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ABSTRACT Solar tracking helps maximize the efficiency of solar applications, such as photovoltaic (PV)
solar panels. In the recent past, machine learning (ML) techniques have been extensively used to implement
automatic solar tracking. However, applying predictive models in solar trackers is a non-trivial task due to the
randomness and non-linearity of meteorological data, limiting their ability to clearly represent the underlying
data patterns. Most existing predictive models take a monolithic approach to addressing limitations related
to meteorological data, thereby limiting their performance. Therefore, this paper proposes a deep hybrid
learning (DHL) model to enhance solar tracking performance. Furthermore, the proposed model improves
feature representation in the data by using combined normalization methods and conversion of numerical data
to images. In a nutshell, the model integrates sine and cosine transformations (SCT) to reveal cyclical patterns
in the data, sigmoid and minimum-maximum data transformations to scale the data to a Gaussian distribution,
and Gramian Angular Fields (GAF) to convert tabular data into 2D image representation to take advantage
of the feature extraction capability of a convolutional neural network (CNN). The model also utilizes long-
term short-term memory (LSTM) and gated recurrent units (GRU) for both spatial and temporal feature
extraction. The results show that the aggregation of the above-mentioned methods significantly enhances
solar tracking. The proposed hybrid model outperforms existing methods on a publicly available dataset,
achieving outstanding performance with MAE, MAPE, and RMSE scores of 0.0073, 1.4635, and 0.0097,
respectively.

INDEX TERMS Clean energy, data normalization, feature extraction, deep learning, solar tracking.

I. INTRODUCTION maximized when the sun’s rays are incident to the surface

In recent years, the world’s energy requirements have
surged, leading to increased costs in power generation [1].
To combat the negative economic and environmental impact
of conventional energy sources, the focus has shifted to
renewable energy. Solar energy has gained popularity due
to its abundance and environmental friendliness. It is
estimated that the solar energy incident on Earth’s surface
annually is nearly 10,000 times the world’s current energy
consumption [2]. At present, PV solar panels, dating back to
the mid-20th century, remain the most effective technology
for harnessing the sun’s energy [3]. Research has shown
that the amount of sunlight captured by PV solar panels is
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of the panels [4]. One way in which this can be achieved is
by using a solar tracker which is able to track the position
of the sun and maintain an optimum angle between the sun’s
rays and the surface of the PV panels [5]. However, factors
such as unpredictable weather patterns and the non-linear
movement of the sun across the sky have a significant impact
on the performance of a solar tracker in tracing the position
of the sun [1], [6]. Therefore, based on this background,
reducing solar tracking errors has become a prominent topic
in renewable energy [7].

Over the years, various methods have been proposed
to improve the performance of solar tracking systems.
These methods include, astronomical-based models [8], [9],
conventional machine learning (ML) models [10], [11],
and more recently, deep learning (DL) models [12], [13].
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Astronomical-based models use mathematical equations
based on astronomical data. These models offer a significant
level of simplicity, reliability, and fast computation [14].
However, these models are limited in their ability to capture
the underlying relationships between metrological features,
especially during days of cloud cover, thereby affecting their
prediction accuracy [8], [15], [16]. In contrast, conventional
ML models can capture non-linear relationships, offer fast
computation, and high accuracy at a low-cost [17]. However,
conventional ML-based models are limited in their ability
to extract deeper features from data and require extensive
manual data preprocessing for optimal performance [18],
[19]. Fortunately, DL models have emerged as a superior
approach, overcoming the limitations of shallow learning
models [20]. DL models use a distributed and hierarchical
feature representation method, which allows them to auto-
matically extract deep hidden features and relationships in
the data. This excellent feature extraction capability has led to
the adoption of DL models in various fields of solar energy
forecasting [21], wind speed prediction [22], and electrical
load prediction [23], making them a promising choice for
solar tracking systems.

