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ABSTRACT This paper presents a review of techniques involved in the creation and detection of audio
deepfakes, the first Section provides information about general deep fakes. In the second section, the main
methods for audio deepfakes are outlined and subsequently compared. The results discuss various methods
for detecting audio deepfakes, including analyzing statistical properties, examining media consistency, and
utilizing machine learning and deep learning algorithms. Major methods used to detect fake audio in these
studies included Support Vector Machines (SVMs), Decision Trees (DTs), Convolutional Neural Networks
(CNNs), Siamese CNNs, Deep Neural Networks (DNNs), and a combination of CNNs and Recurrent Neural
Networks (RNNs). The accuracy of these methods varied, with the highest accuracy being 99% for SVM and
the lowest being 73.33% for DT. The Equal Error Rate (EER) was reported in a few of the studies, with the
lowest being 2% for Deep-Sonar and the highest being 12.24 for DNN-HLLs. The t-DCF was also reported
in some of the studies, with the Siamese CNN performing the best with a 55% improvement in min-t-DCF
and EER compared to other methods.

INDEX TERMS Deepfakes, artificial intelligence, deep learning, audio deepfakes, forensics, datasets,
survey.

I. INTRODUCTION
Deepfake refers to synthetic information or materials that
have been developed or altered using artificial intelligence
(AI) technologies, and are intended to be considered authen-
tic. These may include audio, video, picture, and text
synthesis [1].

In alternative narrowly defined deepfakes (coming out of
Deep Learning (DL) and ‘‘fake’’), artificial neural network
(ANN) innovations are important for manipulating media
files. Software using (AI) such as FaceApp and FakeApp
were used to superimpose the faces of a victim onto a video of
the person’s origin App, which was used to superimpose the
faces of a victim onto a video of the person’s origin. Create a
video in which the intended recipient says or does something
that the original provider does. Due to this trading system,
anybody may buy or sell a newly generated appearance,
chronological age, or even a new hairdo. Many concerns have
been raised regarding the dissemination of these hoaxes [2].

Although deepfake technology may be used for beneficial
objectives such as virtual reality and cinematography, its
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usage in criminal activities persists at high rates [3], [4],
[5]. Over the last several years, thousands of fake films have
gone viral online, and they are largely aimed at public figures
and famous people. In 2017, a Reddit user by the moniker
of deepfakes produced the first piece of deepfake material,
a viral porn movie. Since the invention of the deepfake tech-
nology, dishonest applications have become commonplace.
Soon after, more andmore deepfake-based apps like FakeApp
and FaceSwap appeared. The intelligent stripping software
Deep Nude was released in June 2019 and immediately
caused a frenzy. In addition to being a privacy risk, videos
made with these apps are increasingly used to sway elections
from the perspective of the public. The identification of false
information is now at the forefront of concern for people,
companies, and governments. with an increasing amount of
research on deepfake devices.

Deepfake technology is not limited to its use in pornogra-
phy, but is also utilized for a range of nefarious and unethical
purposes. This includes the dissemination of false informa-
tion, the instigation of political turmoil, and various forms of
cybercrime.

More specifically, AI-synthesized systems that can pro-
duce convincing audios have recently been developed for

132652

 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0002-7980-927X
https://orcid.org/0000-0003-2442-3289
https://orcid.org/0000-0002-9442-3340


O. A. Shaaban et al.: Audio Deepfake Approaches

audio faking [6]. However, despite the fact that these tools
were designed to benefit people, they have also been uti-
lized to disseminate false information via audio [7], resulting
in concern about ‘‘Audio Deepfakes.’’ Recently referred
to as audio manipulations, audio deepfakes are becoming
more accessible through mobile devices and desktop com-
puters [8]. This has resulted in widespread public concern
regarding the adverse consequences of deep fakes in cyber-
security. Despite the advantages of this technology, audio
deepfakes are more complex than simple text, email, or email
links. It is possible for someone to utilize this as a logical-
access audio-spoofing method [9], which opens the door to
propaganda, slander, and even terrorism as a means of influ-
encing public opinion. Detecting fakeness in vast quantities
of audio recordings shared online every day is difficult [10].
However, politicians and governments are not immune to
deep fake attacks [11]. For more than $ 243,000, scam-
mers in 2019 exploited AI software to mimic a CEO over
the phone [12]. Consequently, the legitimacy of all publicly
available audio recordings should be verified to prevent the
propagation of false information. Therefore, recent attention
has been paid to this topic in the scientific community. It is
becoming increasingly difficult to identify audio forgeries
because of the emergence of three distinct types of deepfakes:
those based on synthetic data, imitation audio, and replay
data.

In addition, other detectionmethods are available for deter-
mining whether audio recordings contain real or fake speech.
Several DL and Machine Learning (ML) models have been
developed to detect fake audios using various approaches.

There are still many gaps in current algorithms [13]. There-
fore, additional research is essential to enhance the detection
capability of Audio Deepfakes and address the deficiencies
identified in the existing literature. It has become more diffi-
cult to identify audio deepfakes owing to the emergence of
new forms such as those based on synthetic imitation and
replay, as discussed below.

With the advent of cutting-edge tools and DL approaches,
Audio deepfake detection has become an important field of
study. Currently, DL approaches have failed to compensate
for these limitations. Therefore, further research is needed to
determine which aspects of Audio Deepfake detection require
improvement. In addition, imitated and synthetically pro-
duced audio-detection approaches have not been examined in
the literature. We believe that this was a significant difference
in the present study.

When evaluated on a publicly available dataset, the
effectiveness of deepfake detection remained unchanged at
82.56% in recent years [14]. This is despite the fact that
deepfake creation has seen significant improvement in recent
years. Although this performance boost is substantial from a
scholarly perspective, it is insufficient for real-world applica-
tion. Recently, twomajor obstacles have emerged that make it
crucial to consider the interpretability of deep fake detection:
lower detection accuracy and increased target range. How-
ever, the current study on comprehensible deepfake detection

is confined to visual deepfake detection [15], therefore it is
not very broad.

Many deepfake detection strategies have emerged as a
result of the increased focus on the topic of deepfake detection
by academics and specialists in recent years as a means
of combating these dangers. In addition, research into the
existing literature on detection strategies and performance
evaluation is underway. However, the scientific community
and practitioners may benefit from a more in-depth study in
this field that summarizes information on deepfake from all
perspectives, including accessible datasets (something that
has been significantly lacking in prior surveys).

This review provides a detailed analysis of audio deepfake
detection techniques, along with generative approaches. The
key contributions include:
a) To provide researchers with an overview of different audio

methods for generating and detecting audio deepfakes.
b) Update the reader on what is new and noteworthy in the

world of audio deepfakes, including techniques, tools,
regulations, and problems.

c) Help the reader realize the probable effects of audio
deepfakes.

d) Provide a guidance for the research community to com-
prehend future audio deepfake developments.
This article is structured as follows: In Section I, we present

an introduction to general deepfakes, setting the founda-
tion for the subsequent sections. Section II delves into
audio deepfakes, outlining and comparing the main meth-
ods employed in their creation and detection. Moving to
Section III, we explore various datasets that play a crucial
role in the development and evaluation of audio deepfake
detection techniques. Finally, Section IV offers a conclusion
and discussion, summarizing the limitations identified and
outlining potential directions for future research.

Deepfakes can be classified into four main categories:
Text, Image, Video, and Audio. While most scientists are
preoccupied with investigating deepfakes in videos, the other
types of deepfakes must also receive a wide range of attention
due to the comprehensive advances in creating these types of
deepfakes, as shown in FIGURE 1:

FIGURE 1. Deepfake classification [1].

Due to the rise of social media and digitalization, fake
news has become a prevalent issue, challenging conven-
tional definitions of news [2]. False information, presented
as fact, is widely disseminated on online platforms [16].
Zhou and Zafarani [17] define false news as deliberately
publishing incorrect materials that can be debunked by
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fact-checking [5]. Previous research shows that people of all
ages and backgrounds struggle to identify false news [18].
During times of uncertainty, like the COVID-19 pandemic,
false rumors spread rapidly on social media, impacting public
perception [19]. This phenomenon affects various aspects of
life, including election campaigns, healthcare, and the econ-
omy [20], [21]. Detecting fake text is a complex task [22].
GROVER, a text generation method using GPT-2, can cre-
ate highly convincing fake news [25]. Some studies employ
transformer-based algorithms to identify fraudulent text on
social media [24], [25]. This study investigates the detection
of brief deepfake text samples from Twitter using dynamic
model adjustments and a specialized BERT model [32].
Image deepfakes encompass three primary types. Firstly,

there’s Faceswap, widely popularized by Snapchat, allow-
ing users to modify facial features in photographs for
playful transformations [1]. Secondly, Synthesis techniques,
powered by generative adversarial networks (GANs), have
revolutionized image creation, with models like NVIDIA
112 generating countless variations of images [26]. Lastly,
Editing, including AI-driven methods, enables significant
image alterations [26]. Detecting fake images has been
a focus of research, employing algorithms like k-NN,
LDA, and SVM [27]. Additionally, Face-Aware Liquify
in Adobe Photoshop and human artist modifications have
been used [28]. Detection methods have evolved, employing
supervised and unsupervised scenarios, and datasets such
as StyleGAN-generated faces and iFakeFaceDB have been
employed [29]. Innovations like ‘‘facial X-ray’’ [30] and
attention-based CNNmodels [31] enhance detection capabil-
ities, achieving impressive accuracy rates.

FIGURE 2. Video Deepfake classification.

Video deepfakes encompass five main categories based on
the degree of manipulation as shown in FIGURE 2. These
categories include face swaps, face reenactment, lip-syncing,
full-face synthesis, and facial attribute manipulation. Face
reenactment, for instance, manipulates facial expressions by
emulating the movements of a reference actor, often used for
post-production modifications in films and video games [32].
Various techniques, such as 3D facial modeling and real-
time RGB-D sensor-based methods, have been employed to
enhance the realism of these manipulations [33].
Lip-syncing synchronizes mouth movements with audio

stimuli, essential for effective communication and accessibil-
ity for individuals with hearing impairments [11]. Techniques
like Recurrent Neural Networks (RNNs) have been utilized to

achieve this synchronization, while GAN-based models have
improved accuracy [34].

Facial attribute manipulation alters facial features like
identity or expression in images or videos, with methods like
StarGAN-v2 and AttGAN producing convincing results [35],
[36], [37].

Detecting video deepfakes has involved diverse approaches,
from analyzing frame boundaries to utilizing CNNs and
attention mechanisms, each with its strengths and limita-
tions [38], [39], [40], [76], [77], [79], [80]. Researchers
have also employed capsule networks [45] and Efficient-
NetB4 [46] for identification purposes. Bondi et al. examined
the performance of EfficientNetB4 using multiple datasets
and found that triplet loss delivered exceptional results [47].

II. AUDIO DEEPFAKES
The technology of deepfakes has been implemented in the
realm of audio, specifically in the context of audio assis-
tants and other computer-generated audios that are becoming
more ubiquitous in our daily routines [48]. The utilization of
artificially generated or modified audio information poses a
significant threat to society, as it has the potential to generate
issues of trust when individuals are incapable of distinguish-
ing between authentic and counterfeit material [49].

There are three different varieties of speech: voiced,
unvoiced, and silent. Voiced speech contains a limited amount
of energy and a periodic sequence of impulses, whereas
unvoiced speech consists of random, no periodic noise-like
patterns. Silence, on the other hand, refers to the duration
during which there are no significant signals.

Numerous linguistic factors, including formants, are used
to analyses and categories utterances. Formants are frequen-
cies where energy is densely packed, resulting in a spectral
peak. In typical human speech, formants range from three
to five and are categorized according to their increasing fre-
quency. The first three formants are crucial to both voiced and
unvoiced speech and are frequently employed as surrogates.

The term ‘‘anti-forensics’’ has been recently incorporated
into the language of digital forensics. Although there is
no consensus on the precise meaning of the term, Rogers
has proposed a definition of anti-forensics as encompass-
ing activities that aim to undermine the presence, amount,
or authenticity of evidence at a crime scene, or to obstruct
the examination and interpretation of such evidence during an
investigation [50].
Another definition of anti-forensics is ‘‘an attempt to pre-

vent the recognition, collection, collation, and validation of
digital data’’ and established four categories of anti-forensics:
data concealment, data deletion, data generation prevention,
and new approaches. For example, transformation methods
may be performed by malicious or rootkit-shared libraries
that abuse system calls or change data during the construction
process by using runtime links [50]. Practically speaking,
it is the ‘‘application of the scientific approach to digi-
tal media in order to invalidate factual material for court
examination.’’ [51].
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‘‘Anti-forensics’’ is, in general, a ‘‘collection of procedures
and actions performed by a person with the intent to impede
the digital investigative process’’ [51].

