMD), is developed along with a new
feature selector (based on Pearson correlation) with the aim
of maximizing relevance and reducing redundancy. Then,
a hybrid prediction engine based on an improved Elman-NN
(IENN) predicts load signal using an intelligent algorithm
(metaheuristic-based shark smell optimization (SSO)) to
optimize the weights of this prediction engine. Multiple
real-time experiments were conducted to demonstrate the
effectiveness of the proposed model.

2) ML-EMPOWERED METAHEURISTIC FORECASTING
Fractional ARIMAwas used by the authors in [28] along with
the modified cuckoo search algorithm for effective short-term
energy demand forecasting. The fractional ARIMA model
and the enhanced optimization method demonstrate reason-
ably good accuracy and efficacy in forecasting short-term
power loads based on actual power consumption data.
Particle swarm optimization (PSO) based multi-fractional
brownian motion (FBM) is suggested in [29] for short-term
power demand prediction based on the Hurst exponent.
A study presented in [30] developed a hybrid model for
electricity load forecasting based on metaheuristic-based
genetic algorithm (GA) and DL models. In the proposed
model, K-nearest neighbors (KNN) extract features from
actual load data and then NSGA is used for optimizing
the parameters of KNN. In the last step, DBN is employed
for load prediction. In citepeng2021effective, IBSA-DRESN
is developed, where IBSA is an improved backtracking
search optimization (BSA) algorithm. Usually, optimization
techniques are best in either exploration or exploitation.
In this work, the authors update the BSA by balancing
exploration and exploitation. For this purpose, adaptive
mutation, niching, and round roulette selection are used.
IBSA is used to optimize the parameters of DRESN, an echo
state network with a double reservoir to improve its learning
ability.

3) BAYESIAN-ENHANCED FORECASTING
For precise short-term power load prediction, the research
outlined in [31] introduces a temporal attention-driven
encoder-decoder network optimized through Bayesian meth-
ods. Built on an encoder-decoder structure using GRU,
the model exhibits significant resilience in time series
predictions. The inclusion of a temporal attention layer pri-
oritizes key input data features, significantly enhancing load
forecasting precision. Finally, to achieve optimal forecasts,
the Bayesian optimization approach is employed to validate
the hyperparameters of the proposed model. The authors
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FIGURE 6. Generic steps of electricity price and demand forecasting.

conduct several experiments on real-time data to confirm the
effectiveness of the proposed prediction model over similar
approaches.

4) MULTI-STAGE FORECASTING
In [32], the authors present a multi-stage electricity load
forecasting model. The approach involves forecasting the
electricity load by integrating the forecasted results of the
load and the error series. The original data series is partitioned
into three segments. The first part is employed for load
forecasting, while the remaining parts are utilized for fault
series generation and forecasting. To predict the electricity
load, the historical series is initially divided into a series of
Intrinsic Mode Functions (IMFs) and a residual using Com-
plete Ensemble Empirical Mode Decomposition (CEEMD).

Each component is then individually predicted using an
enhanced backpropagation neural network. For error series
generation, the difference between the actual and predicted
forecast values of the second and third sets is computed.
After generating the error series, the application of VMD
is employed to break down the series into a set of Intrinsic
Mode Functions (IMFs) and residuals. Subsequently, each
component is predicted using PSO-BPNN. The forecast
results of each component and the residual are then summed
to obtain the forecast result of the fault series.

B. LONG-TERM FORECASTING
Long-term forecasting of electricity demand plays a critical
role for planners and utilities in power generation, expansion
planning, and grid development. Overestimation of future
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electricity demand leads to wastage of electricity and other
resources, while underestimation of long-term electricity
demand leads to insufficient demand and generation. Thus,
there is an exigent and timely need for accurate long-term
electricity forecasts in order to use electricity efficiently and
avoid blackouts or other losses.