DL-based models such as convolutional neural networks
(CNN) and recurrent neural networks (RNN) such as
long short-term memory (LSTM) and gated recurrent units
(GRU) have been widely used to enhance solar tracking
systems [24]. However, each of these models has its own
individual constraints. For instance, CNN models perform
exceptionally well when learning features of image-based
data. However, metrological data is often represented in
one dimension (1D). This means that when leveraging
the CNN’s feature extraction capabilities, the kernels can
only move in a single direction, this constrains the CNN’s
ability to learn deep spatial relationships in the data [20].
Similarly, LSTM and GRU models thrive in capturing
time-bound temporal dependencies but may not be sufficient
for capturing spatial features in the data [25]. Various studies
have noted that the integration of the CNN, LSTM, and
GRU models has the potential to improve their performance
compared with the corresponding individual models [26],
[27], [28]. However, most of these studies rely on 1D
CNN models for spatial feature extraction of metrological
data.

Moreover, other studies have also shown that the choice
of data normalization methods has a significant effect on
the performance of the DL models [24], [29], [30]. Data
normalization mitigates the influence of dominant features
on the learning algorithm and reshapes the data distribution
to facilitate the extraction of underlying relationships [29],
[31]. Presently, existing DL-based methods aim to enhance
predictive performance by employing single method-based
data normalization approaches [32], [33]. One commonly
used data normalization method is minimum-maximum
normalization (MMN), which scales dataset values to a range
from O to 1 while preserving the original relationships [29].
However, MMN is sensitive to extreme values and lacks
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the adaptability to varying minimum and maximum feature
values over time [34], [35]. Alternatively, the sigmoid nor-
malization (SN) method, which utilizes a sigmoid function,
normalizes features independently of the data distribution,
making it suitable for unknown data distributions during
model training [31]. Nevertheless, recent studies have shown
that the aggregate of normalization methods has a positive
impact on the performance of DL models [36], [37].
However, studies combining aggregate data normalization
and spatial-temporal feature extraction to enhance solar
tracking are limited.

In this study, we propose a model that combines aggregate
data normalization, tabular to 2D image conversion, and
spatial-temporal feature extraction to enhance solar tracking.
The model uses an integration of the SN and MMN
methods. Furthermore, the model leverages the spatial
feature extraction capabilities of CNNs by converting the
tabular representation of metrological data into a two-
dimensional (2D) data representation. This allows the CNN
kernels to move in two different directions, providing
the capability to extract fine-grained feature patterns [20].
Additionally, the LSTM and GRU models are combined
to improve the extraction of long short-term temporal
dependencies in the data for the final prediction of the sun’s
position.

To achieve this, the proposed model integrates four
different parts to perform accurate solar tracking. In the initial
part, the sine and cosine transformation (SCT) is used to
capture the oscillatory pattern in the data. Thereafter, the
combination of the SN and MMN methods is performed
to adjust the underlying distribution of the data toward
the normal distribution. Then, the Gramian Angular Fields
(GAF) method is used to convert the output from the
aggregation of normalization methods into 2D images. In the
subsequent step, a CNN module learns the underlying
features of the images. The extracted features are then fed
into the stacked LSTM and GRU layers which capture the
time-bound spatial-temporal features of the data using the
gating units and memory cells. The final output provides
a prediction of the sun’s trajectory. The proposed model is
trained using a solar positioning dataset and evaluated against
other standalone base models. Furthermore, the model’s
performance is also evaluated on both 1D and 2D variations
of the dataset. Additionally, the model is compared with
other published works. The experiments reveal that a 2D
conversion of metrological data along with the combination
of aggregate data normalization and spatial-temporal feature
extraction provides the best results. This shows that a 2D
representation of the metrological data reveals more hidden
patterns.