Over the past ten years, digital multimedia forensics have
garnered significant interest. Most studies have concentrated
on the detection of image forgery [52], with document
forgery detection accounting for a large proportion [53].
However, detection of digital audio forgeries has received
little attention. Before using any data as evidence in mul-
timedia forensics, it is critical to verify both the originality
and integrity of the material already in possession. The basic
objective of audio forensics is to authenticate the audio by
determining whether it was fake, and to identify the person
or persons who were really speaking.

There are a variety of possible purposes, such as presenting
it as proof in a legal proceeding or putting an end to rumors
that have spread through social media or paparazzi. Digital
impersonation refers to the production of speech in such a
manner as to mislead humans or computers into believing that
speech originates from a reliable and genuine source, thereby
causing loss to society or the economy.

Synthesizing speech and altering the speaker’s tone
are both possible using audio-specific deep-learning tech-
niques [54], [55]. Audio waveforms, spectrograms (which
integrate information from the frequency and time domains),
and other acoustic features are commonly analyzed in audio
forensics to identify artificially produced or modified audio
clips. The amplitude of the time-varying audio stream was
analyzed using waveform-based techniques.

In [56], the authors suggested a time-domain Artificial
audio Detection Network with numerous blocks, similar to
those seen in ResNet and Inception networks. In [57] the
study introduced a technique for detecting fabricated speech,
which employs a convolutional recurrent neural network
(CRNN). Rather than relying on image-basedmethodologies,
this technique directly converts audio signal spectrograms
and utilizes computer vision techniques for analysis. The
spectrogram illustrates the frequency and intensity of the
audio source over time.

AMel spectrogram, which represents frequencies in mega-
hertz, is a variation of the spectrogram [58]. For the detection
of synthetic speech, Bartusiak et al. utilized a (CNN) and
convolution transformer [59], [60] in combination with nor-
malized grayscale spectrograms of the audio stream. The
authors of [61] used melspectrograms to train a spatial trans-
form network and a temporal CNN. Audio characteristics are
coefficients and other values derived from the transformation
process [62]. Two examples of such features are cepstral
coefficients at constant Q and Mel frequencies [63], [64].
A copy-move attack can be detected by dividing an audio

stream into segments, and comparing the audio character-
istics of each segment, such as delta-MFCC [63], mel-
frequency cepstral coefficients (MFCC) [63], and pitch [65].
using Pearson correlation coefficient [65] Higher degrees
of resemblance indicate a copy-and-paste attack. Hassan
and Javed [66] utilized a (RNN) to evaluate (MFCC),

Gammatone Cepstral Coefficient (GTCC), spectral flux, and
spectral centroid as potential markers of artificial noise in
their study. Das et al. and Li et al. [67], [68]. have sug-
gested the utilization of Inverted Constant-Q Coefficient
(ICQC), Inverted Constant-Q Cepstral Coefficient (ICQCC),
and Long-term Variable Q transform (L-VQT) techniques to
identify synthetic music. Additionally, the authors of [106]
explored the use of a Res2Net network trained on log-power
magnitude spectrograms, Linear Frequency Cepstral Coef-
ficients (LFCC), and Constant-Q Transform (CQT) for
identifying synthetic audio.

A. AUDIO DEEPFAKE GENERATION METHODS
One type of deepfake is AI-generated audio manipulation,
which can clone a human audio and portray it as having
said something controversial that it never really utters. Fake
audios participants [70], [71]. Synthetic audios are suitable
for several applications such as automatic audio labelling for
combine AI with human editing. For instance, speech that
are similar to genuine speech have become a reality because
of the recent breakthroughs in AI generation methods for
audio television plus films, AI assistance, and individualized
synthetic audios for persons with vocal issues. Additionally,
fake/synthetic audios have become a growing challenge to
vocal biometrics [72] It could be used for evil purposes
such as spreading propaganda, spreading false news, or even
committing fraud.

The synthesis of higher quality audios may synthesis and
cloning. These algorithms may produce highly convincing
and identically voicing synthetic audio in response to the text
or utterances of target synthesis models powered by neural
networks such as Google’sWavenet [73] and Tacotron [74] or
AdobeVoco [75] may generate convincing counterfeit audios
that sound like the target’s vocal audio; for example, the
software for editing audio [76] might be used to producemore
powerful audios by combining natural and synthetic audio
sources.

In addition to images, recent developments in AI-generated
synthetic audios have enabled the production of incredibly
convincing false films [11]. Such advances in audio syn-
thesis have already demonstrated their capacity to produce
convincing and natural-voicing acoustic deepfakes, thereby
presenting significant threats to civilization [77]. Deepfake
movie appeal and destructive impact can be increased by
incorporating fake audio and visual manipulation [11]. These
synthetic discourses lack features of audio quality linked to
the identification of the target, which include expressiveness,
roughness, breathing, tension, and emotion [78].

AI researchers are attempting to solve these issues to
enable machines to mimic human speech in terms of how
it sounds and how easily it can be understood. (TTS) Syn-
thesis and (VC) are the only methods used to produce audio
deepfakes. A TTS (Text-to-speech) synthesizer is a piece
of software that can mimic the speech of any speaker [79].
a methodology utilized to transform an audio waveform
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TABLE 1. List of tools, applications, and open-source projects which synthesize audiovisual deepfakes.

originating from a source audio into one that emulates the
vocal characteristics of a selected speaker [80].

The VC system uses an audio clip collected from the user
as its source, and generates a radically false audio file for
the target subject. It maintains the grammatical and phonetic
aspects of the original sentence, while emphasizing its quality
and likeness to the target speaker. Both VC synthesis and
TTS pose significant dangers, because they create audios that
are nearly unidentifiable in human speech. In addition, dupli-
cated replays initiate assaults. Vocal biometric devices are
of concern because improved audio synthesis algorithms can
create audios similar to those received by loudspeakers [81].
This section summarizes the recent advances in speech

synthesis, including TTS, audio conversion, and detec-
tion approaches Table 1 shows a list of tools, applica-
tions, and open-source projects which synthesize audiovisual
deepfakes.

1) TTS (TEXT-TO-SPEECH) AUDIO SYNTHESIS
TTS, which has been around for over a decade, is a system
that uses text input to generate an artificial audio, and allows
the use of an audio for better interaction between humans
and computers. The first investigations on TTS synthesis
were conducted using audio concatenation and parameter
estimation. The concatenated text-to-speech (TTS) technique
entails the fragmentation of superior audio recordings into
smaller units, which are subsequently reassembled to gen-
erate a novel speech pattern. Nonetheless, owing to the
absence of advancement and lucidity in this methodology
throughout the years, its appeal has diminished. Paramet-
ric models differ from other models in that they employ a
mapping technique to convert text into basic speech features,
which are subsequently transformed into an audio stream
using vocoders. Subsequently, DL became an important audio
synthesis approach, resulting in a much higher degree of
audio quality. These include neural audio encoders [82], [83],
auto encoder [84], autoregressive models [74], [85], [86],

GAN [87], [88] as well as other emerging technologies.
References [89] and [90] have contributed to the fast expan-
sion of the speech synthesis industry. Figure 3 shows the
rationale underlying recent Text-to-speech (TTS) techniques.

FIGURE 3. Workflow diagram of the most recent TTS systems.

WaveNet is a primary advancement in audio and speech
synthesis. [85], Tacotron [74], and DeepVoice3 [91] can pro-
duce realistic synthetic audios from text inputs to enhance
the interaction between people and robots. WaveNet, Devel-
oped in [85], which is the result of the creation of a
pixelCNN, was developed in [121]. conditional image [92].
WaveNet models employ acoustic information such as spec-
trograms to convert raw audio waves throughout a generating
frame based on real audio data. Parallel WaveNet technol-
ogy was developed to enhance the sampling efficiency and
provide high-quality audio streams [93]. An additional DL
that depends on a WaveNet variation called Deep Voice1
[94] is available by swapping an associated NN template
for any module with an audio source, speech synthesizer,
or text processing interface. There is no actual end-to-end
audio-recognition technology; however, each module is indi-
vidually taught. Google coined the word ‘‘taciturn’’ in 2017.
The All-inclusive Audio Synthesis Model Taciturn can syn-
thesize audio using textual and audio pairings, making it
sufficiently versatile for use with many different types of
dataset. Tacotrons, such as WaveNet, are generative systems
composed of a sequence-to-sequence model, attention-based
decoding, and post-processing net. However, the superior
performance of the tacotron model may be accompanied by
certain drawbacks. This process is repeated several times.
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Model creation requires high-performance systems because
of the inefficiency in including these components.

Deep audios using a combination of Tacotron and
WaveNet [95] synthesize speech. Tacotron uses WaveNet to
translate source text into speech by transforming it into a
linear spectrum. Tacotron2 was created in [96] is a speech
synthesis system that utilizes a neural network architecture
consisting of an encoder network, a decoder network, and
an attention mechanism to generate speech waveforms of
superior quality. The encoder network is responsible for
receiving textual input and producing a series of embedding
that encapsulate the semantic content of the input. Subsequent
to the production of embedding by the encoder, the decoder
network proceeds to generate a sequence of Mel-spectrogram
frames. The attention mechanism facilitates the decoder’s
ability to concentrate on pertinent segments of the encoder
output during the production of Mel-spectrogram frames.

The Tacotron2 model has been extensively employed in
various domains, including but not limited to audiobook
narration, virtual assistants, and chatbots. The system has
exhibited exceptional proficiency by producing speech that
closely resembles human-like quality and intonation. Fur-
thermore, Tacotron2 exhibits a high degree of adaptability
and can undergo training on diverse linguistic and vocal
modalities.

Notwithstanding its accomplishments, Tacotron2 encoun-
ters certain obstacles, including generating speech that
sounds authentic in the presence of ambient noise and man-
aging texts of extended length. Nevertheless, current research
endeavors to tackle these concerns and enhance the efficacy
of vocal synthesis systems such as Tacotron2. The researchers
created DeepVoice3, an entirely convolutive spectrogram
character model, to overcome the temporal complexity asso-
ciated with recurrent unit-based audio synthesis models.
Reference [91] shows that the Deep Voice 3 model outper-
forms its rivals in terms of speed because all calculations are
performed in parallel. There are three main components to
Deep Voice 3: The vocoder has three parts: (1) Encoder that
transforms input text into a learnt internal code form; (2) a
decoder that interprets autoregressively learned representa-
tions; and (3) a wholly convolutive post-processing network
that predicts the parameters of the vocoder. VoiceLoop is an
alternative audio synthesis model. Using a memory frame,
speech was generated from audios that were not audible dur-
ing the training. VoiceLoop constructs phonological storage
by using an offset buffer as a matrix. Phonemes in a string
of texts were converted into tiny vectors for representation.
The generated phonemes were evaluated and their codes were
added to form a new contextual vector.

There has been a significant amount of research put
into and development of end-to-end audio synthesis mod-
els. In [91], researchers discussed various methods that can
be used to construct such models. Additionally, commer-
cial products such as Amazon AWS Polly, Baidu TTS, and
Google Cloud TTS have been introduced by [131]. with the

goal of achieving a high degree of similarity between the
synthesized and natural audios. These products aim to achieve
this similarity by using a variety of techniques. These systems
are becoming more and more popular, and they are currently
utilized for a wide variety of applications including chatbots,
virtual assistants, and audiobooks.

Text-to-speech (TTS) systems of the modern era are
capable of effectively converting written text into speech
that sounds natural and possesses particular characteristics.
Researchers have been able to develop speech models that
can replicate the audio of a particular speaker with remark-
able accuracy, even with only a small number of reference
samples to use as a guide. This has been made possible by the
development of neural network models. This has ushered in a
new era of real-time audio cloning technology; in which it is
now possible to synthesize the audio of a person in real-time
using only a few seconds of their speech as input.

This has opened the door to a wide range of applications
for the technology. This type of technology has a wide variety
of applications in the real world, ranging from individualized
audio assistants to assistive technology for people who have
difficulties communicating through speech [89], [97]. Audio
synthesis systems do not seek to imitate a person’s distinctive
speech features, whereas speech cloning systems do [98].
ISpeech3, VoiceApp2, and Overdub1 are only a few exam-
ples of AI-powered Audio-cloning platforms that make this
technology publicly available by generating synthetic false
audios that mimic targeted speech.

The authors of [89] Developed a TTS system that relies on
Tacotron 2, which can synthesize the Audios of several speak-
ers, even those not present throughout training. Three neural
networks, each trained separately, constitute the framework.
Synthetic speech correctly imitates a target speaker’s Audio
but not its prosody.

