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ABSTRACT Internet of Things (IoT)-based Indoor localization is the most commonly used system to
determine target locations indoors. It applies to various purposes, e.g., indoor navigation, asset tracking
in warehouse management, and tracking people in hospitals. Distance-based techniques using the Received
Signal Strength Indicator (RSSI), e.g., Min-Max, are widely applied because they can be directly imple-
mented without prerequisite work such as site surveys. However, a challenging indoor environment with
high numbers of interiors and people can obstruct signal propagation. This obstruction can reduce the
accuracy of translating RSSI to distance using the path loss model, which will degrade the localization
accuracy. In this paper, we introduce two improved Min-Max (MM) algorithms, i.e., Three Layer Bounding
Box Min-Max (TLB-MM) and Weighted Centroid TLB-MM (WC-TLB-MM), to alleviate the issue and
achieve higher localization accuracy. The novelty of the proposed TLB-MM is incorporating RSSI error
functions to generate three-layer bounding boxes: the inner, middle, and outer in the Min-Max algorithm.
Meanwhile, WC-TLB-MM enhanced the TLB-MM algorithm by integrating the Weighted Centroid Local-
ization Algorithm (WCLA) in the calculation process. We validate our proposal by conducting various
experiments using Wi-Fi at 2.4 GHz deployed in a laboratory room of 10.17 m × 9.12 m. Experimental
results demonstrate that TLB-MM improved the accuracy performance to 55.78% and 30.86%, while WC-
TLB-MM gave 40.93% and 7.65% compared to Min-Max and WCLA, respectively. From these results, our
proposed methods are proven simple yet applicable to RSSI-based indoor localization systems.

INDEX TERMS Indoor localization, distance-based technique, RSSI, min-max (MM), Wi-Fi.

I. INTRODUCTION
The advancement of Internet of Things (IoT) systems in
buildings increases a significant opportunity to allow the
development of indoor location-based services (ILBS) [1].
These ILBS, relying on target or device location data,
enhance the efficiency of daily activities [2]. Thus, accurately
determining the target or device’s location is imperative.
In the outdoor environment, they established a localization
system. e.g., the Global Positioning System (GPS) relies on
clear signal communication between satellites and devices
[3]. However, the utilization of satellite signals encoun-
ters difficulty with obstructed propagation caused by walls
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and interiors, failing to provide high-accuracy localization
indoors [4]. Various wireless technologies have been inte-
grated to address the disadvantages of a closed environment
into the creation of indoor localization systems designed for
purposes such as navigation [5], elder monitoring [6], asset
tracking in warehouse management [7], disaster management
[8] and tracking people or assets in hospitals [9].

Wireless Fidelity (Wi-Fi) is highlighted as the most
promising technology to extend localization systems in
indoor environments due to its sensing capabilities, high
accuracy, extensive availability of infrastructure, low cost,
and less complex setup [10]. For localization purposes,
Wi-Fi empowers various parameters, such as Received Sig-
nal Strength Indicator (RSSI) [11], Angle of Arrival (AoA)
[12], Time of Arrival (ToA) [13], Time Difference of
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Arrival (TDoA) [14] and Channel State Information (CSI)
[15]. Compared to others, RSSI has a valuable advantage
due to its ease of extraction, which involves straightfor-
ward procedures and does not require additional hardware
installation [16].

Generally, the existing RSS-based indoor localization tech-
nique can be classified into two types: (1) direct utilization
of RSSI (distance-free) or (2) conversion of RSSI to dis-
tance information (distance-based) [17]. In the distance-free
technique, there is one commonly used technique called fin-
gerprinting. As the name suggests, this technique mimics
the human fingerprint identification technique. However, the
localization fingerprinting technique relies on a radio map
instead of biological fingerprints. This technique is highly
favored since it is resistant to multipath fading. The fin-
gerprint technique involves two phases: the offline phase,
dedicated to constructing a radio map or fingerprint database,
and the online phase, where the localization process occurs,
in which target signal parameters are compared to finger-
print databases to infer their location [16]. During the online
phase, various pattern matching algorithms are commonly
employed, including Euclidean distance [16], nearest neigh-
bor [18], machine and deep learning-based such as K-Nearest
Neighbors (KNN) [19], [20], Support Vector Machine
(SVM) [21], [22], Convolutional Neural Networks (CNN)
[23], [24], [25].

Despite its ease of use and high performance, the finger-
print technique may not be reliably applicable in dynamic
environments with frequent changes in layout and high levels
of mobility or activities [26]. Moreover, reconstructing or
updating the fingerprint database requires significant manual
labor, time, and expenses [16]. Contrary to the fingerprint
technique, the distance-based approach eliminates the need
for constructing a radio map. Instead, it highly depends on
RSSI-distance translation between the transmitter or access
point (AP) and the receiver or target. The most common
method to translate RSSI to distance is utilizing the path loss
model, i.e., the log distance model [27].

Several distance-based techniques have been proposed,
including trilateration (TRI), Min-Max (MM), and the
Weighted Centroid Localization Algorithm (WCLA). The
TRI algorithm uses at least three APs as the reference points
to create essential mathematical functions with a geometric
approach to determine the target location [11], [28], [29],
[30]. TRI method employs a geometric approach where three
circles are formed with the coordinates of the APs as their
anchors, and the distance serves as the radius, calculated from
the RSSI-distance translation. This algorithm estimates the
target location by identifying the intersection point of these
three circles. However, the dynamic nature of the environ-
ment poses challenges in using RSSI values to accurately
represent the distance between the AP and the target. This
challengemay lead to difficulty finding the intersection point,
resulting in increased localization errors. The MM algorithm
is introduced to fix the intersection-finding problem by

approximating the target location using a an interest box
instead of an intersection [31], [32]. This interest box is
formed by the overlap of at least three bounding boxes gener-
ated by adding and subtracting the converted distance from
RSSI into the coordinates of APs. Another distance-based
algorithm, WCLA, employs the inverse of RSSI-to-distance
translation as weights in its computation. By multiplying the
coordinates with their respective weights, the algorithm can
determine the target’s coordinate [33], [34], [35].