Thus, our contributions in this paper are presented as
follows:

« Anovel aggregate data normalization approach compris-
ing two base normalization methods, namely, SN and
MMN, in which original input data is first rescaled
using the former base normalization method and its
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output transformed using the later base normalization
method.

o« A novel model that combines the aforementioned
aggregate normalization, SCT, GAF, CNN, LSTM, and
GRU modules to enhance solar tracking.

The remainder of this paper is structured as follows. The
second section provides a summary of pertinent literature.
The proposed approach is explained in the third section.
The findings from the study are covered in Section Four.
Section Five offers a discussion of the study’s findings. The
conclusion and recommendations for future research are
presented in Section Six.

II. LITERATURE REVIEW

Recent advancements in artificial intelligence have seen arise
in the application of DL methods to optimize the performance
of solar tracking systems. Data normalization techniques
have been extensively applied in improving the predictive
performance of DL methods using renewable energy-based
datasets [29]. For instance, Al-Muswe et al. [38] used the
z-score (ZS) normalization method to scale their data. The
authors reported a noticeable improvement in their model’s
predictive performance. However, while ZS normalization
can adequately handle outliers, its inability to transform fea-
ture values into a common numerical range may limit the per-
formance of a predictive model. Similarly, Oviedo et al. [39]
used the MMN method to transform their data to a range
between 0 and 1 before feeding it into a DL model. The DL
model was able to accurately learn the underlying patterns
of the data partly due to the effect of MMN. However, the
normalization method sometimes fails to efficiently handle
outliers. Additionally, Tasdemir et al [40] used the SN
method which is suitable for handling the effects of outliers.
Nevertheless, the SN method’s approach to handling outliers
may lead to information loss and poor performance of the
learning algorithm. Furthermore, literature has shown that
no single normalization technique is superior to the others
across all datasets as datasets have distinct underlying charac-
teristics, which restricts the generalizability of normalization
methods [36].

Given the time-series-based nature of solar tracking and
its tabular data representation, most researchers use RNN
and LSTM models to track the sun’s position as they are
well suited for sequential data. For example, Haris et al. [41]
used tabular data to train an RNN model for optimized solar
tracking. The study’s results showed that the RNN model
could accurately predict the sun’s position. However, while
the model was able to capture the temporal dependencies in
the data, the authors did not account for the cyclical behavior
in the data, which may have limited the model’s performance.
Likewise, Kaul et al. [42] used an LSTM model to develop an
adaptive solar tracking system. Although the LSTM was able
to improve the performance of the model due to its ability
to capture long-term dependencies in the data, the authors
did not address the issue of spatial features. In contrast,
other researchers have sought to leverage the power of CNNs
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using image-based datasets. For example, Pierce et al. [43]
proposed a multi-input CNN that uses sky image data to
predict the trajectory of the sun. Though the model was able
to effectively track the sun, the authors did not take into
consideration the effect of seasonal patterns on the predictive
performance of the model.

Due to the drawbacks of single-based DL models, there
has been a growing interest in deep hybrid learning (DHL)
models among researchers. DHL models can automatically
identify and combine various latent features to enhance
predictive performance [44]. For instance, Syahram &
Effendy [45] used an RNN-LSTM hybrid model which
accounted for both the short-term and long-term dependen-
cies in the data to forecast the sun’s trajectory. However, the
authors did not address the impact of spatial features which
may have limited the performance of their model. In another
study, Frizzo Stefenon et al. [46] integrated the wavelet
energy coefficient (WEC) and LSTM. The WEC was used for
signal pattern extraction, while the LSTM performed time-
series-based forecasting. While this approach significantly
improved the predictive performance of the model, the
authors did not address the importance of spatial patterns in
the data.