In [107], the authors recommended twoDeep Voice 3mod-
ules: speaker encoding and speaker adaptation. Speaker
adaptability was prioritized in the framework to produce
audio for several channels. To encode speakers, a second
model was trained to use the multi speaker generative frame-
work to determine new speaker embedding.

In [133], researchers unveiled a speech cloning algorithm
that, given a text input or audio waveform of a speaker as
input, can synthesize an audio that sounds similar to the
one that the system is supposed to mimic. The architec-
ture incorporates a neural vocoder, in addition to text and
audio encoders and decoders. The speech-generationmodel is
instructed by a representation disentangled from the speaker
and the approach is jointly trained using latent linguistic char-
acteristics. Cloning a speaker’s audio takes approximately
five minutes, but the final product is of exceptional quality
and is similar to the original speaker.

The authors of [99] have suggested a meta-learning
approach to enhance the efficacy of audio commands. This
approach involves the integration of a WaveNet model that
can operate with restricted data. The initial stage of this
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TABLE 2. Overview of the latest audio synthesis methods.

methodology entails the computation of speaker adaptation
through the refinement of audio embedding. Subsequently,
the embedding vectors of novel speakers can be forecasted
utilizing a parametric methodology that is not dependent on
textual data. This approach may prove advantageous in situa-
tions where there is a scarcity of data and prompt adjustment
to novel speakers is imperative.

The findings of this investigation exhibit the efficacy of
the suggested methodology in producing superior synthetic
vocalizations for diverse speakers. An additional encoding
network must be constructed to achieve this. This technique
works well when training high-quality, clean data. The qual-
ity of the synthesized speech is reduced when background
noise is present during the encoding process. In [125], The
researchers presented a multi-speaker sequence-to-sequence
model. The model utilizes domain-specific training data to
reconstruct the speech of a target speaker from a restricted

number of noisy input samples. The methodology entails the
process of instructing the model using a dataset that encom-
passes audio samples from various speakers. Subsequently,
the model is fine-tuned on a smaller dataset that comprises
samples from the specific target speaker. The model’s output
exhibits the ability to produce synthetic speech of supe-
rior quality that bears a striking resemblance to the natural
audio of the target speaker, despite the presence of restricted
training data. The aforementioned methodology exhibits the
capability to facilitate a diverse array of implementations,
such as audio replication and audio transformation, while
necessitating minimal data prerequisites. The results showed
that the artificial speech became more lifelike. Consequently,
creating convincingly equivalent synthetic speech from a
limited amount of poor-quality audio data remains a chal-
lenge. Table 2 summarizes the sophisticated audio synthesis
approaches.
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2) VOICE CONVERSION (VC)
Voice synthesis using VC makes the source voice appear
more like the desired voice while keeping the original
grammar intact. VC is used for various purposes in the
entertainment sector, including expressive audio synthesis,
individualized speech assistance for individuals with hearing
impairments, and audio dubbing [80]. Recent advances in
anti-spoofing technology for automatic speaker recognition
[72] have included VC systems for generating fake data [72],
[100]. Audio control relies on more advanced aspects of
speech such as timbre and prosody. Prosody is concernedwith
suprasegmentally features, such as pitch, amplitude, stress,
and duration, whereas audio timber focuses on the spectral
characteristics of the auditory system through phonation.
Several voice conversion competitions (VCCs) have been
organized to promote research on voice conversion methods
and improve the accuracy of existing methods, [72], [100]
Scholars in the domain of speech conversion have been
investigating techniques to enhance the caliber of speech con-
version by utilizing both parallel and non-parallel data. The
Voice Conversion Challenge (VCC) is a technique that aims
to convert input audio to output speech through the integration
of parallel and non-parallel training data, as described in
[72] and [101]. The objective of the VCC was to mitigate
the constraints associated with conventional parallel training
data by investigating the potential of non-parallel data, which
is frequently more prevalent in practical settings. In [136],
significant endeavors were undertaken to devise techniques
for cross-lingual voice conversion (VC), which pertains to the
process of transforming recorded speech from one language
to another.

The research was centered on non-parallel training data
and encompassed a diverse array of languages in order to
tackle the difficulty of cross-lingual voice conversion. The
findings indicate encouraging enhancements in the standard
of speech conversion, highlighting the viability of integrating
non-parallel data with conventional parallel training tech-
niques. Previous research has shown that VCmethods depend
on spectrum mapping with paired training data, and require
the use of audio samples from both target and source audios
that share common linguistic content. Gaussian Mixture
Model GMM-based techniques [26], [102], regression using
partial least squares [103], exemplar-based techniques [104],
and parallel spectral modeling [105], [106] have been sug-
gested. These [102], [104] are ‘‘shallow’’ VC approaches that
could directly modify the spectral features of the source audio
in its native feature space [105] To capture temporal correla-
tion in an audio stream. Researchers previously proposed an
RNN-based speaker-dependent sequential approach.

In [106] and [143], the deep bidirectional LSTM
(DBLSTM) methodology made it feasible to extract
long-range contextual data while producing high-quality
transformed audios using DNN-based techniques. This is
made possible by the fact that DBLSTM is a technique.
In [105] and [106], feature representations were efficiently

learned for simultaneous VC feature mapping. Parallel train-
ing requires a large number of source and target spoken
phrase samples, which is impractical for practical application.
Researchers have proposed VC algorithms for nonparallel
(unpaired) training data as a means to achieve voice con-
version for speakers of diverse languages. The algorithms in
question endeavor to enhance the quality of speech conver-
sion through the utilization of both parallel and non-parallel
data.

In a particular research endeavor [136], a signifi-
cant endeavor was undertaken to devise techniques for
cross-lingual voice conversion (VC) utilizing non-parallel
training data and a diverse set of languages. This pro-
cess entails the translation of one language into another
through the use of recorded speech. Robust value creation
approaches, such as neural network-based [108], vocoder
[109], [110], GAN [111], [112], and VAE [113], [114] have
been developed to aid in the modeling of non-parallel spectral
data.

Techniques based on auto encoders attempt to learn how to
modify speaker identification independently of the linguistic
content. In [114], the quality of learned representations was
compared using various auto encoding techniques. When-
ever WaveNet and Vector Quantized VAE are used together,
it was found that, [85] The decoder enhances the preser-
vation of speaker-invariant language content and recovers
rejected information. Owing to the dimensionality reduc-
tion bottleneck, VAE/GAN-based techniques over smooth the
transformed features, resulting in voice conversionwith audio
buzz.,

Recent GAN-based approaches such as VAW-GAN [115],
CycleGAN [111], [116], and StarGAN [153] aim to pro-
duce high-quality converted speech. Studies [117], [118] have
demonstrated superior performance in terms of sounding nat-
ural and similar to the target audience compared to other
multilingual VC. Therefore, performance is reliant on the
presence of a speaker, and diminishes for unseen speakers.
Owing to their capacity to create human-like speech, neural
vocoders have surpassed other vocoding technologies and
become the standard for audio synthesis in recent years [91].
The vocoder shows the ability to acquire and produce audio
waves that bear a striking resemblance to the distinct acoustic
characteristics of the speaker.

Research [110] examined the performance of a variety of
vocoders and determined that parallel-WaveGAN performed
the best. Using acoustic properties, [119] effectively simu-
lated the transmission of human speech data over an IP (VC).
Nevertheless, there is scope for improvement in addressing
unidentified louder speakers [71] Using AttS2S-VC, [120]
Cotatron, [121] and VTN, [122] researchers can directly
synthesize speech from text labels using three modern VC
techniques based on TTS by detecting aligned linguistic
features from the source speech. By doing so, we know
that neither the source nor destination speaker’s identity will
change throughout the conversion process. Unfortunately,
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TABLE 3. Overview of the various methods for detecting deepfake audio.

these strategies rely on text labels, which are not always easily
accessible.

There have been recent attempts at ‘‘one-and-done’’ VC
techniques [123], [160]. Unlike prior methodologies, the pro-
cess of training few-shot voice conversion models does not
necessitate direct access to the source and target speaker data
samples. Merely one statement from each speaker suffices for
the conversion procedure. The speech of the source speaker is
utilized to derive a speaker embedding, which is subsequently
employed to produce the converted speech. Notwithstanding
recent progress, the few-shot voice conversion techniques
for speakers who have not been previously encountered still
encounter obstacles in attaining dependable performance.
[125]. This is largely because speaker embedding generated
from a single unseen speaker’s speech is insufficient [126].
This has a noticeable effect on the dependability of the one-
shot conversions. The additional effort [127], [128] of speaker
identities is concealed during training using zero-shot VC and
the model does not need to be retrained.

The speaker encoder breaks down data about the speaker’s
delivery into individual ‘‘embeddings’’ for style and

substance, while the decoder uses these ‘‘embeddings’’ to
construct audio clips. The zero-shot VC scenario is inter-
esting because it does not require collection or adjustment
of parameters or data for adaptation. However, adaptation
falls short, especially in situations in which both the goal
and source speakers are invisible, vastly dissimilar, and very
loud [125].

B. AUDIO DEEPFAKE DETECTION METHODS
Due to recent advancements in TTS [126], [129] and
VC [125] techniques, deepfakes in audio pose a growing
threat to audio biometric interfaces and society. Previous
research has not fully addressed the detection of synthetic
speech [130], but DL methods, such as CNNs, RNNs, and
LSTMs, show promise in detecting deep fakes by analyz-
ing spectral content, pitch, and time-frequency patterns. The
use of these methods holds great potential for preventing
the spread of audio deep fakes. This section examines the
methodologies for detecting audio deepfakes.

In the previous TABLE 3, an overview of various methods
for detecting deepfake audio was provided. Two primary
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categories can be established for the techniques.: handcrafted
techniques and DL techniques. Handcrafted techniques
involve manually designing and implementing algorithms to
detect deepfake audio, while DL techniques utilize neural
networks to automatically learn patterns in the audio data and
detect deepfakes. In the following text, we will delve deeper
into each of these categories and discuss the specific methods
used

1) HANDCRAFTED TECHNIQUES
Yi et al. [131] proposed a technique for identifying audio
content that has been modified using TTS synthetic speech

recognition, which may be trained using GMM and LCNN
classifiers using constant Q-cepstral coefficients (CQCC),
which require handcrafted features. Although this technique
performed better with completely synthesized audio, its per-
formance progressively declined with the partially generated
audio samples [106]. Res2Net is a modified version of the
ResNet. They assessed the model using a variety of acoustic
properties and determined that CQT features provided the
best results. This model performs better at detecting audio
tampering; Nonetheless, there is room for further enhance-
ment of its capacity for generalization.

In [132], utilized a combination of mel-spectrogram fea-
tures and ResNet-34 for the purpose of detecting counterfeit
speech. Despite the success of this approach, there is
room for further improvement. The authors Monteiro et al.
[133] have presented their research findings. An approach
utilizing ensembles was employed to distinguish between
authentic and synthetic speech. Deep learningmodels, specif-
ically LCNNs and ResNets, were utilized to compute deep
attributes, which were subsequently combined to achieve this
objective. Despite the robustness of the false speech detec-
tion, it is crucial to evaluate this model on a representative
dataset.

A method for identifying counterfeit speeches was devised
by Gao et al. [134] which relies on the detection of such
inconsistencies. A residual network was trained to identify
altered speech through the utilization of a global 2D-DCT
feature. Although the model exhibited a higher degree of
generalization, its performance deteriorated when noisy data
was used. An artificial speech detection model based on
the ResNet network and transformer encoder was devel-
oped by Zhang et al. [135] (TEResNet). The initial stage
involved the utilization of a transformer encoder to build
context-specific renderings of an acoustic key point by ana-
lyzing the correlation between the frames of the audio input.
Subsequently, a residual network was trained using the deter-
mined key points to differentiate between unaltered and
changed speeches. This study demonstrates improved effec-
tiveness in detecting bogus audio but requires substantial
training data.

In the study [136] conducted by Das et al. they developed
a technique for determining whether an individual’s speech
has been altered. First, a signal commanding approach was
utilized to boost the variety of the training data. Subsequently,

the data that was gathered was employed to produce CQT
characteristics, which were subsequently utilized for training
the LCNN classifier. Although this approach improves the
accuracy of detecting counterfeit audio, it requires a substan-
tial quantity of training data.