Although RSSI offers several advantages, it is also prone
to fluctuations due to the multipath signal effect, antenna
orientation, and other things with which it interacts, such
as interior structures, people, and time [36]. Consequently,
RSSI-to-distance translation may not perform consistently
because the path loss exponent is not universally applicable
in every indoor location. Thus, the effectiveness of traditional
distance-based techniques is consequently impacted by this
fluctuation, especially in complex interior environments. This
paper introduces two algorithms that enhance the MM algo-
rithms to achieve higher localization accuracy, particularly
for multiple targets. We highlight our contribution as follows:

1. For the first algorithm, Three Layers Bounding Box
MM (TLB-MM), we focus on addressing the issue
of failure in RSSI-to-distance translation. We generate
the error functions by calibrating RSSI values in the
specific area. These functions are then used to shape
inner and outer bounding boxes. Thus, three interest
boxes are formed, comprising inner, middle, and outer
layers. By utilizing these interest boxes, centroids are
assigned so that we can use them to decide the target
location.

2. Weighted Centroid Three Layers Bounding Box MM
(WC-TLB-MM) integrates TLB-MM with the WCLA
for the second algorithm. By incorporating WCLA,
we introduce an extra centroid into the algorithm,
resulting in four centroids being utilized.

3. We expect higher localization performance by imple-
menting the proposed algorithms, especially in scenar-
ios involving multiple targets’ localization.

The remainder of the paper is organized as follows. The
related work is reviewed in Section II. Section III introduces
traditional distance-based indoor localization. Our proposed
algorithms, i.e., TLB-MM and WC-TLB-MM, are presented
in Section IV. Sections IV and V provide the experiments,
their results, and discussions. Finally, the conclusion is sum-
marized in Section V.

II. RELATED WORK
A. RADIO FREQUENCY TECHNOLOGIES COMPARISON
Many studies have adopted distance-based techniques and
Wi-Fi for indoor localization, mainly due to their ease of
implementation and satisfactory performance. Several studies
have indicated that Wi-Fi delivers superior accuracy to other
radio frequency (RF) technologies such as Bluetooth Low
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Energy (BLE), ZigBee, and LoRaWAN. In [37], the authors
constructed an indoor localization system using Wi-Fi and
BLE technologies. They installed three APs in an 8 m × 8 m
area to localize and track the target. Wi-Fi outperformed BLE
using the trilateration algorithm, with average errors of 1.3 m
and 1.7 m for Wi-Fi and Bluetooth, respectively.

The work introduced in [28] uses Pycom’s Lopy v1.0 hard-
ware, which supports Wi-Fi, BLE, and LoRaWAN, to con-
struct RSSI-based indoor localization and compare the
wireless standard. To test and compare Wi-Fi, BLE, and
LoRaWAN standards, they deployed the Lopy-based indoor
localization system in the laboratory with a size of 8 × 8 ft2,
which contained 25 to 28 computer systems that could inter-
fere with APs, a corridor of 23 × 23 ft2, and a classroom
of 50 × 30 ft2 with 20 to 25 tables and chairs. The results
obtained from the experiment using trilateration indicate that
Wi-Fi exhibited the highest level of accuracy, with an average
error of 0.54 m. LoRaWAN followed as the second most
accurate option, with an average error of 0.62 m, while BLE
was the least accurate, with an average error of 0.82 m.

The authors in [29] compared several radio frequency tech-
nologies, e.g.,Wi-Fi, BLE, ZigBee, and LoRaWAN, based on
RSSI as a parameter. They conducted a measurement cam-
paign in two indoor environments. The first environment is a
10.8 m× 7.3 m research laboratory with some computers and
several Wi-Fi and BLE devices that could cause interference.
This condition allowed the research lab to represent the real-
world environment. The second experiment was conducted in
a smaller roomwithout devices and contained only a table and
chair. This environment represents the ideal testing area. The
authors evaluated their approach in the localization accuracy
and the power consumption for two environments. The results
showed that Wi-Fi required a higher power consumption than
other technologies. However, in terms of localization error,
Wi-Fi performed better than others.

B. DISTANCE-BASED TECHNIQUES: MM AND WCLA
Trilateration is a fundamental distance-based technique that
uses a geometric approach to estimate the target’s position by
identifying the intersection point. However, its primary limi-
tation in practical implementation lies in accurately pinpoint-
ing this intersection point. The intersection-finding problem
can result from the oversimplified assumption of various
factors in the translation process, such as time-varying noise
and the influence of multipath effects within the intricate sur-
rounding environment in many practical situations [38]. This
limitation motivates some researchers to apply a bounding
box-based approach, the Min-Max (MM) algorithm. Instead
of using an intersection point, the MM algorithm determines
the target location by forming an interest box to achieve
higher accuracy than the trilateration algorithm. Trilateration
and MM have been compared in some studies in terms of
accuracy.

The authors in [31] developed an indoor localization sys-
tem based on distance measurement using a standard path
loss model and RSSI. Their study evaluated and compared
two fundamental distance-based techniques: trilateration and
the MM algorithm. The experiments were conducted within
a 5 m × 5 m area of interest, utilizing the ZigBee standard.
The results indicate that the min-max algorithm outperforms
trilateration in terms of accuracy, as trilateration resulted in
errors of up to 3 m.