1) HYBRID FORECASTING
A study presented in [33] proposes a method based on a
decomposition model for long-term electricity load fore-
casting. The proposed model uses Spain as a case study
for forecasting electricity load until 2030, with electricity
consumption data obtained from the Spanish Energy Agency
(1970-2012). They also perform several simulations and
the results show the effectiveness of the proposed model
in terms of accurate electricity forecasting. In this study,
a new forecasting strategy is developed using a temporal
disaggregation technique that improves existing methods
and can incorporate long and short-term features [34]. The
performance of this method is compared with a nonlinear
autoregressive NN with exogenous inputs in predicting the
electricity load in Spain. Simulation results confirm that
the newly proposed approach is adaptable enough to be
used in a variety of scenarios based on different assump-
tions about short-term projections and long-term trends.
A study presented in [35] proposes long-term electricity
load forecasting using a generalized regression NN (GRNN).
The GRNN method performs accurate prediction between
input and target vectors with minimum error rate [36]. The
study also conducts several experiments on real-time datasets
and compares the results with benchmark approaches,
i.e., cascade forward backpropagation-NN (CFBNN) and
feed-forward backpropagation-NN (FFBNN). Another study
introduces the utilization of the multiplicative error model
(MEM) for long-term power load prediction [37]. Real-
world data obtained from aUS regional transmission operator
was used for the experiments. Directional accuracy and out-
of-sample forecasting results during the great recession of
2008 demonstrate the superiority of accounting for volatility.

2) BAYESIAN-ENHANCED FORECASTING
For long-term power load prediction of a specific industrial
area while considering energy efficiency scenarios, a novel
approach that merges the bottom-upmethod with hierarchical
linear methods is proposed [38]. Moreover, Bayesian infer-
ence is used to estimate the model parameters as well as to
incorporate uncertainty into the model predictions. A fuzzy-
based Bayesian model is developed in [39]. The proposed
model uses an econometric methodology to increase the
accuracy and reliability of the expert prediction. The fuzzy
relation matrix, fuzzy Bayesian formulated prior prediction
are three main components of the newly developed model.
To address long-term uncertainties, leveraging prior predic-
tions involves amalgamating the benefits of expert experience
with other time-based approaches from a probabilistic

standpoint. The authors also conduct experiments with
real-time data to confirm the effectiveness of the proposed
model. The experimental outcome beats compared models,
i.e., regression, ARIMA, ANN, exponential smoothing (ES),
grey model (GM), and expert prediction (EP).

IV. PRICE FORECASTING
Ever since the deregulation of electricity markets, precise and
effective energy price forecasting has emerged as a critical
need. The complex dynamics of energy prices, marked by
sudden spikes, seasonal variations, and significant volatility,
have led to the development of multiple electricity price
forecasting models. Despite these efforts, no single model
consistently outperforms others due to the challenging nature
of these prices. A discrete incremental approach based
on FBM was presented for ELF by Deng et al. in [57].
The discrete incremental approach for ELFÂ discretizes the
stochastic differential equation triggered by FBM. Using
maximum probability estimation, other discrete incremental
modeling parameters are assessed. By using price forecasting
models, electricity consumers can manage their demand in
the low price hours to get the maximum benefit. There are
several studies on electricity price forecasting that use DL,
ML, or hybrid models that include DL / ML along with the
heuristic approaches. In this section, recent studies dealing
with electricity load forecasting are analyzed and discussed
in detail. Table 5 summarizes the price forecasting methods
while Table 6 presents the datasets used in those studies.
Furthermore, Figures 7 and 8 offer a visual comparison of
several electricity load forecasting approaches (in terms of
RMSE and MAE) implemented on two datasets.

1) ENSEMBLE LEARNING
In the study presented in [58], a project is introduced
that suggests an electricity price forecasting approach uti-
lizing a heterogeneous ensemble learning technique and a
self-adaptive decomposition method. In the pre-processing
step, hyperparameter tuning of the complementary empirical
ensemblemode decomposition is carried out using the Coyote
algorithm, a metaheuristic approach. Subsequently, three
approaches SVR, ELM, and GBM are employed for price
prediction.