The detection of copied conversations was proposed by
Aljasem et al. [137] through the utilization of a technique that
relies on handcrafted features. At the outset, sign-modified
acoustic local ternary patterns were utilized to extract fea-
tures from the input data. The knowledge that was acquired
was subsequently utilized to develop classifiers based on
asymmetrical bagging technique for the purpose of discrimi-
nating between authentic and artificially generated speeches.
The aforementioned technique exhibits resilience towards
high-volume cloned vocal playback assaults. Nevertheless,
it necessitates additional refinement with regards to its
efficiency.

Ma et al. [138] introduced a method based on continuous
learning to improve the ability of modified speech detection
systems to generalize. The learning capabilities of the model
were enhanced by adding a loss function to distill accumu-
lated information. Although this technique is computationally
efficient and capable of detecting previously undiscovered
spoofing operations, its performance with noisy data has not
been examined.

Borrelli et al. [139] included both short- and long-term
bicoherent characteristics in their study. Three classifiers
were trained using the gathered features: linear (SVM), radial
basis function (RBF), and random forest (SVM). This tech-
nique achieves the highest degree of precision when an
SVM classifier is used. However, because this is a manual
process, it cannot be used to hide procedures. When analyz-
ing GAN-generated audio samples, [140] researchers have
employed bispectral analysis to identify the unique spectral
correlations.

Similarly, in [141], utilized bispectral and mel-cepstral
analyses to identify the missing robust power elements in
counterfeit speech. The aforementioned characteristics were
employed for the purpose of instructing diverse classifiers
grounded on ML, among which a Quadratic Support Vector
Machine (SVM) exhibited the most superior performance.
These strategies [140], [141] are unaffected by TTS synthetic
audio but may miss the audio synthesis of superior-quality
Malik and Changalvala [142] suggested using a CNN to
identify clone speech.

First, audio samples were transformed into spectrograms,
which were then used to calculate the deep features and
categorize the actual and false speech samples using CNN
architecture. Although this method is more effective in identi-
fying phony audio, it suffers from samples with high levels of
background noise. Chen et al. [9] developed a technique that
exploits DL to recognize fake audios. Audio samples were
used to create linear filter banks (LFB) with 60 dimensions
based on which a specialized ResNet model was trained. This
study enhances the identification of bogus audios, albeit at
considerable computational expense.
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Huang and Pun [143] proposed a technique to detect audio
spoofing. First, silences were identified by analyzing the
rate and intensity of each speech signal’s short-term zero
crossing. Then, in the relatively high-frequency domain, the
chosen sections were used to identify the LFBank criti-
cal spots. Finally, a superior DenseNet-BiLSTM framework
was developed for audio manipulation detection. However,
the computational cost of this method [143] for avoiding
overfitting is high. Based on keypoint and light CNNs,
Wu et al. [144] suggested a novel approach for detecting
synthetic audio manipulations (LCNN).

The unique characteristics of human audios were used
to train a (CNN) model. Alterations were made to make
the emphasis distribution more similar to that of the nor-
mal speech. An LCNN was then used in combination with
the modified keypoints to distinguish natural speech from
artificial speech. That’s because this method [144] can’t be
easily fooled by artificially altered audios. However, it cannot
prevent assaults from using a replay, because it has no way of
identifying them.

2) DEEP LEARNING FEATURES-BASED TECHNIQUES
Zhang et al. [145] showed that a (DL) strategy can be devel-
oped using OC Softmax and ResNet-18. The model was
trained to identify the feature space that allowed for differ-
entiation between the natural and modified audio samples.
Despite its superiority in generalization against unknown
assaults, this technique suffers from VC attacks owing to the
waveform filtering.

AS shown in figure (4) the system adheres to a conven-
tional architecture based on deep learning for the purpose
of detecting audio spoofing. The characteristics of the
speech are inputted into a neural network for the pur-
pose of computing an embedding vector that corresponds
to the inputted utterance. The neural network is trained
to acquire knowledge of an embedding space that enables
efficient differentiation between authentic audios and those
produced through spoofing. Subsequently, the embedding
is employed to evaluate the level of certainty regard-
ing whether the utterance pertains to genuine speech or
spoofing.

FIGURE 4. An illustration of Softmax and AM-Softmax for binary
classification, alongside the proposed OC-Softmax for one-class learning.
The embeddings and weight vectors presented in the illustration are not
normalized [145].

The study presents a new loss function, denoted as
One-class Softmax (OC-Softmax), which is designed for the
purpose of detecting audio spoofing. This is juxtaposed with
the frequently employed loss functions for binary classifica-
tion. The OC-Softmax loss function has been developed with
the purpose of condensing the authentic speech representa-
tion and segregating the instances of spoofing attacks in the
embedding space.

The mathematical equations utilized by the system are as
follows:
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The softmax loss is a loss function commonly employed
in the training of classification models. The aforementioned
statement pertains to the quantification of the dissimilarity
between the anticipated probability distribution and the fac-
tual probability distribution. During the training process, the
model aims to minimize the softmax loss, which facilitates
the acquisition of the ability to accurately predict the appro-
priate class for every input.
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The AM-Softmax loss function is utilized in the training
of one-class classification models. The proposed approach is
a variant of the softmax loss function, which incorporates an
angular margin to enhance the compactness of the embedding
distributions for each class. During the training process, the
AM-Softmax loss function is minimized, thereby facilitating
the model’s ability to differentiate between authentic and
counterfeit vocalizations.
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The OC-Softmax loss is a loss function utilized in the
training of one-class classification models. The proposed
approach involves a variation of the AM-Softmax loss func-
tion, which incorporates dual margins to enhance the com-
pression of genuine speech and effectively isolate instances
of spoofing attacks. During the training process, the model
is trained to minimize the OC-Softmax loss, which in turn
enhances its ability to accurately detect deepfakes.

Hua et al. [56] presented The Res-TSSDNet and Inc-
TSSDNet models for the purpose of detecting synthetic
speech. Both models exhibit a comparable architecture, char-
acterized by a series of stacked ResNet-style or Inception-
style blocks, fully-connected linear layers, and global max
pooling. The Inc-TSSDNet utilizes dilated convolutions in its
models to augment the receptive field. The training approach
encompasses the preparatory phase of data, utilization of
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weighted cross-entropy loss to address data imbalance, and
implementation of mixup regularization to enhance general-
ization. The findings demonstrate the efficacy of the proposed
models in relation to established techniques, as evaluated on
the ASVspoof2019 dataset. An ablation study is conducted
to assess the influence of the dimensions of network depth
and width. According to the research, it is suggested that
lighter models are able to attain a favorable balance between
precision and effectiveness.

WCE (z, yi) = −wyi log
(
zyi

)
(4)

The utilization of weighted cross-entropy loss is a strategy
to address the issue of data imbalance, whereby the minority
class is assigned a higher weight.

CEmixup
(
z̃, yi, yj

)
= λCE

(
z̃, yi

)
+ (1− λ)CE

(
z̃, yj

)
, (5)

The study employs the mixup regularization loss function,
which integrates the cross-entropy (CE) losses of the mixed
examples in the synthetic speech detection domain.

x̃i = λxi + (1− λ)xj, ỹi = λyi + (1− λ)yj (6)

The regularization loss of mixup pertains to the amal-
gamation of training examples and labels to enhance the
generalization of the model.

Wang et al. [146] devised a deep neural network (DNN)
model, which they namedDeep-Sonar, to identify artificially-
generated counterfeit audios in speaker recognition (SR)
systems. The employed methodology utilizes a stratified
configuration of neural units to execute the task of classifi-
cation. The Deep-Sonar system was assessed by the authors
on the audios of English speakers obtained from the FoR
dataset [147], The results showed a detection rate of 98.1%
and an equal error rate (EER) of approximately 2%. The
model’s efficacy was notably impacted by the existence of
noise in practical settings, leading to a reduction in preci-
sion. Wang et al. presented a noise-reduction methodology to
tackle the aforementioned problem. The proposed technique
yielded a 5% improvement in the model’s accuracy, leading
to a detection rate of 98.6% and an EER of 1.9%.

As can be seen from figure (5) The system comprises three
primary constituents:

FIGURE 5. The DeepSonar system’s block diagram for spotting
AI-generated doppelganger voices [146].

deep neural network (DNN) was proposed to differentiate
between authentic and counterfeit audios. The DNN was
trained on a speaker recognition (SR) system and extracts
activation patterns from the SR system for both authentic and
synthetic vocalizations. A classification systemwas then used
to distinguish between authentic and counterfeit audios based
on the extracted activation patterns.

The operational process involves the initial input of authen-
tic and counterfeit vocalizations into the SR mechanism. The
SR system then generates a collection of activation patterns
for every vocalization. The layer-wise neuron activation pat-
tern extractor is then used to extract the activation patterns.
Finally, the activation patterns are inputted into the classifier,
which performs the task of categorizing the audios into either
genuine or counterfeit.

The authors found that layer-wise neuron behaviors can be
used to detect artificially-generated fake audios. The TKAN
neuron coverage criterion was more effective than the ACN
neuron coverage criterion because it can distinguish between
real and artificial audios more effectively.

The system has reportedly shown effectiveness in identi-
fying vocalizations that were created artificially. The system
has a detection rate of 98.1% and a false alarm rate of
about 2%. The system demonstrates resistance to manipula-
tion attempts, including but not limited to audio alteration and
the addition of outside noises.

the equations that utilized are:

δl =

∑
x∈X ,i∈I ϕ(x, i; θ )

|I | · |X |
(7)

computes the lth layer threshold l for the SR system.

ACN (l, i) = |{x | ∀x ∈ l, ϕ(x, i; θ ) > δl}| (8)

TKAN (l, i) = {argmax(ϕ(x, i; θ ), k) : x ∈ X (9)

defines the neuron coverage criteria for the ACN.
defines the neuron coverage requirements for TKAN.
The findings of the authors suggest that layer-wise neu-

ron behaviors can be used to detect artificially-generated
fake audios. The TKAN neuron coverage criterion is more
effective than the ACN neuron coverage criterion because
it can distinguish between real and artificial audios more
effectively.

In their study, Yu et al. [148] introduced a new method
for scoring, referred to as Human Log-Likelihoods (HLLs),
that utilizes a Deep Neural Network (DNN) classifier.
In contrast to the conventional employment of (GMM) in
Log-Likelihood Ratios (LLRs) scoring system, HLLs are
specifically devised to augment the precision of the classi-
fication procedure. The efficacy of the HLLs approach was
assessed by the authors through the utilization of the ASV
Spoof Challenge 2015 dataset and the automated extraction
of feature sets. The findings of the experiment indicate that
the DNN-HLLs exhibited superior performance in detecting
accuracy compared to GMM-LLRs, as evidenced by an Equal
Error Rate (EER) of 12.24. This study provides evidence
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supporting the enhanced dependability and precision of the
HLLs technique in identifying falsified audio.

FIGURE 6. The model of spoofing detection system in an ASV
system [148].

As shown in Figure (6) The system for detecting spoofing
comprises three main components: feature extraction, spoof-
ing detection, and decision-making.

The feature extraction component extracts distinctive char-
acteristics from the audio signal input. The spoofing detection
component is a deep neural network (DNN) that has been
trained to differentiate between authentic and falsified audio.
The decision-making component determines the authenticity
of the input audio by analyzing the DNN’s output.

The spoofing detection score can be computed using the
log-likelihood ratio (LLR), the human-like likelihood (HLL)
scoring techniques, or a combination of both. The mean (m)
and standard deviation (σ ) of the spoofing scores are then
determined. The false rejection rate (FRR) and false accep-
tance rate (FAR) are also calculated.

SGMM(X) =
1
T

∑T

i=1
{logP (Xi | λhuman)

−logP
(
Xi | λspoof

)}
(10)

The scores S1DNN(F) and S2DNN(F) are derived from a
(DNN) specifically designed to discriminate against spoof-
ing, resulting in a spoofing detection mechanism. These
equations are denoted as (11) and (12). The following equa-
tions are utilized to calculate the disparity between the
logarithmic posterior probabilities of authentic human speech
and fraudulent spoofing techniques.

S1DNN(F)

=
1
T

∑T

i=1

{
log [P (h | Fi)]− log

[∑K

k=1
P (sk | Fi)

]}
(11)

S2DNN(F)

=
1
T

∑T

i=1
{log [P (h | Fi)]− log [max (P (sk | Fi))]}

(12)

Equation (13) denotes that S3DNN(F) is an additional met-
ric for detecting spoofing, which is computed based on the
results of the deep neural network. The approach utilizes
the log-likelihood of human speech, which represents the
probability of a given frame belonging to human utterance,

as the metric for determining the degree of spoofing.