The authors in [39] developed the RSSI Filtering Method
for Handling the Effects of Human Movement in an Indoor
Localization System based on their understanding of RSSI,
which is suspectable to the fluctuation. In a parking structure
measuring 6.2 m × 3.6 m, they installed an indoor localiza-
tion system using a CC2500 RF and LPC2103F micropro-
cessor. The authors investigate how RSSI data during human
movements affect the accuracy of such methods and which
method shows the best position estimation result. Based on
this investigation, they designed and developed a new RSSI
filter to automatically reduce RSSI variation and the position
estimation error caused by human movements. The results of
their research indicate that without human movement, both
localization methods perform similarly. However, the results
also reveal that when human movement effects are present,
the min-max method exhibits superior accuracy in managing
the challenge of RSSI variations compared to the trilateration
method.

Since the MM algorithm leverages the interest box to
estimate the target location, it serves a localization with the
coarse estimation regarded as the geometric centroid of the
interest box. The authors in [32] introduce the improved
MM with Area Partition Strategy (MM APS) to address that
issue. Inspired by [40], MM APS focuses on applying the
weighted centroid of the interest box. The weights eliminate
some unnecessary parts of the interest box to create a smaller
one. The authors assessed the performance of the proposed
Min-Max-APS algorithm, and an indoor localization sce-
nario was created using the MATLAB simulation platform.
In this simulation, the measured area was represented as a
20 m × 20 m square grid with 441 evenly spaced sampling
locations distributed from (0, 0) to (20, 20). The simula-
tion shows that the localization error of MM APS can drop
below 0.16 m.

The existing MM algorithms utilize the simple translation
to establish a bounding box, neglecting the impact of multi-
path fading commonly encountered. This oversimplification
can produce an error in the distance translation and decrease
the localization accuracy. Thus, we propose to improve the
MM algorithm by generating the error function derived from
the disparity between the translated and actual distances.
Integrating this function into the MM algorithm generates
the three distinct circles: inner, middle, and outer circles. The
middle circle is formed by translating the target’s RSSI values
into distances. Meanwhile, the outer and inner circles are
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generated by adding and subtracting an error function from
the translated distances. Using these circular regions, we cre-
ate three interest boxes, yielding three potential centroids.
The final estimated location is obtained by averaging the
centroids. This enhancement allows for a more accurate and
reliable localization process, considering the dynamic RSSI
fluctuations.

Furthermore, we enhance our proposed improved MM
algorithm by integrating the WCLA to increase localization
accuracy. As described in [35], [41], [42], and [43], WCLA
uses a different approach for estimating location than trilat-
eration and MM. WCLA relies significantly on the RSSI-
to-distance conversion to calculate the weight used to adjust
all AP coordinates’ centroid. This adjusted centroid is then
identified as the estimated target location. By combining our
enhanced MM algorithm with WCLA, we anticipate the sec-
ond proposed algorithm will demonstrate excellent stability
because it leverages two perspectives in RSSI-to-signal trans-
lation. We assess our proposed method by comparing it with
other techniques, including the traditional MM algorithm,
WCLA, and distance-free methods, i.e., the KNN-based fin-
gerprinting technique. This thorough evaluation aims to offer
valuable insights into the effectiveness and advantages of our
proposed approach for indoor localization.

III. DISTANCE-BASED INDOOR LOCALIZATION
This paper focuses on developing an indoor localization sys-
tem adopting an improvedMMalgorithm and utilizingWi-Fi-
based technology. In this section, we explore distance-based
techniques, especially MM and WCLA, with advancements
in translating RSSI into distances through the Log-distance
path loss model.

A. LOG-DISTANCE PATH LOSS MODEL
Translating RSSI to the distance could be explained by
using the path loss model, and it is a necessary step in
distance-based localization techniques [11]. The log-distance
path loss model is commonly used for indoor applications
because it can capture the variations in signal strength
affected by the multipath effect. The signal attenuation
exhibits a lognormal distribution. Thus, the path loss model
can be expressed as (1).

PL(d) = PL(d0) + 10·n·log10

(
d
d0

)
+ Xσ , (1)

where PL(d) indicates the path loss model (in dBm) associ-
ated with the distance d . While, PL(d0) represents the path
loss at the reference distance which is typically 1 m. The
path loss index in a particular environment is denoted by
n. Additionally, Xσ signifies the fluctuation in measurement
noise caused by shadowing within a relatively brief time
frame. The RSSI is expressed by (2) as follows [44]:

RSSI = Pt − PL(d). (2)

In the formula, Pt is the signal transmission power in dBm.
A = Pt − PL(d0) represents RSSI at the reference distance
1 m. By incorporating (2) to (1), the relationship between
RSSI and distance can be represented as (3)

RSSI = A− 10·n · log10

(
d
d0

)
− Xσ . (3)

The multiple measured RSSI is denoted by (4)

RSSI = A− 10·n · log10

(
d
d0

)
. (4)

Regarding (4), the distance converted from RSSI value can
be obtained by (5)

d = d0·10
A−RSSI
10·n . (5)

The RSSI-to-distance formula (5) is then applied in distance-
based techniques. The first step of implementing the formula
is recording the coordinate of APs as the anchor point. Sup-
pose the coordinates of three APs are (x1, y1, z1), (x2, y2, z2),
(x3, y3, z3) as shown in Fig. 1. The distance-based technique
is applied to determine the coordinates of the target (x0, y0,
z0) by employing the distance translated from RSSI values,
d1, d2, and d3.