Yang et al. developed an adaptive hybrid method for
multi-step electricity price prediction [59]. The proposed
adaptive price forecasting method combines the best fea-
tures of an improved multi-objective sine-cosine algorithm
(IMOSCA), variational mode decomposition (VMD) and
regularized ELM (RELM) to enhance the performance of
deterministic forecasting. They also claimed that, unlike pre-
vious studies on price forecasting, the proposed method does
not require future information for price forecasting. In the
proposed method (VMD-IMOSCA-RELM), VMD is used
as preprocessing, since it is a decomposition approach and
RELM optimized by IMOSCA is used to predict each com-
ponent with better stability and accuracy. Several simulations
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TABLE 3. Summary of load prediction approaches.
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TABLE 4. Summary of datasets used for electricity load forecasting.

with two different real-time datasets are also run to validate
the performance of the adaptive VMD-IMOSCA-RELM
model. The results show higher performance for multi-step

forecasting compared to the benchmark approaches, i.e.,
(RELM, MOSCA RELM, IMOSCA-RELM, and adaptive
VMD-RELM).
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2) ML EMPOWERED METAHEURISTIC FORECASTING
In a study presented in [60], an electricity pricing prediction
model was proposed based on a multi-objective (MO)
grey wolf optimizer (GWO) and a dual decomposition
strategy. The proposed method, namely the improved
complete ensemble empirical mode decomposition with
adaptive noise (ICEEMDAN)- VMD-MOGWO-ELMAN
NN (ICEEMDAN-VMD-MOGWO-ENN), consists of four
modules: pre-processing, optimization, prediction and eval-
uation. The MO-GWO is adapted to provide simultaneous
improvements in stability and accuracy. The dual decom-
position strategy reduces the drawbacks of the individual
decomposition method by improving the prediction per-
formance of the proposed system. Finally, an evaluation
module is incorporated to confirm the proposed system’s
productivity. In terms of both stability and accuracy, the
simulation results demonstrate that the proposed system
surpasses the performance of the compared methods. In [61],
Wang et al. developed a price prediction algorithm using
a hybrid of ML and evolutionary methods, namely hybrid
selection, extraction and classification (HSEC). To eliminate
the redundancy of features, they proposed a hybrid of random
forest and relief F methods, and then the integration of
principal component analysis and kernel functionwas utilized
for feature extraction. Finally, a hybrid of support vector
machine (SVM) and differential evolution (DE) is developed
for price prediction classification.

Zhang et al. developed a hybrid feature selection (HFS)
approach, namely (HFS-CSS), based on cuckoo search
metaheuristic, SVM, and singular spectrum analysis (SSA)
methods for short-term electricity pricing forecast [62]. In the
first step, they use SSA to extract appropriate parameters
from the time series of electricity price; furthermore, cuckoo
search is also used to generate optimal features to construct
an SVM-based short-term EPF model. Simulations are also
used to validate the proposedmethod’s performance. The data
is acquired from the electricity market in New South Wales
(NSW), Australia.

A study [63] combines the best features of VMD, SAPSO
metaheuristic, SARIMA, and DBN. In this method, the
SAPSO-optimised VMD adaptively extracts various compo-
nents from the current electricity price data. Then, irregular
features are extracted from the price data by the DBN
which is also optimised by SAPSO. Moreover, the proposed
hybrid adaptive method is able to adjust its parameters
based on the behavior of the input data. The authors also
perform several simulations to confirm the effectiveness of
the method compared to its counterparts, and the results
show its effectiveness. Another work presented in [64] also
proposed a multi-step electricity price forecasting approach
for energy market management. In this work, a new outlier
robust hybrid scheme for energy forecasting is developed
based on outlier robust ELM (ORELM) and three different
algorithms. After adopting a metaheuristic-based chaotic
sine-cosine method (CSC) for preprocessing, a novel feature
selector is proposed to build the ideal features for energy

price forecasting. Several experiments were conducted using
real-time price data from the electricity market in Singapore
and Australia to confirm the productivity of the proposed
hybrid ORELM-based algorithm. The results confirm that the
proposed method is more powerful than its counterparts.

3) HYBRID FORECASTING
The research in [65] introduces a multilayer gated recur-
rent unit (GRU) for electricity price forecasting, utilizing
real-time pricing data from the Turkish day-ahead market.
Through various experiments comparing the performance to
existing forecasting methods such as Naive, Markov, CNN,
ARIMA, LSTM, and ANN, the GRU scheme demonstrates
enhanced productivity based on MAE.