S3DNN(F) =
1
T

∑T

i=1
log (P (h | Fi)) (13)

Equations (14) to (17) are utilized to determine the mean
(m) and standard deviation (σ ) of the spoofing scores (SHLL
and SLLR) by employing the log-likelihood ratio (LLR) and
human-like likelihood (HLL) scoring techniques.

m−SHLL = E [y1] (14)

σ−SHLL =
√(

E
[
y21

]
− E [y1]2

)
/T (15)

m_SLLR = E [y2] (16)

σ_SLLR =
√(

E
[
y22

]
− E [y2]2

)
/T (17)

Equations (18) and (19) denote FRR(θ) and FAR(θ) as
the measures of false rejection rate and false acceptance
rate, correspondingly, at a specific threshold value of θ . The
cumulative distribution functions of the normal distribution
are utilized in these equations to estimate FRR and FAR.

FRR(θ) = CDF (θ | mh, σh) (18)

FAR(θ) = 1− CDF (θ | ms, σs) (19)

Authors of [149] build amodel using a Light Convolutional
Gated RNN (LCGRNN). they introduced Res-TSSDNet,
which is a full-stack model for synthetic speech detection that
uses deep feature computation and classification. The model
can be modified to fit new data, although this requires more
than the usual processing.

FIGURE 7. The proposed LC-GRNN utterancelevel identity vector extractor
block diagram [149].

The initial stage of data preparation involves the elimina-
tion of noise and the normalization of features. The process
of feature extraction involves the utilization of a (CNN) for
the purpose of extracting features from the speech signal. The
process of classification employs a (RNN) to differentiate
between authentic and fraudulent speech signals.

The following equation effectively encapsulates the tempo-
ral dependencies and contextual information present within
the audio sequence, thereby playing a pivotal role in the pre-
cise detection of counterfeit audio. The equation for updating
the Gated Recurrent Unit (GRU) can be expressed as follows:

znt = σ
(
MFM

(
W n
z ∗ x

n
t + Un

z ∗ h
n
t−1

))
(20)
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The symbol ∗ is utilized to represent a convolution opera-
tion performed by an operator. The convolutional layers may
be construed as filter banks that have undergone training
and optimization to identify anomalies in the counterfeit
speech. The primary benefit of utilizing these filters lies
in the extraction of frame-level characteristics at each tem-
poral interval, which exhibit greater discriminatory power
than those obtained through the utilization of fully connected
units.

Also The variable znt denotes the update gate at time t,
which governs the extent to which the prior hidden state
hht−1 is modified in response to the present input x tn. The
computation of the update gate involves the utilization of
a sigmoid activation function (σ ), in conjunction with the
weight matricesW n

z and Un
z , and the bias term b_z.

Cheng et al. [150] proposed a strategy that utilized the
Squeeze-Excitation Network (SENet) to train a Deep Neural
Network (DNN) by incorporating log power magnitude spec-
tra and CQCC acoustic features. The ASVspoof 2019 dataset
was utilized to evaluate the method, which demonstrated a
17% enhancement in the identification of synthetic audio.
Nonetheless, the model’s efficacy exhibited a decline when
subjected to a logical access scenario, wherein overfittingwas
detected, leading to a t-DCF cost and an EER of zero.

FIGURE 8. Feature map technique using the Unified method illustrated.
A unified feature map is created by repeatedly repeating an utterance
after extracting low-level acoustical features. The feature map is then
divided into segments with M frames of length and L frames of overlap,
and input into the DNN models [150].

Figure (8) depicts Feature map technique of the system
designed for detecting audio-visual spoofing. The process
entails the retrieval of auditory and visual characteristics from
the input, which are subsequently merged to capture their
interrelation. The temporal modeling module is designed to
capture temporal dependencies and contextual information
within the fused features. Ultimately, the authenticity of the
input is determined through a classification stage that lever-
ages the output generated by the temporal modeling module.
The presented block diagram illustrates the integration of
auditory and visual data within the system, which serves to
augment its ability to detect instances of spoofing.

Alzantot et al. [151] have proposed a technique that utilizes
a residual (CNN) for the identification of audio deepfakes.
The Counter Major (CM) score of the counterfeit audio

is calculated through a technique that involves the extrac-
tion of significant features from the input, such as the
Mel-Frequency Cepstral Coefficients (MFCC), Constant-Q
Cepstral Coefficients (CQCC), and (STFT). The findings
indicate a notable enhancement of 71% and 75% in the t-DCF
(0.1569) and EER (6.02)matrices, respectively. Nevertheless,
the system exhibits generalization errors, underscoring the
necessity for additional research to augment its efficacy.

FIGURE 9. The Spec-ResNet model architecture [151].

The system comprises four main parts: pre-processing,
feature extraction, classification, and post-processing.

The pre-processing stage removes noise from the audio
signal and normalizes it to a standard range. The feature
extraction stage extracts feature from the audio signal, such
as Mel-frequency cepstral coefficients (MFCCs). The classi-
fication stage uses a deep residual neural network (ResNet)
to classify the audio signal as authentic or spoofed. The
post-processing stage produces the classification decision
from the ResNet.

The authors propose investigating alternative methods for
feature extraction and incorporating supplementary data into
the model to reduce generalization errors.

CM (s) = log(p(bona fide | s; θ ))− log(p(spoof | s; θ ))
(21)

The equation involves the assignment of probabilities
to the input being either genuine or a spoof, denoted as
P(genuine) and P(spoof), respectively. The computation of
the log-likelihood ratio involves the natural logarithm of the
ratio between the probability of genuine events and the prob-
ability of spoof events.

Through utilization of the aforementioned formula, the
system is capable of producing a numerical value indicative
of the probability that the input is authentic or fraudulent.
Elevated CM values are indicative of a greater probability
of the input’s authenticity, whereas reduced values suggest
a higher probability of it being a counterfeit.

Rahul et al. [132] introduced a novel methodology for
identifying falsified English-speaking audios using transfer
learning and the ResNet-34 technique, which outperformed
unimodal and multimodal approaches. The CNN network
was used for pre-training the transfer learning model, which
utilized the Rest-34 technique to address the vanishing gra-
dient problem. The framework yielded optimal outcomes,
as evidenced by an EER metric of 5.32% and a t-DCF met-
ric of 0.11514%. Khochare et al. [61] conducted a study
on the detection of artificially generated fraudulent audio
by utilizing two innovative deep learning models, namely
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the Temporal Convolutional Network (TCN) and the Spatial
Transformer Network (STN). The study explored the effi-
cacy of feature-based and image-based approaches. The TCN
model demonstrated a favorable outcome with an accuracy
rate of 92%. In contrast, the STNmodel exhibited an accuracy
rate of 80%; however, it lacked the capability to accom-
modate inputs such as (STFT) and Mel Frequency Cepstral
Coefficient (MFCC).

FIGURE 10. The framework of the proposed speech spoofing detection
system [132].

The proposed framework uses transfer learning to train a
deep CNN to classify speech signals as genuine or fraudulent.
The CNN is first trained on a large dataset of speech signals
using a pre-existing model. This allows the network to learn
universal speech characteristics, which can then be used to
classify new speech signals. The CNN is then fine-tuned
using a smaller dataset of speech signals that have been
labeled as genuine or fraudulent. This fine-tuning allows the
neural network to learn the specific characteristics of the
speech signals in the dataset, which improves the accuracy
of classification.

Mel-spectrograms are used to represent speech signals in
the frequency domain. This representation captures both the
temporal and spectral characteristics of the signal, which is
important for classifying speech signals.

ResNet is a CNN that is known for its ability to learn
long-range dependencies in data. This makes it well-suited
for classifying speech signals, which can have long temporal
dependencies.

The proposed framework has been shown to achieve high
accuracy in classification across a variety of speech datasets.
This is due to the use of transfer learning, which allows the
neural network to learn the fundamental characteristics of
speech, and the use of Mel-spectrograms, which captures the
temporal and frequency aspects of the signal.

Chintha et al. [57]proposed two novel models for audio
deepfake detection. The first model, CRNN-Spoof, uses a
bidirectional LSTM network to predict counterfeit audio
based on five layers of extracted audio signals. The sec-
ond model, WIRE-Net-Spoof, uses a weighted negative
log-likelihood function and outperformed CRNN-Spoof by
0.132% in the Tandem Decision Cost Function (t-DCF)
with an EER of 4.27% in the ASV Spoof Challenge 2019
dataset [152].

Figure (11) depicts the block diagram of the system. The
system consists of an audio/video encoder, a feature extractor,
and a recurrent neural network (RCNN). The audio/video
encoder converts the input signal into a digital format. The
feature extractor extracts feature from the digital signal. The
RCNN is a machine learning model that is trained to classify

the signal as genuine or counterfeit. The decision maker uses
the output of the RCNN to determine the authenticity of the
signal.

FIGURE 11. An overview of the problem domain. The audio and visual
components are extracted and subjected to spoof and deepfake detection
models for processing [57].

The present architectural design incorporates mathemati-
cal equations, which are outlined below.

LCE = − log

 eyc∑1+nf
j=1 eyj

 (22)

The cross-entropy loss function (L_CE) is used to train
the RCNN. It measures the difference between the predicted
probability distribution and the actual probability distribu-
tion.

DKL(N ((µ1, µ2)T , diag(σ 2
1 , σ 2

2 )) ∥ N (0, I ))

= λ(
∑n

i=1
σ 2
i + µ2

i − log(σi)− 1) (23)

The Kullback-Leibler (KL) divergence (L_KL) is used to
measure the difference between two probability distributions.

LEN = λ1LKL + λ2LCE (24)

The ensemble loss (L_EN) is a combination of L_CE and
L_KL. It is minimized to improve the overall performance of
the RCNN.

Shan and Tsai [153] developed a method for aligning audio
recordings using three different classificationmodels: LSTM,
bidirectional LSTM, and transformer architectures. The goal
of this approach was to classify individual audio frames from
a set of 50 distinct recordings into either a matching or non-
matching status. The bidirectional LSTM model was found
to have the best performance, achieving a precision rate of
99.7% and an error rate of 0.43%.

As shown in figure (12) The system consists of three main
components:

A repository of unprocessed audio recordings sourced
from reliable entities, a search sub-system that retrieves
relevant matches from a database in response to an audio
query, and a cross-verification sub-system that uses a refer-
ence recording to authenticate the audio query and ensure
its validity.

The cross-verification sub-system comprises three steps:
First, feature extraction: The audio query and the refer-

ence recording are transformed into a collection of features
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FIGURE 12. An overview of the entire system. The objective is to
authenticate a speech recording provided by a prominent
global figure [153].

that capture the essence of their acoustic content. Second,
Alignment: The features of the audio query and the reference
recording are aligned using dynamic programming. Last,
decision-making: The system determines the legitimacy of
the audio query based on the results of the alignment.

The process of feature extraction involves the computation
of Mel-frequency cepstral coefficients (MFCCs) from the
audio recordings. The MFCCs comprise a set of 39 dimen-
sions, which encompass both delta and delta-delta features.

The alignment process involves the computation of a pair-
wise cost matrix C, which is obtained by evaluating the
Euclidean distance between the query and reference features.
The cumulative cost matrix D is generated through dynamic
programming using the following guidelines:

D[i, j]

=


C[i, j] i = 0
α + D[i− 1, j] i>0, j=0
min(γ + D[i, j− 1], α + D[i− 1, j],
C[i, j]+ D[i− 1, j− 1]) i > 0, j > 0

(25)

The backtrace matrix B is concurrently updated with D in
order to maintain a record of the optimal transition types.
The optimal alignment can be identified by the lowest cost
element located in the final row of D. The determination of
the optimal subsequence path is achieved through the process
of tracking the back pointers.

The aforementioned equations encapsulate the procedure
of aligning the features of a query and a reference through the
calculation of costs, cumulative costs, and optimal transitions
via dynamic programming.

Wijethunga et al. [154] proposed a system for detecting
audio produced by AI synthesizers using a combination of
CNNs and RNNs. The system first preprocesses the audio

data by converting the sample rate, merging audio channels,
and extracting MFCCs. The MFCCs are then used to train
a DNN to predict the existence of background noises. The
DNN is then used to filter out the background noises from
the original audio signal.

The system was evaluated on the UrbanSound8K dataset,
which consists of labeled urban audio excerpts from 10 dis-
tinct classes. The system achieved a success rate of 94% in
detecting audio produced by AI synthesizers.

The system’s block diagram is shown in Figure 13. The
system consists of three main components,

FIGURE 13. Block diagram for synthetic speech detection with DNN [154].

A data preprocessing component that converts the sample
rate, merges audio channels, and extracts MFCCs.

A DNN classifier that predicts the existence of background
noises.

An adaptive filter that eliminates the background noises
from the original audio signal.