FIGURE 1. Illustration of indoor localization process using three APs.

B. MIN-MAX (MM)
In contrast to trilateration, which aims to pinpoint the pre-
cise intersection point for target estimation, MM offers an
approximation by leveraging the bounding box [32] due to
the challenges involved in locating the intersection point
within a complicated indoor environment. MM can pinpoint
the target more accurately. The imaginary bounding box is
formed by adding or subtracting the AP coordinate with the
distance translated from RSSI values. For simplicity, the MM
algorithmwith threeAPs is illustrated in Fig. 2. The following
calculation is given by using maximum and minimum vector
of formed bounding box of N APs as follows:

xmax =


x1 + d1
x2 + d2

...

xN + dN

 , (6)
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xmin =


x1 − d1
x2 − d2

...

xN − dN

 , (7)

ymax =


y1 + d1
y2 + d2

...

yN + dN

 , (8)

and

ymin =


y1 − d1
y2 − d2

...

yN − dN

 . (9)

The coordinate of the target is determined by calculating the
minimum value within the set of vectors xmax and ymax and
the maximum value in the generated vectors xmin and ymin the
mean values as follows:

xMM =
min (xmax) + max (xmin)

2
, (10)

yMM =
min (ymax) + max (ymin)

2
. (11)

FIGURE 2. General scheme of MM with three APs.

C. WEIGHTED CENTROID LOCALIZATION ALGORITHM
(WCLA)
TheWCLA is an algorithm for estimating the target’s location
that involves shifting the centroid of the APs’ locations by
applying weights. This centroid is then utilized to approxi-
mate the target’s location [35]. The process of shifting the
centroid in WCLA is depicted in Fig. 3. The weights are
obtained by inverting the distance in (5) as expressed in (12).

wi =
1

dgi
, (12)

FIGURE 3. General scheme of WCLA with four APs.

where di is the distance converted of RSSI from APi, i =

1, 2, . . . ,N and g is the degree of weight. Then, the final
estimated position (xWCLA, yWCLA) is obtained by calculating
the weighted centroid as follows:

[xWCLA, yWCLA] =

[∑N
i=1 wi · xi∑N
i=1 wi

,

∑N
i=1 wi · yi∑N
i=1 wi

]
, (13)

where (xi, yi) denotes AP’s location.

IV. PROPOSED IMPROVED MIN-MAX: TLB-MM AND
WC-TLB-MM
This section explains two proposed improvedMMalgorithms
to achieve higher accuracy.

A. THREE LAYERS BOUNDING BOX MM (TLB-MM)
The Three Layers Bounding Box MM (TLB-MM) algorithm
improves the MM algorithm by employing the RSSI calibra-
tion process to generate error functions. Including the error
function in the bounding box generation of the MM enables
the creation of the inner and outer bounding boxes. In the
first step, the calibration process is initiated by comparing the
distances translated from the RSSI values measured at some
points within the indoor environment with the theoretical
RSSI values based on the path loss model. The error functions
are then generated by employing polynomial regression to
model the differences between the translated distances and
the actual distances of the APs to calibration points (CPs)
within the area of interest. The error function is mathemat-
ically expressed as follows:

ferr (d) = b0 + a1·d + a2·d2 + . . . + aN ·dk + ϵ (14)

where ferr (d) denotes the error function based on polynomial
regression model. The intercept and coefficient are repre-
sented by b0 and ai. k and ϵ are referred to as the degree
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FIGURE 4. General scheme of TLB-MM with three APs.

of the polynomial and polynomial error, respectively. In the
second step, the generated error function ferr (d) is then added
to (6)−(9). Thus, the inner and outer bounding boxes can be
formed from (15)−(23).

xmin_min =


x1 − (d1 − ferr (d1))
x2 − (d2 − ferr (d2))

...

xN − (dN − ferr (dN ))

 , (15)

xmin_max =


x1 − (d1 + ferr (d1))
x2 − (d2 + ferr (d2))

...

xN − (dN + ferr (dN ))

 , (16)

ymin_min =


y1 − (d1 − ferr (d1))
y2 − (d2 − ferr (d2))

...

yN − (dN − ferr (dN ))

 , (17)

ymin_max =


y1 − (d1 + ferr (d1))
y2 − (d2 + ferr (d2))

...

yN − (dN + ferr (dN ))

 , (18)

xmax_min =


x1 + (d1 − ferr (d1))
x2 + (d2 − ferr (d2))

...

xN + (dN − ferr (dN ))

 , (19)

xmax_max =


x1 + (d1 + ferr (d1))
x2 + (d2 + ferr (d2))

...

xN + (dN + ferr (dN ))

 , (20)

ymax_min =


y1 + (d1 − ferr (d1))
y2 + (d2 − ferr (d2))

...

yN + (dN − ferr (dN ))

 , (21)

ymax_max =


y1 + (d1 + ferr (d1))
y2 + (d1 + ferr (d1))

...

yN + (d1 + ferr (d1))

 , (22)

and

ymax_max =


y1 + (d1 + ferr (d1))
y2 + (d1 + ferr (d1))

...

yN + (d1 + ferr (d1))

 . (23)

All the interest boxes in TLB-MM are formed by the
overlaps of bounding boxes, as illustrated in Fig. 4. Once
these interest boxes are created through the inner and outer
bounding boxes, the inner and outer target locations can be
estimated using (24) to (27).

xinner =
min (xmax_min) + max(xmin_max)

2
, (24)

yinner =
min (ymax_min) + max(ymin_max)

2
, (25)

xouter =
min (xmax_max) + max(xmin_min)

2
, (26)

and

youter =
min (ymax_max) + max(ymin_min)

2
. (27)

The final target location (xTLB−MM, yTLB−MM) is estimated
by

xTLB−MM =
xinner + xMM + xouter

3
, (28)

and

yTLB−MM =
yinner + yMM + youter

3
. (29)
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FIGURE 5. General scheme of WC-TLB-MM with three APs.