In a different study, [66] proposes a hybrid approach
for electricity price prediction, combining wavelet transform
(WT), kernel ELM (KELM) with self-adaptive particle
swarm optimization (SAPSO), and an auto-regressive mov-
ing average (ARMA). This method utilizes SAPSO to
determine optimal kernel parameters for KELM. The ARMA
model forecasts stationary series, while the SAPSO-KELM
model predicts non-stationary series. Multiple simulations
validate the enhanced accuracy of the proposed hybrid
method compared to existing models.

ADNN-based hybrid model for short-term electricity price
prediction is developed in [67]. The developed hybrid model,
namely SEPNet, combines the best features of three algo-
rithms, namely, CNN, VMD, and GRU. To validate the per-
formance of the proposed model, they perform experiments
on data from four different seasons. The proposed method
shows efficacy over counterparts, i.e., LSTM, CNN, VMD-
CNN, BP, and VMD-ELMAN. Yang et al. [68] develop a
hybrid deep learning model to select the efficient forecasting
model in short-term electricity price forecasting. This model
combines the best features of three algorithms, i.e., VMD,
ELM and Sine Cosine Algorithm (SCA). In this work, the
VMD is used to decompose the non-stationary and non-
linear electricity price series. Afterward, an updated Chaotic
CSA (CSCA) algorithm is used to optimize the parameters of
ELM. In this work, The leave-one-out optimization strategy
is used to tune the parameters of the ELM. The optimal
model is selected using an optimal model selection index
by considering MSE, RMSE, MAPE, Theil’s inequality
coefficient, and Index of Agreement (IA). The authors of [69]
also developed a hybrid method to forecast the electricity
price that combines the best features of six individual
methods, including metaheuristics. The SSA method reduces
the noise from real data; then, Jordan NN (JNN), echo
state network (ESN), and least square SVM (LS-SVM)
are adapted to intermediate forecasting; two metaheuristics
PSO and simulated annealing are employed for parameters
optimization. In order to affirm the productiveness of this
hybrid model, several simulations have been performed and
results affirm its efficacy over individual approaches, i.e.,
JNN, ESN, and LSSVM.
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FIGURE 7. Comparison of several electricity price forecasting approaches
(in terms of RMSE) implemented on the same dataset [58].

FIGURE 8. Comparison of several electricity price forecasting approaches
(in terms of RMSE) implemented on the same dataset [67].

4) MULTI-STAGE FORECASTING
Khan et al. [70] proposed a multi-stage (three-stage) short-
term electricity pricing prediction method. This EEMD-ELM
model first divides the electricity price series into a limited
number of IMFs. The authors used a hit-and-trial method
to determine the number of IMFs. Afterward, ELM is used
to forecast the individual, non-stationary series. Lastly, all
the forecasting results of the individual series are merged to
form the overall results. The proposed model showcases high
performance over benchmark models, i.e., RNN, SVR, MLP,
and ELM. The authors analyzed the results by investigating
the performance of the model over three data sets of the
Australian electricity market.

Shi et al. [71] presented a Two-stage Electricity Price
Forecasting model (TSEP) to predict the occurrences of
spikes in day-ahead price forecasting. In the first stage,
historical electricity price data is analyzed to classify the
price data into normal prices and spikes. In the second stage,
variance stabilization transformation and DNN are utilized
to forecast the occurrence of spikes. As the occurrence of
spikes in electricity price data is not very common, to improve
the forecasting accuracy, this work increases the number

of spikes intentionally by using the Borderline-Synthetic
Minority Oversampling Technique (SMOTE). Borderline-
SMOTE is an updated SMOTE. SMOTE uses a K-nearest
neighbor algorithm to randomly generate new data samples of
the minor class. These samples are merged with the historical
price data to remove the class imbalance problem.

V. DISCUSSION AND OBSERVATIONS
In this study, we examine recent research focused on
electricity load and price forecasting for efficient energy
management. In the majority of these studies, researchers
have put forward solutions employing ML/ DL method-
ologies. Each approach comes with its own strengths and
weaknesses when addressing the ELF and EPF, making it
challenging to identify the accurate model. This difficulty
arises because there is no standardized benchmark dataset,
and many researchers utilize their proprietary data, often
generated randomly. Additionally, the research codes are
typically not accessible online, further complicating the
comparison of algorithm performance.