The system was able to achieve high accuracy by com-
bining the strengths of CNNs and RNNs. CNNs are good at
extracting features from the input data, while RNNs are good
at capturing long-term dependencies. By combining these
two types of neural networks, the system was able to learn
to identify the subtle differences between real and synthetic
audios.

The system is a promising step towards developing effec-
tivemethods for detecting audio produced byAI synthesizers.
It can be used to protect against the spread of misinformation
and disinformation, and it can also be used to improve the
security of audio-based authentication systems.

Jiang et al. [155] introduced a self-supervised spoofing
audio detection (SSAD) model, which draws inspiration
from PASE+, a pre-existing self-supervised deep learning
methodology. The employed approach involves the utiliza-
tion of multilayer convolutional blocks to extract contextual
features from the audio stream. Although SSAD exhibited
commendable scalability and efficiency, its performance was
comparatively weaker than other deep learning methodolo-
gies, as evidenced by an EER of 5.31 percent. Subsequent
investigations may delve into the prospective advantages of
self-supervised learning and scrutinize techniques to aug-
ment its efficacy, with the aim of further ameliorating the
SSAD model’s performance. Additionally, research could
be conducted to investigate the potential of combining
self-supervised learning with other DL approaches to create
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a hybrid model that could potentially outperform existing
models. The features of the MLmodels can be extracted
automatically, reducing the need for extensive preprocessing
and saving time. To further improve the performance of the
models.

FIGURE 14. The architecture of SSAD [155].

As can be seen from Figure (14) The architecture of SSAD
as follow.

SSAD’s architecture includes an encoder—a CNN—to
extract audio features. The encoder comprises convolutional
layers followed bymax pooling, extracting features at various
scales and reducing dimensionality. Workers, compact neural
networks, perform self-supervised tasks on encoder-extracted
features to enhance discriminative qualities between real and
fake audio. The classifier, another neural network, is trained
to categorize recordings based on encoder features and
worker predictions, using a dataset of labeled authentic and
synthetic audio. The system excels in precise classification
due to its self-supervised learning, acquiring distinctive fea-
tures for differentiation. This learning method outperforms
conventional supervised learning that relies on annotated
data. SSAD modifies the encoder’s architecture accordingly.

The architecture of the encoder is modified by SSAD in the
following manner.

The dilated convolution, denoted as F, is an operation
performed on an element s within a sequence. It involves the
expansion of the receptive field of the convolutional kernel by
inserting gaps between the kernel elements. This results in a
larger effective kernel size, which allows for the incorporation
of a larger context into the convolution operation.

F(s) = (x ·d f ) (s) =
∑k−1

i=0
f (i)·xs−d ·i (26)

The dilation factor is represented by d, the filter size is
denoted by k, and the term s − d · i takes into consideration
the past direction. The process of dilation can be understood
as the incorporation of a constant interval between each pair
of neighboring filter taps.

The quality of the preceding layer’s representations is
enhanced by the inclusion of an additional hidden layer with
ReLU activation in the nonlinear projection.

The Congener Info Max (CIM) task aims to reduce the dis-
parity between two comparable types of speeches, as defined
by L1, while simultaneously increasing the disparity between
two distinct types of speeches, as defined by L2.

L1 = ESr
[
log (d (sa, sr ))

]
(27)

L2 = ESf
[
log

(
1− d

(
sa, sf

))]
(28)

L = L1+ L2 (29)

The discriminator function, denoted as d, is evaluated with
the expectation over positive samples (ESf ) and negative sam-
ples (ESr ).

The A-Softmax loss function, also known as Angular soft-
max, is a mathematical function used in ML.

The A-Softmax loss function can be denoted as follows:

Lang =
1
N

∑
i
−log

 e∥Xi∥cos
(
mθyi,i

)
e∥Xi∥cos

(
mθyi,i

)
+

∑
j̸=yi e

∥Xi∥cos
(
θyj,i

)


(30)

In the context of ML, the variable N represents the quan-
tity of training samples denoted by the set {Xi}Ni=1, along
with their respective labels {yi}Ni=1. These training pairs are
utilized in the calculation of θyi,i, which represents the angle
between Xi and the corresponding column yi of weights W
in the fully connected classification layer. Additionally, the
integer m serves as a parameter that governs the magnitude
of the angular margin between classes.

Subramani and Rao [156] propose a number of methods
for improving the accuracy of fake speech detection models,
including, Lightweight convolutional neural networks: The
authors propose two lightweight convolutional neural net-
work architectures for fake speech detection: EfficientCNN
and RES-EfficientCNN. These models have fewer param-
eters and require less memory than traditional methods,
making themmore efficient and easier to deploy on resource-
constrained devices.

Multi-task learning: The authors also propose a multi-task
learning setting for fake speech detection. In this setting, the
model is trained to jointly predict the veracity (bonafide vs.
fake) and the source of the fake speech. The authors argue that
this helps the model to learn more discriminative features for
fake speech detection.

Transfer learning: The authors also investigate the use of
transfer learning for fake speech detection. Transfer learning
is a technique where a model trained on one task is used as a
starting point for training a model on a new task. The authors
show that transfer learning can be used to adapt fake speech
detection models to new attack vectors (synthesis models)
with less training data.

The authors evaluate their methods on two datasets of fake
speech: the ASVSpoof2019 dataset [72] and the RTVCSpoof
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dataset. They show that their methods significantly outper-
form previous methods on both datasets.

The findings of the evaluation indicate that RES-
EfficientCNN outperformed EfficientCNN with an F1-
score of 97.61 points, surpassing the latter’s F1-score of
94.14 points by 3.47 points. The aforementioned results indi-
cate that the proposed approach is efficacious in enhancing
the precision of the model.

Lei et al. [157] proposed a hybrid model that integrates
1-D CNN and Siamese CNN to optimize the performance of
the latter. The hybrid architecture was formulated by amal-
gamating two CNN and appending a fully connected layer at
the terminal stage. The results obtained from the experiment
indicate that the employment of the hybrid model led to a
notable enhancement of around 50% in both the min-tDCF
and EER metrics, specifically when utilizing the LFCC fea-
tures. The utilization of CQCC features in conjunction with
the hybrid model resulted in a notable enhancement in model
performance, as evidenced by a roughly 20% improvement in
both the min-tDCF and EERmetrics. The results of this study
indicate that the hybrid model exhibits greater resilience and
efficacy in accommodating diverse feature sets. Furthermore,
the hybrid model exhibited greater resilience to noise and
improved capacity for detecting fraudulent audio.

The system is composed of two fundamental components,
specifically a feature extractor and a classifier.

Feature extractor, as shown in figure (15) This component
converts the raw audio signal into a set of discrete features
that can be used by the classifier to differentiate between
genuine and deceptive speech. The feature extractor used

FIGURE 15. The architecture of the CNN model [157].

in this system is a one-dimensional convolutional neural
network (1)-D CNN). The CNN is provided with a set of log-
probabilities, which have been generated for each frame of
the audio signal through the utilization of a Gaussian mixture
model (GMM) as its input. Following this, the 1-D CNN
produces a set of features that illustrate the local and global
relationships between the frames.

Classifier, this component receives a sequence of features
extracted by the feature extractor and produces a probability
estimate of the authenticity of the speech signal. The classifier
used in this system is a Siamese CNN as can be seen from
Figure (16). The Siamese CNN is composed of two iden-
tical CNNs that undergo simultaneous training on identical
datasets. The two CNNs have identical weights and biases,
albeit having distinct inputs and outputs. The two CNNs
receive inputs in the form of feature sequences extracted
from two distinct utterances. The probabilities indicating the
authenticity of the two utterances are generated as outputs
by the two CNNs. The Siamese CNN integrates the two
probabilities to generate a conclusive probability regarding
the authenticity of the speech in the given input utterance.

p(x) =
∑M

i=1
wipi(x) (31)

FIGURE 16. The architecture of the Siamese Convolutional Neural
Network (CNN) model [157].

The log-probabilities of each frame in the audio signal are
computed utilizing the (GMM). The log-probabilities denote
the probability that the frame was produced by an authentic
speaker or an impostor speaker.

pi(x) =
1

(2π )D/2 |6i|
1/2 exp

{
−
1
2

(x − µi)
′6−1i (x − µi)

}
(32)
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1-D (CNN) is a neural network architecture that is fre-
quently employed in the domains of speech and image
processing. The (CNN) implemented in this system com-
prises 512 filters.

scorebaseline = logp (X | λh)− logp (X | λs) (33)

The Siamese (CNN) is a prevalent neural network archi-
tecture utilized for various applications, including but not
limited to object matching and facial recognition. The system
employs a Siamese (CNN) architecture, wherein two CNNs
with identical structures are concurrently trained on the same
dataset.

fij = log
(
wj · pj (xi)

)
(34)

In the context of speech feature sequences, it is observed
that the GMM approach operates by independently accumu-
lating scores across all frames, without taking into account the
specific contribution of each Gaussian component towards
the final score.

Furthermore, the disregard for the correlation between
consecutive frames has been observed. The objective is to
construct a model for the distribution of scores on each com-
ponent of the (GMM) and introduce the Gaussian probability
feature.

In this experiment, it was observed that for a raw frame
feature such as CQCC or LFCC, the size of the new feature f
is dependent on the order of GMM. Additionally, the compo-
nent f7 is also a crucial factor.

Subsequently, the mean and standard deviation values of
the training dataset are computed and subsequently employed
for the purpose of mean and variance normalization for every
individual utterance.

Lataifeh et al. [158] conducted an experimental study
aimed to evaluate the effectiveness of ML(ML) models in
comparison to (CNNs) and Bidirectional Long Short-Term
Memory (BiLSTM) in detecting imitation-based fakeness on
the Arabic Diversified Audio (AR-DAD) dataset [159]. The
research conducted an investigation on a range ofMLmethod-
ologies, encompassing SVM, SVM-Linear, Radial Basis
Function (SVMRBF), LR, Decision Tree (DT), Radial Basis
Function (RF), andGradient Boosting (XGBoost). According
to the findings, the Support Vector Machine (SVM) exhib-
ited the most noteworthy precision rate of 99%, whereas
the Decision Tree (DT) demonstrated the least accuracy rate
of 73.33%. CNN attained a detection rate of 94.33%, sur-
passing the performance of BiLSTM. CNN demonstrated
a high level of efficacy in detecting false correlations and
autonomously extracting characteristics through its capacity
for generalization. Nonetheless, a limitation of (CNN) archi-
tectures in the context of Audio Deepfake pertains to their
exclusive capacity to handle visual data as input. Preprocess-
ing of the audio is necessary to convert it into a spectrogram
or a two-dimensional representation prior to input into the
network.

Classifier systems based onMLtechniques are employed to
classify data by utilizing input features. The classifiers can be

FIGURE 17. The representation of all classifiers that have been
implemented in their entirety [158].

categorized into two domains, namely shallow learning and
deep learning. Logistic Regression (LR), Decision Tree (DT),
Random Forest (RF), and Gradient Boosting: XGBoost (XG)
are examples of shallow learning classifiers. The category
of deep learning classifiers encompasses Convolution Neural
Networks (CNN) and Bidirectional (BiLSTM).

Khochare et al. [61] conducted a comprehensive inves-
tigation to evaluate the effectiveness of feature-based and
image-based techniques in the classification of synthetically
produced counterfeit audio. The present study employed
two innovative deep learning models, namely the Temporal
Convolutional Network (TCN) and the Spatial Transformer
Network (STN), to achieve the intended objective. The find-
ings of the study indicate that TCN exhibited a high level of
precision in distinguishing authentic from fabricated audio,
with a notable accuracy rate of 92%. In contrast, STN
demonstrated a comparatively lower accuracy rate of 80%.
Despite exhibiting exceptional performance with sequential
data, it was discovered that the (STFT) and (MFCC) features,
when transformed into inputs, were incompatible with TCN,
as per the findings.

As shown in figure (18), The system proposed in this study
consists of two approaches, feature-based classification and
image-based classification.

FIGURE 18. Diagram of the method for detecting deepfake audio [61].
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Feature-based classification: This approach converts audio
samples into a dataset of features, such as mean square
energy, Chroma features, spectral centroid, spectral band-
width, spectral roll off, zero crossing rate, and MFCCs.
These features are then used to train machine learning
(ML) models, such as support vector machines (SVMs),
light gradient boosting machines (LGBMs), extreme gradi-
ent boosting (XGBoosts), k-nearest neighbors (KNNs), and
random forests (RFs). The trained models are then used to
classify new audio samples as either authentic or counterfeit.