Furthermore, Lee et al. [47] used a CNN-LSTM model
to forecast 24-hour ahead solar power. The model showed
remarkable performance as the CNN was able to extract
short-term local features while the LSTM captured long-term
features. However, unlike image data, the tabular data used
in the study may have limited the CNN module’s ability to
extract deeper features. Likewise, J. Wang et al. [17] proposed
a DHL model for thermal power forecasting. In their
study, the CNN module was used to extract spatial-temporal
features, the LSTM was used to learn the temporal dependen-
cies, and the multi-layer perceptron (MLP) for forecasting.
While the model was able to accurately predict thermal
power, the authors did not apply any data normalization
which may have negatively affected the performance of the
DHL model.

Therefore, considering the gaps identified in the reviewed
works, we implement an algorithm that integrates four
techniques, namely, two aggregated data normalization meth-
ods, cyclic transformations, image conversion, and feature
extraction (short-term and long-term feature extraction as
well as spatial feature extraction) to enhance the predictive
performance of the DL model. This study employed data
normalization techniques that scaled the original features
using the SN and MMN methods. Combining the individual
strengths of the SN and MMN methods allows for an
enhanced form of shifting the data’s underlying distribution
toward the Gaussian distribution [36]. Furthermore, the cyclic
transformations used are based on the SCT, which helps in
revealing the oscillatory patterns in the data. Additionally, the
spatial feature extraction used is based on a CNN, which is
commonly employed in image processing tasks. Finally, the
LSTM and GRU are used to extract long-term and short-term
dependencies, respectively.
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lil. METHOD

This section provides a description of how the aggregate data
normalization and SCT-GAF-CNN-LSTM-GRU modules are
combined to formulate an enhanced DL-based solar tracking
model. The section begins by detailing the dataset used
in this study, followed by an outline of the underpinning
concepts of the SCT, SN, MMN, GAF, CNN, LSTM,
and GRU modules. Additionally, all the experiments were
carried out using the Python 3.9-based Keras framework
with Tensorflow [48]. The program was implemented using
a Graphical Processing Unit (GPU) and 12 GB of RAM on
Google Collaboratory [49]. Furthermore, we also leveraged
the Nvidia CUDA Deep Neural Network (cuDNN) toolkit,
a powerful library that provides GPU functionality for DL
models to optimize model performance [50].

A. DATASET DESCRIPTION

This study used a real-world-based dataset from the Girasol
sky imaging and global solar irradiance repository [51], [52].
The features included in the experiment were UNIX time,
temperature (°C), atmospheric pressure (mmHg), relative
humidity (%), solar radiation (W /mz), elevation angle, dew
point (°C), wind direction (radians), and wind velocity
(mile/s), ), These features were selected based on seasonal,
weather, and environmental conditions. The evaluation angle
of the sun was considered as the output variable of the model.
Furthermore, the features contained in the dataset were
collected over 272 days of the solar cycle from 2017 to 2019.
Observations of the sun’s position were collected four to six
times per second, whereas the metrological data was recorded
at 10-minute intervals. However, to ensure that all the features
were observed at the same interval, the metrological data was
interpolated to match the time resolution of the sun position
data. This was effectively done using the averaging method
which readjusted the data resolution to one-minute intervals.

B. SINE AND COSINE TRANSFORMATIONS

Renewable energy-based datasets, particularly those based
on solar and wind energy, often have non-linear fluctuations
due to weather patterns [53]. These patterns often have daily,
seasonal, and yearly variations, making it difficult to predict
future trends based on past patterns alone. To address this
challenge, researchers in signal processing and engineering
fields commonly use SCT for time series and circular
analysis [54], [55]. Using SCT plays a significant role in
analyzing and modeling complex renewable energy-related
data. Conceptually, the SCT module is expressed by (1)
and (2).

sin 2w om;) = sin 2am;/T) @))
cos 2w pm;) = cos 2am;/T) 2)

where, m is the outcome of interest and T represents the unit
of analysis. For instance, if the unit of analysis is monthly
periodicity, then T = 12. Likewise, if the unit of analysis is
an annual cycle, then T = 365.25. Therefore, in this study,
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the SCT module was used to extract daily, weekly, monthly,
and yearly periodicity from the UNIX time (seconds) feature.
Similarly, elevation angle and wind direction features were
transformed into a 2-dimensional feature space by replacing
each cyclic feature X with two features, cosine (X) and
sine (X).