Nonetheless, based on the studies we have examined,
we can draw several noteworthy observations concerning
ELF and EPF. A significant proportion of these studies
employ some basic ML or DL models for predicting
electricity load and prices. Furthermore, most studies only
deal with residential load prediction; however, the industrial
load has a huge impact on the electric grid and energy
management systems. Also, electricity load prediction for
the commercial sector is missed, even if it is a big energy
consumer, especially day time. Additionally, nearly all these
studies incorporate mathematical models and various forms
of linear programming to solve the prediction problem in
the energy domain, which proves to be efficient in such
types of problems. Finally, based on the performance analysis
of various models, we found that hybrid models are more
efficient than non-hybrid models. Typically, researchers
combine ML/DL models with metaheuristic approaches to
enhance prediction accuracy, and this review highlights that
approximately 15% of the examined models fall into the
hybrid category for EPF and ELF prediction.
Overall, it is crucial to emphasize that a limited number
of studies have ventured into the development of models
with the capability to self-adapt, self-evolve, and self-tune in
order to address complex scenarios [1]. This underscores the
ongoing necessity to pioneer such methodologies to contend
with the diverse facets of EPF and ELF prediction. These
emerging methods should not only harness the power of
Explainable AI but also explore techniques such as growing
and pruning models, along with leveraging transfer learning,
to further advance the state of the art in this field.

VI. PERFORMANCE METRICS AND STATISTICAL
ANALYSIS
In this section, we discuss the common performance metrics
and statistical tests that were performed in the recent
literature.
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TABLE 5. Summary of methods used for electricity price forecasting.

.
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TABLE 6. Summary of datasets used for electricity price forecasting.

A. PERFORMANCE METRICS
Based on an extensive literature review, there is no single
criterion for evaluating forecasting models. However, to bet-
ter assess the accuracy of forecasting models, a number of
performance indicators have been used in the literature to
determine which model is more appropriate. Since these
metrics represent a summary of the error distribution, it is
imperative to select the most appropriate metrics to evaluate

the accuracy of the forecasting models. For example, when
dealing with outliers, the RMSE is more sensitive than the
MAE. Similarly, Theil’s coefficient of inequality is useful
to evaluate the generalizability of the forecasting models.
Table 9 provides an overview of the most commonly used
performance measures. Here, Fi denotes the ith predicted
value, Favg denotes the average predicted value, Ai denotes
the ith actual value, A denotes the average value in the dataset,
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and N denotes the total number of instances in the test
dataset.

B. STATISTICAL SIGNIFICANCE
In electricity load and price forecasting, two or more forecast
series are often analyzed to determine the superiority of one
series over another. Generally, performance criteria such as
MAE, MAPE, etc. are used to evaluate the best forecasting
model. However, these performance criteria say nothing
about the statistical significance of the results provided by
a prediction model. Statistical significance means that the
predictive accuracy of a model is not due to sampling error
or chance. A number of tests are available to assess statistical
significance, e.g., two-tailed test, theWilcoxon rank test, etc.,
as can be seen in Tables 7 and 8, which list statistical tests
and metrics used in electricity load and price forecasting
studies, respectively. However, in this section, we focus
only on the Die-bold Mariano (DM). As can be seen from
Table 8, DM is the most commonly used test for electricity
load and price forecasting. The main advantage of DM is
that it accounts for sampling variability in average losses.
Generally, the test is performed at a 95% significance level.
The null hypothesis for the DM test states that the competing
forecastingmodels have the same forecasting ability, whereas
according to an alternative hypothesis, the forecasting ability
of the competing models is different. If fi and fj are the two
forecasts and γk denotes the autocovariance. The DM test can
be represented as follows:

DM =
1√

γ0+2
∑h−1

k=1 γk
n

(7)

VII. CURRENT CHALLENGES AND FUTURE RESEARCH
DIRECTIONS
In this section, we highlight the current challenges and future
research opportunities related to DL / ML and electricity
load/price forecasting in smart grids. A pictorial presentation
can be seen in Figure 9.