B. WEIGHTED CENTROID THREE LAYERS BOUNDING BOX
MM (WC-TLB-MM)
The main idea behind the second proposed method
(WC-TLB-MM) combines TLB-MM with WCLA to
improve the accuracy of estimating the target’s location.
While the conventional MM algorithm relies on translating
RSSI into distance for location estimation, WCLA utilizes
the inverse conversion of distance from RSSI values as its
primary approach. By integrating WCLA into TLB-MM,
we harmonize two distinct perspectives on target location
estimation, in which more accurate location estimation is
expected. The TLB-MM process is illustrated in Fig. 5. To
calculate the final coordinates, the WCLA coordinates (13)
are added to (28) and (29) as follows:

xWC−TLB−MM =
xTLB−MM + xWCLA

4
, (30)

and

yWC−TLB−MM =
yTLB−MM + yWCLA

4
. (31)

The whole procedure of estimating location using WC-TLB-
MM is described in Algorithm 1.

V. EXPERIMENT
We evaluate the performance of our proposed TLB-MM
and WC-TLB-MM and compare them with other traditional
distance-based algorithms.

A. MEASUREMENT LAYOUT
The selected study environment is a laboratory with a vinyl
floor and various interior elements such as tables, chairs,
and robotic arms. These elements could obstruct the signal
propagation from the APs to the target. The accuracy of
indoor localization is usually enhanced when more APs are
employed. However, it also increases the complexity and
hardware deployment costs. Our experiment utilized three

Algorithm 1WC-TLB-MM Algorithm
Initialization:
1. Location of access point APi(i = 1, 2, . . . ,N )
2. Path loss exponent nj(j = 1, 2, . . . ,N )
3. Value of RSSI Ak (k = 1, 2, . . . ,N )
4. RSSI measurements at calibration points
Procedure:
1. Calculate the translated distances

dtranslated,i(i = 1, 2, . . . ,N ) of RSSI measurements
using (4).

2. for i = 1 to N do
3. Calculate translations error

Err = absolute(dactual − dtranslated )
4. end for
5. Train Polynomial Regression function ferr (d) with the

input Err and dactual
6. def ferr,APl(d):
7. ferr,APl(d) = b0,APl +a1,APl ·d+a2,APl ·d2+ . . . +

8. aN ,APl · dk + ϵ, (l = 1, 2, . . . ,M )
9. return ErrAPl
10. Create interest boxes using (6) − (9) and (15) − (23)
11. Estimate the target location by TLB-MM
12. Calculate wi using (13)
13. Estimate the WC-TLB-MM location by (30) and (31)

APs, the minimum requirement for the traditional distance-
based technique. The APs were placed in the corner of a
10.17 m × 9.12 m designed environment. The actual envi-
ronment and the measurement layout are illustrated in Fig. 6
and Fig. 7, respectively.

B. RSSI-BASED INDOOR LOCALIZATION SYSTEM
1) HARDWARE AND SOFTWARE
The data collection system primarily employed the ESPino32
module, which is equipped with the ESP32 chip and supports
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FIGURE 6. Selected environment (laboratory).

FIGURE 7. Measurement layout with calibration points.

FIGURE 8. ESPino32 Wi-Fi/BLE module.

both Wi-Fi and BLE standards. Fig. 8 depicts an ESPino32
module. We configured this module to serve as Wi-Fi access
points (APs) and as the targets or receivers using the Arduino
IDE. To assess the performance of our proposed algorithm,
we processed the RSSI data using Python 3.9.7 64-bit. Table 1
presents the details of the hardware and software setup.

To confirm the effectiveness of the ESPino32 module,
we carried out RSSI measurements in an outdoor setting that
mimicked conditions resembling an open space free from
obstructions. These measurements involved recording RSSI

TABLE 1. Specification of hardware and software used in this work.

values at distances ranging from 0 to 5 m between the trans-
mitter and receiver, resulting in 31 RSSI at each measurement
point. Fig. 9 illustrates the path loss model outcomes for all
the modules under these ideal environmental conditions.

2) DATA ACQUISITION SYSTEM
In this work, we set up an IoT data acquisition system
employing Wi-Fi devices. The system aims to localize one
or more targets utilizing a star topology. The data acquisition
procedure commences by programming the APs to transmit
RSSI signals. Subsequently, the target devices collect RSSI
values from three APs and send this data to a cloud database.
All the receivedRSSI signals are stored in this cloud database,
relayed, and made accessible on a computer, which functions
as the central processing unit. Fig. 10 illustrates the structure
of this data acquisition system.

TABLE 2. Path loss parameters related to all APs in selected environment.

C. EVALUATION PROCEDURE
The first step in the experiment was to estimate the path loss
exponent n and A value used in (5). We conducted RSSI mea-
surements to estimate these parameters at eight designated
CPs depicted in Fig. 8. These measurements allowed us to
estimate the values of n andA for each access point (AP) using
the least squares method [45]. Table 2 presents the path loss
parameters for the selected environment.