Image-based classification: This approach converts audio
samples into melspectrograms using the librosa library. Mel-
spectrograms are visual representations of the frequency
content of audio signals. The melspectrograms are then used
to train deep learning models, such as spatial transformer net-
works (STNs) and temporal convolutional networks (TCNs).
The trained models are then used to classify new audio sam-
ples as either authentic or counterfeit.

The concept of Mean Square Energy of a signal x(n) can
be expressed as follows:

xrms =

√
1
n

(
x21 + x

2
2 + · · · + x

2
n
)

(35)

In this context, the variable ‘‘n’’ represents the total number
of samples, while xi = ith sample.

Spectral centroid: The spectral centroid is a measure of the
center of gravity of the spectrum of a signal. It is calculated
as the weighted average of the frequencies in the spectrum,
with the weights being the magnitudes of the frequencies.

µ =

∑k=N
k=1 f (k) · f (k)∑n=N

k=1 m(k)
(36)

The magnitude at the kth frequency bin is denoted as
m(k), while the center frequency at the kth frequency bin is
represented by f(k).

Spectral bandwidth: The spectral bandwidth is a measure
of the width of the spectrum of a signal. It is calculated as the
square root of the variance of the frequencies in the spectrum.(∑

k
m(k)(f (k)− µ)p

) 1
p

(37)

The expression m(k) denotes the magnitude at the kth
frequency bin, while f (k) represents the center frequency at
the same bin. The parameter µ corresponds to the spectral
centroid.

Spectral rolloff: The spectral rolloff is a measure of the fre-
quency below which a certain percentage of the total energy
in the spectrum is located. It is calculated as the frequency at
which 85% of the energy in the spectrum is located.

arg max
fr∈{1,...,N }

∑fr

k=1
m(k) ≥ 0.85

∑N

k=1
m(k) (38)

The rolloff frequency is denoted as fr, and the magnitude
at the kth frequency bin is represented by m(k).
The computation of the Zero Crossing Rate:
Zero crossing rate: The zero crossing rate is a measure of

the frequency at which a signal crosses the zero axis. It is

calculated as the number of times the signal crosses the zero
axis in a given time interval.

1
WL

∑
n=1

W
L |sgn[x(n)]− sgn[x(n− 1)]| (39)

The given expression pertains to an audio signal repre-
sented by x(n), wherein WL denotes the window length and
sgn represents the signum function.

In their study [160], E.R. Bartusiak and E.J. Delp proposed
a novel approach to assign synthetic speech to its originator.
The employed technique utilizes a transformer, which is a
neural network framework that has demonstrated efficacy in
various natural language processing endeavors. The efficacy
of the method was evaluated on three distinct sets of synthetic
speech data, and it demonstrated a notable level of precision
across all three datasets. The method attained a 99.8% accu-
racy rate on the ASVspoof2019 dataset.

The method attained a 96.3% accuracy on the SP Cup
dataset. The method attained a precision rate of 93.4% on
the DARPA SemaFor Audio Attribution dataset. The efficacy
of the technique was also evaluated in an open-set context,
wherein it demonstrated the ability to accurately detect unfa-
miliar speech generation techniques, achieving a precision
rate of 90.2% on the ASVspoof2019 dataset and 88.45% on
the DARPA SemaFor Audio Attribution dataset.

Themethod exhibits robustness towards AAC compression
when the data rates are equal to or greater than 32kbps.
The method’s transformer comprises a total of approximately
87 million parameters. The authors intend to enhance the
precision and resilience of the approach in their forthcoming
research.

FIGURE 19. The diagrammatic representation of the proposed approach,
namely Synthetic Speech Attribution Transformer (SSAT) [160].

In Figure (19), the initial stage transforms speech into
a melspectrogram, emphasizing frequencies significant for
human hearing. It partitions the spectrum into mel bands and
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computes power spectra within each. Mel bands are logarith-
mic, enhancing perceptual significance. The melspectrogram
is segmented for better classification precision, providing
additional data to the classifier. Each region is assigned a
vector with statistical speech signal characteristics. Positional
encoding is then added to each vector for the transformer
neural network to understand their relative positions. The
transformer network excels at capturing distant relationships
using self-attention.

The transformer processes vectors and encodings, generat-
ing concealed states. These states are aggregated to create a
single 768-dimensional representation for the auditory input.
Categorization is done through a linear layer with SoftMax
activation. It transforms the 768-dimensional representation
into a probability distribution over potential classes, ensuring
their total equals unity. The output includes a classification
label denoting speech origin and a confidence score reflecting
the classifier’s certainty.

However, ASVspoof 2021 [161] presents new challenges.
It introduces a category of compressed TTS and VC deepfake
samples without speaker verification or original speakers’
audios.

Arif et al. [162] introduced a new audio feature descrip-
tor, named ELTP-LFCC, which is created by merging two
existing techniques: Local Ternary Pattern (ELTP) and Linear
Frequency Cepstral Coefficients (LFCC).

The researchers utilized a Deep Bidirectional Long
Short-Term Memory (DBiLSTM) network in conjunction
with this descriptor to construct a model capable of detecting
fraudulent audio in diverse indoor and outdoor settings. The
ASVspoof 2019 dataset, comprising of artificially generated
and impersonation-based fraudulent audio, was utilized to
assess the efficacy of the model. The findings indicate that
the model exhibited greater efficacy in identifying artificially
generated audio (with an equal error rate of 0.74%) as com-
pared to samples produced through imitation (with an equal
error rate of 33.28%).

The block diagram can be explained as shown in
Figure (20), where a bidirectional LSTM model classi-
fied using ELTP-LFCC features. Each BiLSTM layer had
64 units. Concatenated outputs were passed to a FC layer,
then a softmax layer for classification.

The suggested architecture integrated ELTP, LFCC, and
BiLSTM to accurately detect logical access attacks in audio
signals.

Extended Local Tertiary Patterns (ELTP):

P
(
si, c, θ

)
=


1, si ≥ c+ θ

0,
∣∣∣(si − θ

)∣∣∣ < θ

−1, si ≤ (c− θ )

(40)

The acoustic signal is denoted by P
(
si, c, θ

)
, where c

corresponds to the central sample of the frame F that has
si neighbors. The neighbor index is represented by i, while
the threshold is denoted by θ . The ELTP is computed by
determining the magnitude difference between the central

FIGURE 20. The proposed framework’s architectural design [162].

sample c and the 10 adjacent audio samples i, through the
application of θ around c.
The auto-adaptive threshold is computed dynamically by

utilizing the standard deviation of each frame.

θ = α × σ (0 < α ≤ 1) (41)

The symbol σ denotes the standard deviation that is calcu-
lated for every frame of the audio, while α represents a scaling
factor. A linear search algorithm was utilized to optimize
the scaling factor α by identifying the point of convergence
within the interval of 0 and 1.

Linear Frequency Cepstral Coefficients (LFCC)
The computation of the 20-dimensional Linear Frequency

Cepstral Coefficients (LFCC) involves the utilization of a
series of linear filters on the Fast Fourier Transform (FFT)
of the audio signals.∑K

k=1
log (gk) cos

(
(2k − 1) iπ

2K

)
, 1 ≤ i ≤ I (42)

In the given context, K denotes the quantity of filters while
I represent the number of Local Feature Coding Coefficients
(LFCC) utilized. The final 40-dimensional ELTP-LFCC
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feature vector was obtained by integrating the 20-dimensional
LFCC features with the 20-dimensional ELTP features.

Bidirectional Long-Term Short-TermMemory (BiLSTM):
BiLSTM’s calculation of the concealed vector and the

output vector

ht = H (Wxhxt +Whhht−1 + Bh) (43)

yt = Whyht + by (44)

The variables in the equation are denoted as follows:
Wrepresents the weight matrices, where Wxh specifically
denotes the input-hidden weight matrix. B represents the bias
vectors, with Bh representing the hidden bias vector. Finally,
H represents the hidden function.

The computation involved in the Long Short-Term Mem-
ory (LSTM) cell pertains to the forget gate, input gate, output
gate, cell memory, and hidden vector.

ft = σg
(
Wxf × xt +Whf × ht−1 +Wcf × ct−1 + Bf

)
(45)

it = σg (Wxi × xt +Whi × ht−1 +Wci × ct−1 + Bi) (46)

ot = σg (Wxo × xt +Who × ht−1 +Wco × ct + Bo) (47)

ct = ftct−1 + it tanh (Wxc × xt +Whc × ht−1 + Bc) (48)

ht = ot tanh (ct) (49)

The hard-sigmoid function, denoted as σg, is utilized in the
context of the forget gate (f ), input gate (i), output gate (o),
cell memory (c), and hidden vector (h).

combining the outputs of the forward and backward hidden
sequences.

yt = Wh⃗yh⃗t +W←h y
←

h t + By (50)

A sequence that is forward hidden h⃗, The backward hidden
sequence

←

h and output sequence are obtained through an
iterative process that involves the forward layer being iterated
from t = 1 to T, and the backward layer being iterated from
t = T to 1.

The equations presented encapsulate the fundamental prin-
ciples of the proposed methodology, encompassing both the
feature extraction components (ELTP and LFCC) and the
classification aspect (BiLSTM) of the framework.

Ballesteros et al. [10] developed a classification model
called Deep4SNet that employed a 2D CNN model (his-
togram) to encode the audio dataset and discriminate between
synthetic and imitation audios. This model was incredibly
accurate, with an impressive 98.5% accuracy rate when it
came to identifying counterfeit and synthetic audio.

Unfortunately, the performance of Deep4SNet was not
scalable and was negatively impacted by the process of data
translation, thus limiting its potential applications.

As can be seen from Figure (21) The audio data is initially
subjected to pre-processing, wherein it is transformed into a
histogram image. The aforementioned process involves the
segmentation of the audio signal into equidistant temporal
intervals, followed by the computation of the frequency count
for each interval.

FIGURE 21. Conceptual diagram of the proposed approach [10].

Subsequently, the (CNN) is trained on the histogram
images by the system. The (CNN) acquires the ability to dis-
cern distinctive attributes within the images that are indicative
of counterfeit audio recordings.

Upon completion of the training process, (CNN) can be
employed to categorize novel audio data as either authentic
or counterfeit.

Binary crossentropy loss function

L(y, ŷ) = −
1
N

∑N

i=0
yi · log

(
ŷi

)
+

〈
(1− yi) · log

(
1− ŷi

)〉
(51)

he selected loss function is binary crossentropy L(y, ŷ), which
is related to the dissimilarity in terms of entropy between two
data sequences, in our case, the entropy of the known labels
yi, and the entropy of the predicted labels ŷ. This kind of loss
function is very useful in binary classification problems.

RMSprop optimizer

f (x) = max(0, x) (52)

The optimizer is utilized for the purpose of training the
(CNN). The approach in question pertains to a form of
the stochastic gradient descent algorithm that incorporates a
rolling average of the squared gradients for the purpose of
weight updating in a (CNN).

The Rectified Linear Unit (ReLU) activation function

f (x) =
1

1+ e−x
(53)

The (ReLU) activation functions are utilized for the con-
volutional and hidden layers due to their favorable balance
between computational cost and performance. The objective
of the (ReLU) is to eliminate negative values while permitting
positive values to propagate, as specified by Equation (52).

Sigmoid activation function

f (x) =
1

1+ e−x
(54)

The activation function of the final neuron is sigmoid,
as derived from Equation (54). The scientific community
widely recommends this type of activation for binary clas-
sification problems.
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The field of Deepfake identification has been expanded by
the release of the FakeAVCeleb dataset [163],

Khalid et al. [164] conducted an investigation into the effi-
cacy of unimodal techniques for detecting Deepfakes. Specif-
ically, they evaluated the performance of five classifiers,
namely MesoInception-4, Meso-4, Xception, EfficientNet-
B0, and VGG16. The research aimed to evaluate the efficacy
of unimodal techniques in detectingDeepfakes. TheXception
classifier demonstrated the highest level of efficiency, yield-
ing a 76% outcome, whereas the EfficientNet-B0 classifier
exhibited the lowest level of performance, producing a result
of 50%. Nevertheless, the investigation demonstrated that all
unimodal classifiers were unsuccessful in accurately detect-
ing counterfeit audio despite their endeavors.

The model comprises of two distinct components, namely
a visual network and an audio network. The (CNN) known as
the visual network has been trained to detect visual anomalies
present in deepfake videos. The (RNN) known as the audio
network has been trained to detect audio artifacts present in
deepfake audio.