A. ENERGY BIG DATA ANALYTICS
Nowadays, Big Data analysis in the energy field is one of
the most important research areas to which the research
community must pay special attention. With the advent of
wireless communication, sensor technologies, and IoT-based
metering systems, huge amounts of data is being generated,
e.g., data on load demand, power generation data, electricity
price data, weather data, etc. The accessibility of big data
in the energy sector to the industry and research community
can open new opportunities to improve the efficiency of
smart microgrids. The authors in [79] provide a holistic
vision for managing Big Data resources in the energy
sector, encompassing power generation, power distribution,
transformation, and demand-side management. At the end,
they have taken an in-depth look at smart data sources
and their characteristics. Recent studies highlighted in [80]

and [81] utilize big data analytics approaches for effective
electrical load and electricity price forecasting. Nonetheless,
there remains an urgent need to enhance the adoption of Big
Data Analytics approaches in load and price prediction to
enhance the performance of energy management systems in
smart grids.

B. TRANSFER LEARNING
Transfer learning (TL) is a new technique that can help
in energy management systems in smart grids. Basically,
TL transfers knowledge from an area with sufficient knowl-
edge to an area with insufficient knowledge to reduce the
time and effort required for a new learning process. As stated
in [82] and [83], the transfer of knowledge from a certain
domain to another domain that has no importance here must
be avoided. The concept of TL can enhance the productivity
and performance of DL-based price and load forecasting
methods. Since historical data is used for training and testing,
the knowledge gained from training can be used at different
stages of building the forecasting model instead of training
it again. In this way, the model works more efficiently and
lot of resources can be saved. In recent literature [84], [85],
[86], [87], there are some studies that use TL to improve the
performance of prediction models. However, there are still
opportunities to use it commercially and in industry.

C. GROWING AND PRUNING DL MODELS
Growing and pruning (G&P)-based DL approaches can
also enhance the performance of price and electricity load
forecasting models. An architecture of DL is created with the
bare minimum of neurons and hidden layers in G&P-based
forecasting models. Using the growing technique, neurons
and new hidden layers are later added to the model. On the
other hand, the maximum number of neurons and hidden
layers are first included in the architecture of DL model; then
the number of neurons and hidden layers are excluded using
the pruning approach. G&P-based models repeat three main
operations until achieving higher accuracy [88]: 1) model
training, ii) modification of weights based on G&P criteria,
and iii) model retraining. In the last decade, the field of G&P
in DL methods has gained much attention from researchers
and several studies have discussed its productivity in various
fields, including medical service improvement [89], self-
care activities [88], and speech and emotion recognition
[90]. Therefore, the application of G&P-based DL methods
in electricity price and load forecasting is still an open
opportunity for the research community and industry.

D. EXPLAINABLE AI
Many existing load and price prediction algorithms are based
on ‘‘black-box’’ methods that are not easy for non-technical
people to understand [91], [92]. This is especially difficult for
small utilities, which frequently lack the necessary technical
know-how and AI expertise. A few studies proposed the use
of explainable ML schemes to design forecasting algorithms
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TABLE 7. Summary of statistical tests and performance metrics used in electricity load forecasting methods.

in order to address this situation [93]. These approaches
are centered on understandability and interpretability in
order to increase user confidence in the obtained outcomes.
Developing such explainable AI forecasting approaches will
assist users in comprehending and gaining access to fair and
transparent explanations of the applied algorithms and their
outcomes [94].

E. EFFECTS OF ELECTRIC VEHICLES AND VEHICLE TO
GRID (V2G)
Electric vehicles (EVs) can be charged using a grid-connected
socket, however, large-scale grid connection for charging
of EVs will have significant grid impacts [95], especially
if many EVs are charged at the same time, which will
aggravate the peak load and off-peak difference, increase

the maximum power load, and increase the difficulty in
the power grid optimization [96], [97]. Considering the
effects of EV charging during electrical load forecasting
will minimize the impact of charging on the power grid
induced by associated electric vehicles and give a reference
for optimizing power grid management [98]. Traditional load
and pricing forecasting methods rely heavily on previous
data and related influence variables. However, due to the fact
that the EV industry is still in its early phases, there is little
actual historical data on EVs. The estimate of charging load
for EVs is mostly based on driving behavior and statistics
analysis of existing fuel vehicles. As a result, forecasting the
load and price with increasing EV charging can be difficult.
Forecasting methods must take into account when consumers
charge, how quickly they charge, and where they charge,
among other things.
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TABLE 8. Summary of statistical tests and performance metrics used in electricity price forecasting methods.