To assess the performance of the proposed algorithms,
we conducted four different scenarios involving varying
the number of targets and considering dynamic and static
movements, simulating the localization process for multiple
targets and their movement patterns as depicted in Fig. 11.
In Scenario 1, a single target moved in clockwise and
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FIGURE 9. Path loss measurement in outdoors: (a) AP1 (b) AP2 (c) AP3.

counterclockwise directions. Throughout this scenario,
we collected RSSI data at regular intervals across 36 spe-
cific points, with each point recording RSSI values ranging
from 10 to 14 data, corresponding to the clockwise and
counterclockwise movements. In scenario 2, while Tar-
get T1 moved in a clockwise direction, Target T2 moved
counterclockwise, and vice versa. Similar to Scenario 1,
in Scenario 2, we recorded RSSI data at 36 distinct points for
each target and each direction. For Scenario 3, we evaluated
the localization of target T1 as a static target and T2 as a
dynamic target. The dynamic target followed a predetermined
path, and we strategically positioned it at 12 points near
the access points (APs) and corners that could influence the

estimation of the static target. The static target in this scenario
represented a person seated in a chair. Scenario 4 explored
three conditions with static targets: A, B, and C. In condition
A, target T1was seated in a chair, and the receiver device was
placed on a table nearby to evaluate the effect of human body
obstruction. In condition B, targets T1 and T2were simulated
to sit adjacent to each other, and the receiver devices were
placed on the desk in front of them. In condition C, two
receiver devices were placed on the desk without any people
present, allowing us to compare it with condition B, with and
without human presence.

D. EVALUATION METRICS
After obtaining the estimated location using the proposed
algorithms, we assess the accuracy of these localization
results and measure this efficiency. Accuracy is determined
by measuring the distance error in meters (m) and its cumu-
lative distribution functions (CDFs). At the same time, the
computing time of algorithms was used to assess their effi-
ciency. Suppose there are some recorded target locations;
we utilized mean localization error (MLE) that calculates
the distance between the actual position (xact, yact) and the
estimated position as the error (xest, yest). If the position of
the target as i = 1, 2, 3, . . . ,L, the MLE can be expressed as

MLE =
1
L

L∑
i=1

√
(xact,i − xest,i)2+(yact,i − yest,i)2. (32)

VI. RESULTS AND DISCUSSION
This section presents the results and analysis of the proposed
localization algorithms by comparing them to traditional
distance-based algorithms, i.e., TRI, MM, and WCLA, and
the fingerprint technique employing K-Nearest Neighbors
(KNN).

TABLE 3. Polynomial regression parameters related to all APs.

A. RSSI CALIBRATION
An essential aspect of our proposed algorithms involves
determining the optimal degree of the polynomial regres-
sion. We conducted tests using polynomial regressions with
degrees ranging from 1 to 5 to identify the optimal degree.
This polynomial regression fitting was carried out in sce-
nario 1 (benchmark). The results, as illustrated in Fig. 12,
clearly indicate that the optimal degree of the polynomial is 2.
Table 3 shows the parameters of the polynomial regression
used in this paper.
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FIGURE 10. RSSI acquisition system: (a) receiver/target (b) monitoring system (c) scheme of indoor localization system
with two targets (d) AP.

B. LOCATION ESTIMATION RESULTS
We considered the localization test under four scenarios,
i.e., scenarios 1, 2, 3, and 4. The performance of TLB-MM
and WC-TLB-MM are evaluated concerning mean local-
ization error (MLE) and detailed with cumulative distribu-
tion function (CDF). The comparison of MLE and CDF
of proposed algorithms and other traditional distance-based
techniques for scenarios 1, 2, and 3 are depicted in Fig. 13
and Fig. 14.Meanwhile, theMLE of scenario 4 is presented in
Table 4. In scenario 1, WC-TLB-MM demonstrated superior
performance to other techniques, achieving an accuracy of
2.1317mwith 47.22% of the localization errors falling within
2m. The next highest accuracywas TLB-MM,with an overall
error of 2.1577 m, and 45.83% of the localization errors
were below 2 m. WCLA achieved slightly lower accuracy
than TLB-MM, with MLE of 2.2244 m and approximately

51.39% of localization errors below 2 m. MM has an MLE
of 2.5505 m, with 34.72% of localization errors below 2 m.
In scenario 2, we simulate two persons that move in opposite
directions. For the target T1, TLB-MM demonstrated to be
the best algorithm with an error of 1.9835 m with 56.94% of
localization errors below 2 m, and WC-TLB-MM followed
with an error of 2.0772 m with 58.33% of errors within
2 m. Following closely behind WC-TLB-MM, in third and
fourth, were WCLA and MM, resulting in an overall error of
2.1466mwith 55.55% of errors below 2m and 2.3457mwith
48.61% below 2 m, respectively. In contrast to the location
estimation of target T1, WC-TLB-MM yielded the highest
accuracy compared to others in estimating the location of
target T2. It has an MLE of 2.2832 m with 44.44% errors
below 2 m. This result is higher than WCLA and TLB-MM
in the second and third best algorithms with the MLE of

129742 VOLUME 11, 2023



F. Y. M. Adiyatma et al.: TLB & WC-TLB-MM: The Improved Min-Max Algorithms

FIGURE 11. Target movement scenarios: (a) Scenario 1 clockwise (b) Scenario 1 counterclockwise (c) Scenario 2 target 1 clockwise
(d) Scenario 2 target 1 counterclockwise (e) Scenario 3 target 2 clockwise (f) Scenario 3 target 2 counterclockwise and (g) Scenario 4 static
targets.

FIGURE 12. Degree of polynomial regression comparison in scenario 1.

2.3087 m and 2.3425 m, respectively. In that MLE, 43.06%
errors of WCLA and TLB-MM are below 2 m. The last, MM
has the MLE of 2.3826 m with 41.67% errors are below 2 m.