The operational mechanism of the system commences with
the preliminary processing of the input audio and video data.
The preprocessing of video data involves the conversion
of the data into a series of still images. The audio information
undergoes preprocessing through the transformation into a
sequence of (MFCC) features. Subsequently, the data that
has undergone preprocessing is inputted into the visual and
audio networks. The visual network generates a probability
score indicating the likelihood of the input video being a
deepfake. The audio network generates a probability score
indicating the likelihood of the input audio being a deepfake.
The ultimate likelihood of the input being a deepfake is
determined by the multiplication of the probabilities derived
from the visual and audio networks

A (CNN) architecture has been proposed by the authors
of a recent academic publication [165], with the intention
of addressing the issue of generalization that is frequently
experienced in deep learning models. Before the audio data
could be fed into the architecture of the CNN, it was first
transformed into scatter plot images of adjacent samples. This
was done so that it could be used to overcome the challenge.
On the Fake or Real (FoR) dataset [147], the accuracy of the
model was evaluated, and the results showed that it had a per-
formance of 88.9%. However, its accuracy of 88% and EER
of 11% were lower than those of other DL models tested in
the study. This indicates the need for additional development
as well as the inclusion of more data transformers in order to
improve its performance.

Almutairi and Elgibreen [166] Proposed a deep neural
network architecture for the purpose of identifying manip-
ulated audio content, commonly referred to as deepfakes.
The proposed model was derived from the HuBERT pre-
trained model, a substantial language model that underwent
training on an extensive corpus of unannotated speech data.
The model underwent fine-tuning using a dataset comprising
both audio deepfakes and authentic audio recordings. The

PyTorch deep learning framework was utilized to implement
the system, which underwent training on a dataset consisting
of 1000 audio deepfakes and 1000 authentic audio record-
ings. An assessment was conducted on a corpus comprising
500 fabricated audio files and 500 authentic audio recordings,
whereby the system attained a precision rate of 97%.

Figure (22) provides a visual representation of the block
diagram for the system. The audio recording is used as
an input to the system, which then extracts vector repre-
sentations from the recording using a feature convolutional
layer. The output of the system is the vector representations.
After that, the vector representations are separated into audio
streams that are either masked or unmasked, depending on
which state they are currently in. Encoding processes are
applied to the inputs after they have been unmasked. These
processes lead to the generation of significant and unin-
terrupted latent representations. The TE is responsible for
deriving the contextualized representations, and it does so by
first receiving the encoded inputs that have not been masked
and then using those inputs. After obtaining contextualized
representations, the next step is to input them into the pro-
jection layer, which is responsible for projecting the ultimate
context vector. After the context vector has been obtained, it is
then sent on to the ASP layer by utilizing theMean (µ) metric
as the transmission method. The result that was produced by

FIGURE 22. The proposed method for detecting Arabic-language Audio
Deepfake [166].
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TABLE 4. Comparing the effectiveness of classical ML and DL models in detecting fake audio.

FIGURE 23. The effectiveness of classical machine learning and deep learning models in detecting fake audio.

the ASP layer is then sent onward to a dense layer that makes
use of a Tanh activation function. The result that is produced
by the dense layer is a forecast regarding the authenticity of
the audio recording, more specifically whether or not it is a
deepfake.

The Tanh activation function, which is employed in the
dense layer is:

f (x) =
(
ex − e−x

ex + e−x

)
−(1.10) (55)

The mathematical constant known as e is the foundation
upon which the natural logarithm is built. It is denoted by the
variable known as e. The value read from the input device is
represented by the variable x.

In the following equation, the cross-entropy loss function
is specified. This is a method that is frequently utilized for the
training of models.

Jbce = −
1
M

∑M

m=1
[ym× log(h∅(Xm))+ (1− ym)

×log(1− h∅(Xm))] (56)

The notation M denotes the quantity of training examples
in a given dataset. The label of the m training example is
represented by ym, while Xm denotes the inputs associated
with the m training example. The function h∅ is employed
to represent the method that utilizes hidden neural network
weights ∅.

Table 4 and Figure 23 indicates that classical MLmodels,
namely logistic regression (LR), quadratic support vector
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TABLE 5. Comparing the performance of various methods for audio deepfake detection.

machine (Q-SVM), and SVM, have been employed in sev-
eral investigations for detecting counterfeit audio, and have
demonstrated notable levels of efficacy. Nevertheless, these
models frequently necessitate substantial preprocessing and
feature extraction. Conversely, (CNNs) and bidirectional long
short-term memory (BiLSTM) are alternative deep learn-
ing models that have been employed to address the same
problem, yielding mixed outcomes. Several studies have
reported varying results regarding the comparative robustness
of (CNNs) and Support Vector Machines (SVMs). While
some studies have demonstrated the superior robustness of
CNNs, others have indicated that SVMs exhibit the highest
accuracy among all tested models. The selection of a suitable
model for detecting fake audio is contingent upon several fac-
tors, such as the characteristics and magnitude of the dataset,
the intricacy of the features, and the extent of preprocessing
necessary.

Overall, it appears that both classical ML and DL models
can be effective in detecting fake audio, with the choice of
model depending on the specific task and dataset.

Furthermore, the ability to accurately detect fake audio is
crucial in maintaining the integrity of information and pro-
tecting against malicious intent. In Table 5, we will compare
the effectiveness of classical ML and DL, in detecting fake
audio, the data will demonstrate the relative performance of
each model.

In addition to TABLE 5 the RES-EfficientCNN model, a
(CNN) developed by Subramani and Rao [156], achieved a
F1-score of 97.61 when tested on the ASV spoof challenge
2019 dataset [152]. The Deep4SNet model, which uses a 2D
CNN model to classify imitation and synthetic audio, had
an accuracy of 98.5% in detecting such audio. The (SVM)
model had the highest accuracy at 99% among theMLmodels

tested by Lataifeh et al. [158] on the Arabic DiversifiedAudio
(AR-DAD) dataset [159], while the decision tree (DT) model
had the lowest accuracy at 73.33%. The CNN model had a
higher detection rate than the BiLSTM model, with 94.33%
accuracy.

The Siamese CNN model proposed by Lei et al. [157]
improved the min-tDCF and Equal Error Rate (EER) by
approximately 55% when compared to other models, but its
performance was slightly lower when using certain features.
The CNN model developed in [165] and trained on the Fake
or Real (FoR) dataset [147] achieved an accuracy of 88.9%
and an EER of 11%.

It is worth mentioning that the performance of these meth-
odsmay vary depending on the specific dataset and evaluation
criteria used. Further research is needed to improve the accu-
racy and robustness of audio deepfake detection methods.

III. DATASETS
Baidu Dataset, Baidu is a tool for spotting replicated speech,
and is a collection created by AI researchers at Baidu’s Sil-
icon Valley outpost [70]. There are ten authentic recordings
of human speech in this collection, along with 120 cloned
samples and four morphed samples.

Mozilla TTS, The world’s largest publicly accessible
database of speakers has been made available via the widely
used open-source browser Mozilla Firefox [167]. As of 2019,
the database currently has over 1,400 h of voice recordings in
18 different languages. The audio was recorded in 54 other
languages over 7,226 h. These 5.5million audio samples were
used using the Deep Speech Toolkit from Mozilla.

Fake-or-Real (FOR), Another popular dataset utilized in
SVR research is the FOR database [147]. Roughly 195,000
snippets of both human and AI-generated speech may be
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TABLE 6. Comparing audio Deepfake detection data sets.

found in this collection. Human speech samples and exam-
ples of recently developed TTS techniques (such as Google
Wavene [85] and [126]) are available in this repository. The
Authors provide four unique variations of FOR: the ‘‘for-
original,’’ ‘‘for-norm,’’ ‘‘for 2 seconds,’’ and ‘‘for rec’’ (FR).
Audios in FO are not symmetrical and have not been edited,
whereas those in FN are balanced and unchanged. The F2S
uses FN data sampled every two seconds to simulate speech-
based invasion. By contrast, FR is simply a re-recording of
the F2S database.

ASV spoof 2019, One of the most well-known datasets
for detecting fake audios [72] is divided into two parts: one
for analyzing physical access and the other for analyzing
logical access. Both the LA and PA were created using audio
samples from 107 unique speakers included in the VCTK
basic corpus (46 m and 61 f). LA features examples of con-
verting and cloning audios in addition to both the original and
reconstructed audios. The speaker samples aged 20, 10, and
48 years were included in the database. The training, develop-
ment, and evaluation databases were subdivided based on the
two main types of data (21 males and 27 females). All source
samples were recorded under the same conditions, notwith-
standing the presence of variable presenter categorizations.
The evaluation set contained examples of unknown attacks,
whereas spoofing cases of the same type and parameters were
included in the development and training sets, respectively.

M-AILabs, The real-speech dataset created by M-AILabs
[168] is widely utilized by TTS programs, such as Deep-
Voice 3 [127]. The M-AILABS dataset contains 999 h and
32 min of audio. Many native speakers of these nine lan-
guages contributed to the creation of this dataset.

AR-DAD, this is a fabricated audio file of Arabic speakers
that was obtained from the audio site of the Holy Quran and
was given the name Ar-DADArabic Diversified Audio [159].

It features both the authentic and imitated readings of the
Quran, On the other hand, the audio speech includes 30 read-
ers fromArabic countries and 12 imitators. More specifically,
the reciters were individual males who were native speakers
of Arabic and hail from the nations of the United Arab
Emirates, Yemen, Egypt, Kuwait, Sudan, and Saudi Arabia.
The data comprised 15,810 real samples and 379 fake sam-
ples, each of which was ten seconds long. Classical Arabic
(CA) is amoniker given to the language of the dataset because
it is written in Arabic.

H-Voice (Histograms Voice), Recent work has resulted in
the creation of a dataset known as H-Voice [169], which
uses synthesized and imitative voices to speak languages
including English, French, Tagalog, Portuguese, and Spanish.
In the PNG format, we find the samples that were originally
stored in a histogram. There of 6672 samples and a plethora
of subfolders were collected. However, the total number of
samples consisted of both natural and artificially created vari-
ants (3,332 actual and 3,264 fake samples) and natural and
synthetically created variants (four real and 72 fake samples).
Deep Voice 3, which is utilized to generate synthetic-based
files, is freely accessible to the public.

FakeAVCeleb: The FakeAVCeleb dataset [163] is an inno-
vative and limited dataset of English speakers, created using
the SV2TTS tool. A synthetic process was used to create
the dataset. It includes 20,490 samples, 490 of which are
authentic and the remaining 20,000 are fake. Samples were
available in the MP3 format and last precisely seven seconds
each.

ADD, The audio deep synthesis detection (ADD) com-
petition [170] unveiled a novel dataset that aims to identify
synthetic-based audio. The dataset comprises three distinct
categories, namely low-quality fake audio detection (LF),
partial fake audio detection (PF), and fake audio games (FG).
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The LF dataset comprises a total of 1052 audio samples,
predominantly of synthetic origin. On the other hand, the PF
dataset encompasses 300 authentic vocal recordings, along-
side 700 artificially generated words that are accompanied by
ambient noise. The dataset is readily accessible to the public
and has been curated in the Chinese language, rendering it
available for utilization by researchers.

IV. CONCLUSION AND DISCUSSION
Numerous investigations have been carried out to identify
audio deepfakes utilizing diverse (DL) methodologies. The
aforementioned methodologies encompass (DNNs), (CNNs),
and (CRNNs). The Human Log-Likelihoods (HLLs) method-
ology, which utilizes a (DNN) classifier, exhibited superior
performance compared to the conventional GMM technique.
Specifically, the HLLs approach achieved an equal error rate
(EER) of 12.24% on the ASV spoof challenge 2015 dataset.
Although the utilization of the ASSERT technique relying
on a Squeeze-Excitation Network and a residual CNN-based
approach exhibited encouraging outcomes, both methods
encountered challenges with generalization. By way of com-
parison, the utilization of transfer learning and the ResNet-34
methodology within a framework yielded the most optimal
outcomes, as evidenced by an EER of 5.32% and t-DCF of
0.11514% on the ASVspoof 2019 dataset.

The ASVspoof 2019 dataset was evaluated using the
Temporal Convolutional Network and Spatial Transformer
Network, resulting in accuracy rates of 92% and 80%, respec-
tively. In addition, the study produced two CRNN-based
models, wherein one model demonstrated superior perfor-
mance compared to the other by 0.132% in the Tandem
Decision Cost Function (t-DCF) and 4.27% in Equal Error
Rate (EER) on the identical dataset. A technique for align-
ment, which utilized three classification models, was also
suggested and exhibited satisfactory performance on the
ASVspoof 2019 dataset.

The utilization of the transfer learning and ResNet-34 tech-
nique framework has demonstrated superior performance,
as evidenced by its attainment of the lowest EER and t-DCF
on the ASVspoof 2019 dataset.
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