F. EDGE COMPUTING OR ON-DEVICE AI
Geo-distributed equipment and devices are typically linked to
fog or cloud data centers, which make centralized decisions
and provide control orders for smart grid computing [99].
Nonetheless, it has many flaws, including heterogeneous
environments, security and privacy concerns, and limited
bandwidth resources [100]. In this context, edge computing
shifts the frontier of computation applications away from
centralized nodes and toward the communication network’s
outskirts [101], [102]. Edge computing puts computing
resources closer to end users and sensors to do data
analytics for smart grid decisions. It benefits from its
ability to effectively lessen system latency, reduce the load
on cloud computing centers, achieve better scalability and
availability, and maintain data security and privacy. Because
of these capabilities, edge computing is gaining attraction
in academics and industry. The necessity of incorporating
edge computing in smart grids will become clear as the

requirement for smart grids to interact with millions of dis-
persed energy resources and electrical demands grows in the
near future. This is especially true for the power distribution
network, which is currently unprotected, uncontrolled, and
uncommunicated with the power system. However, with this
novel edge computing technology, many of the existing ML
and DL-based schemes need to be upgraded accordingly.

G. INTEGRATION WITH HEATING NETWORK
In extensive urban settings, district heating systems serve as
a prevalent means of heat distribution, typically comprising
a district heating network powered by a combined heat
and power plant. These plants primarily produce useful
heat, a constant requirement in district heating systems.
Consequently, actual electricity generation is contingent upon
the prevailing heat demand [103]. Notably, there have been
dynamic fluctuations in electricity prices. Achieving precise
hourly predictions of heat load in the day-ahead horizon is
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TABLE 9. Summary of the performance metrics used in ELF and EPF. [Note: N shows the number of data points, F i is the i th forecasted value, Ai is the i th

actual value, and avg shows the average value].
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FIGURE 9. Primary challenges and recommended future directions related to future smart grid.

crucial for optimizing and planning the production of both
heat and electricity in co-generation units. Consequently,
the significance of heat load forecasting parallels that of
electric load forecasting, necessitating forecasting models
that encompass both electrical load and price, along with heat
load [20]. Nevertheless, forecasting hourly heat demand on a
large urban scale poses a challenging task. The heat required
for building heating primarily hinges on weather data,
whereas domestic hot water consumption is closely linked to
consumer behavior throughout the day and week [104].

H. DISTRIBUTED FORECASTING METHODS
Conventional machine learning methods for load forecasting
entail a central server that performsmachine learning training
[105]. The disadvantage of this method is that all data
gathered from various devices is sent to a central server,
which introduces security and privacy challenges, strains
communication networks, and necessitates huge and efficient
computational resources (centralized). To deal with this,
distributed forecasting methods should be focused. One such
distributed method is the federated learning [106], [107]
method for electrical load prediction with smart meters
that can train a ML model in a distributed fashion without
requiring participants to provide any local information [108].
In the federated learning technique, a global machine learning
model is distributed across multiple devices pertaining to
individual smart meters, and each device upgrades its local
copy of the collaborative model utilizing data locally.

VIII. CONCLUSION
To reduce uncertainty and overcome energy crises, recent
developments in the electrical market necessitate accurate

load and price forecasts. This study provides an in-depth
look at Machine Learning and Deep Learning models
for energy load and price predictions. Several methods
for electrical load and price forecasting are discussed in
this work, including short-term and long-term forecasting
models. Furthermore, the fundamental strategies and datasets
employed by each method are addressed. To show the
performance of each method, performance metrics for all
load and price forecasting approaches (that are studied in
the study) based on the same datasets are presented in the
form of bar graphs.With respect to price forecasting, different
forecast periods (e.g., one month ahead, two months ahead,
and three months ahead) are compared. The study concludes
that deep learning models are effective in predicting non-
linear, non-stationary, high-frequency, and high-volatility
data. Moreover, deep learning models are effective compared
to machine learning; however, hybrid deep learning models
provide the best prediction accuracy. Furthermore, this study
discusses some key issues associated with the application of
ML and DL for load and price forecasting, as well as some
recommendations that can serve as the foundation for future
research initiatives for scholars in this field.
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