Like Scenario 2, we conducted an indoor localization pro-
cess for two targets in Scenario 3. However, in this scenario,
target T1 remained seated in a chair instead of both tar-
gets moving, while target T2 exhibited dynamic movement.
Regarding target T2, we focused on several points close to
the corner and the APs to evaluate the localization results
when a human body possibly obstructed the signal. In the
localization of target T1, TLB-MM emerged as the superior
algorithm, achieving the lowest MLE of 1.3845 m, with
approximately 95.83% of errors falling within 2 m. The fol-
lowing most accurate algorithm was WC-TLB-MM, which

yielded an MLE of 1.8493 m, with around 70.83% of errors
below 2 m. WCLA and MM followed closely, with MLEs
of 2.0025 m and 3.1308 m and 50% and 4% of errors below
2 m, respectively. For target T2, the localization results were
slightly different. The proposed algorithms exhibited similar
accuracy to the MM algorithm, with MLEs approximately
6.66%, 5.19%, and 4.58% lower than WCLA.

In Scenario 4, we established a fixed target placement
scenario with only one person seated on the chair for Con-
dition A. TLB-MM demonstrated the highest accuracy, with
an error of 1.463 m. The second-best algorithm, WCLA,
exhibited slightly lower accuracy than TLB-MM, with an
error of 1.465 m. Meanwhile, WC-TLB-MM and MM had
errors of approximately 1.657 m and 2.082 m, respectively.

In Condition B, the proposed TLB-MM and WC-TLB-
MM algorithms yielded the lowest error, 0.756 m and
1.204 m, respectively. However, MM and WCLA performed
less effectively than Condition A due to signal obstruction by
human Target T2. MM had an error of 2.313 m, while WCLA
had an error of 1.491 m.

For Condition C, where there was no human presence, all
algorithms provided higher accuracy than the other condi-
tions. TLB-MM, WC-TLB-MM, and MM achieved approxi-
mately twice the accuracy of the error results in Condition B.
AlthoughWCLA did not perform as well as the others, it still
offered higher accuracy than Condition B.

C. PROPOSED ALGORITHMS VS. FINGERPRINT
Many studies have highlighted the superior performance
of the fingerprint technique over distance-based techniques,

VOLUME 11, 2023 129743



F. Y. M. Adiyatma et al.: TLB & WC-TLB-MM: The Improved Min-Max Algorithms

FIGURE 13. MLE comparison: (a) Scenario 1 (b) Scenario 2 target 1 (c) Scenario 2 target 2 (d) Scenario 3 target 1 and (e) Scenario 3 target 2.

FIGURE 14. CDF comparison: (a) Scenario 1 (b) Scenario 2 target 1 (c) Scenario 2 target 2 (d) Scenario 3 target 1 and (e) Scenario 3 target 2.

particularly in complex indoor environments with a high
density of interior objects and furniture. However, it is worth
noting that the fingerprint technique is susceptible to rapid
environmental changes, such as the presence of multiple

targets. To further evaluate our proposed algorithms, we com-
pared them to the fingerprint technique. As illustrated in
Fig. 16, the fingerprint database was created by storing RSSI
values collected at uniformly distributed reference points
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TABLE 4. Localization results of scenario 4.

FIGURE 15. Fingerprint database construction map.

(RPs) with a 1 m grid density. Several works have employed
the K-Nearest Neighbors (KNN) pattern-matching algorithm
in the fingerprint technique. Consequently, we chose the
KNN as the benchmark algorithm for fingerprinting. With
our measurement data, we investigated the K values ranging
from 1 to 20 to determine the opimal K value and found that
the K of 1 gave the best result. The compared results from
our proposed algorithms and the fingerprint technique are
presented in Fig. 15.

In scenario 1, the fingerprint technique performs better
than both TLB-MM and WC-TLB-MM in accurately deter-
mining the location of target T1. The fingerprint technique
achieves an error of 2.0992 m, while TLB-MM and WC-
TLB-MM exhibit errors of 2.79% and 1.55% higher than
the fingerprint technique. However, the situation changes
in scenarios 2 and 3 due to the presence of multiple indi-
viduals. In these scenarios, TLB-MM and WC-TLB-MM
demonstrate superior accuracy compared to the fingerprint
technique for localizing target T1. In scenario 2, TLB-MM
and WC-TLB-MM have significantly lower errors in local-
izing target T1 compared to the fingerprint technique, which
has an error of 2.6882 m. Our proposed algorithms achieve
26.22% and 22.73% lower error than the fingerprint tech-
nique, respectively. In scenario 3, the fingerprint technique
estimates the location of target T1 with an error of 3.5481 m,
while TLB-MM and WC-TLB-MM exhibit higher accuracy,
with errors that are 60.98% and 47.88% lower than the fin-
gerprint technique, respectively. For target T2 in scenarios
2 and 3, WC-TLB-MM shows larger differences in errors

compared to TLB-MM when compared to the fingerprint-
ing technique. In scenario 2, WC-TLB-MM and TLB-MM
enhance accuracy by 19.6% and 17.51%, respectively, com-
pared to the fingerprinting technique. In scenario 3, bothWC-
TLB-MM and TLB-MM improve accuracy with a decreased
error of 19.4% and 16.72%, respectively, relative to the fin-
gerprint technique.

TABLE 5. Comparison results of proposed algorithms vs. fingerprint
technique for scenario 4.

TABLE 6. Localization running time comparison.

In Scenario 4, we compared the accuracy of our proposed
algorithms with the fingerprint technique, and the results are
presented in Table 5. Based on the table, our proposed algo-
rithms outperform the fingerprint technique. For ConditionA,
TLB-MM achieved a 75.81% lower error than the fingerprint
technique, which had an error of 6.049 m. WC-TLB-MM
also demonstrated superior performance with a 72.61% lower
error than the fingerprint technique. In Condition B, the fin-
gerprint technique resulted in an error of 3.255m. At the same
time, TLB-MM and WC-TLB-MM exhibited significantly
better performance, with errors that were 76.77% and 63.01%
lower than the fingerprint technique, respectively. Finally,
in Condition C, TLB-MM achieved an error approximately
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FIGURE 16. MLE comparison of proposed algorithms with fingerprint technique: (a) Scenario 1 (b) Scenario 2 target 1 (c) Scenario 2 target 2
(d) Scenario 3 target 1 and (e) Scenario 3 target 2.

75.6% lower than the fingerprint technique, while WC-TLB-
MM demonstrated a 58.2% lower error.

D. INVESTIGATION OF COMPUTATIONAL TIME AND
MEMORY USAGE
In order to assess the efficiency of the proposed TLB-MM
and WC-TLB-MM, we also consider the computational time
and memory usage. This efficiency is evaluated and com-
pared to other related algorithms, namely MM, WCLA, and
the KNN fingerprint technique. Table 6 outlines the com-
parison of localization computational time, while Table 7
presents the comparison of memory usage for each algorithm.
As distance-based techniques represent a direct localization
approach, we only consider the online phase of the KNN
fingerprint technique in this comparison across all scenar-
ios. Scenario 4 is exclusively represented by Condition A,
as all conditions are identical in terms of computation. Based
on computational time and memory usage, our proposed
algorithms exhibit higher values compared to traditional MM
and WCLA. However, they can perform better than KNN.
Finally, when considering both accuracy and efficiency, our
proposed algorithms are still preferable.

E. DISCUSSION
The experimental results revealed valuable insights into
the practical application of TLB-MM and WC-TLB-MM.
Regarding accuracy, in scenario 1, our proposed algorithms
demonstrate reduced errors compared to traditional distance-
based techniques. Although our algorithms have slightly

TABLE 7. Comparison of memory usage in algorithms.

lower accuracy than the fingerprint technique, they offer
greater flexibility in localizing objects in rapidly changing
environments. It is well-known that the fingerprinting tech-
nique outperforms distance-based methods in less dynamic
environments. Furthermore, our proposed algorithms are
more efficient than the fingerprint technique regarding com-
putational time.

In other scenarios, our proposed algorithms have signif-
icantly lower accuracy than the fingerprint technique. In
scenarios 2 and 3, TLB-MM is superior in localizing target
T1, delivering the highest level of accuracy compared to other
algorithms. This proposed algorithm consistently achieves
remarkable accuracy levels. Following closely in accuracy
is our second proposed algorithm, i.e., WC-TLB-MM. How-
ever, when estimating the position of target T2, the proposed
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WC-TLB-MM exhibits the highest accuracy. At the same
time, the TLB-MM has similar results with MM and WCLA.

The results of the localization error in conditions B and
C reveal that in scenario 4, our proposed algorithms pro-
vide highly improved accuracy. Moreover, considering the
results of static target localization in both conditions B and
C, it becomes evident that the presence of humans has
a more significant influence than signal interference from
another target. In conclusion, our proposed algorithms can
consistently provide the highest accuracy for localizing static
targets, with TLB-MM being the top-performing algorithm,
followed by WC-TLB-MM.

VII. CONCLUSION
In this paper, we develop the RSSI-based indoor localization
system and extend the traditional MM algorithm, i.e., TLB-
MM and WC-TLB-MM, to achieve a higher localization
accuracy. The RSSI calibration process is performed in the
proposed TLB-MM to generate the distance error func-
tions. These functions compensate for the multipath fading
in the complex indoor environment. Three bunding boxes,
i.e., inner, middle, and outer, are generated by integrating
the functions into the MM algorithm. The target location is
obtained by averaging the estimated location from the inner,
middle, and outer bounding boxes. The proposed WC-TLB-
MM algorithm estimates the location based on a combination
of TLB-MM and WCLA.

Experiments using the Wi-Fi, 2.4 GHz, IEEE 802.11 wire-
less sensor network in the laboratory with four scenarios
have been tested to evaluate the proposed algorithms. Sce-
nario 1 simulates a person who brought the target device
and moved around. In scenario 2, two people who brought
the devices move in opposite directions. In scenario 3, one
person was mobile while another remained seated in a chair.
Lastly, in Scenario 4, both persons were seated, and the target
devices were positioned on the table in front of them. The
results from our experiments demonstrate that the proposed
algorithms outperform the traditional distance-based method
in terms of accuracy. TLB-MM exhibits the slightest error in
estimating the location of target T1 in all scenarios. Mean-
while, WC-TLB-MM consistently yields lower errors for all
targets in every scenario. In comparison to the KNN finger-
print technique, both TLB-MM and WC-TLB-MM demon-
strated enhanced capabilities in localizing multiple targets.
Furthermore, considering computational time and memory
usage, our proposed algorithms (TLB-MM and WC-TLB-
MM) emerge as preferable options with satisfactory results.

Our forthcoming research will investigate and explore
the challenges of RSSI utilization in indoor localization.
This comprehensive exploration will encompass the impact
of multipath fading on distance-based and fingerprint-based
localization methods, focusing on strategies to enhance accu-
racy by mitigating the multipath effect. Additionally, the
insights gained from this study will be implemented in var-
ious simulations designed to mimic real-world scenarios
closely.
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