C. ADOPTED DATA NORMALIZATION METHODS

The performance of most learning algorithms is highly
influenced by the choice of normalization method [56]. In this
study, two normalization methods were adopted. Firstly,
the SN method was adopted due to its ability to handle
outliers. The SN method can compress commonly occurring
values to essentially the same range without compromising
its ability to rescale extreme values [57]. Secondly, MMN
was used given its ability to preserve feature relationships in
the data [58]. The associated formulae and descriptions of the
normalization methods are detailed as follows.

1) SIGMOID NORMALIZATION

This method normalizes the data using a sigmoid function
which rescales the values into a range between 0 and 1 or —1
and 1. The SN is computed by (3), where the data value f of
the feature F is normalized to f by computing:

1

"Tixd

3)
2) MINIMUM AND MAXIMUM NORMALIZATION
MMN is one of the most common approaches to data
normalization which scales the features into a range between
0 and 1 or —1 and 1 [57]. The bounded range in the
MMN suppresses the effects of outliers resulting in a smaller
standard deviation. The Min-Max scaler is calculated as
follows.
f _fmin
from = @
nom fmax _fmin

where f;i, and fiq, refer to the min and max values of the
features, respectively.

D. GRAMIAN ANGULAR FIELD
This study uses the GAF to encode time series into image
data. The GAF represents times series in a polar coordinate
system where each element is the cosine of the summation
of angles [59]. Given a time series T = {t1, t2,..., tx} of
k observations, T is normalized using (5) or (6). Thereafter,
the normalized data 7 is represented in polar coordinates by
using a cosine function to encode the data values and the time
stamp as the radius (r) with (7), where A represents the polar
coordinate value, m; is the time stamp and V is the constant
factor used to regularize the span of the polar coordinate
system.

i _ (= max(T)) + (4 — min(7)) )

-1 max(T) — min(T)

~i t; — min(T')

o= max(7) — min(T) ©®
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m; DR )

A = arcos (), —
[ r=—,m €N
After encoding the time series data into the polar coordi-
nate system, a symmetric matrix called the gramian matrix
is formed. This is done by using either the gramian angular
summation Field (GASF) or gramian angular difference
field (GADF), which take a trigonometric summation or
difference of angles, respectively [59]. In this study, the
data is normalized using a combination of the normalization
methods described in the preceding section, unlike the
standard GAF method. After that, the cosine function is
applied to encode the data. We used the Gramian Angular
Summation Field (GASF) to transform the encoded data
into a symmetric matrix. The GASF uses the encoded
data to exploit the angular perspective by considering the
trigonometric summation between each inverse cosine value
to identify the temporal correlation within the varying time
intervals [60]. The GASF is defined by (8).

cos(A1 + Ap) - cos(A + )
GASF = : : 8)
cos(A; + A1) - cos(A; + N)

E. CONVOLUTIONAL NEURAL NETWORK

A CNN is an artificial neural network characterized by a
muti-layer feedforward architecture that has widely proven
its superiority in extracting underlying spatial features [61].
CNNs have received wide coverage in many areas of research
due to their ability to solve image recognition, object
detection, speech recognition, and classification tasks [62].
Unlike other DL models, such as the deep belief network
(DBN) [63], CNNs have the characteristics of weight sharing
and sparse connectivity [64]. These two features of a CNN
significantly reduce the parameters it needs to learn and
extract different patterns. This study uses a CNN to extract
the underlying spatial relationships in the metrological data
to reduce the prediction error of the sun’s position. The
architecture of a CNN is depicted in Fig. 1 and comprises
three parts: the convolutional layer, pooling layer, and fully
connected layer. Further, the computation of the CNN is
defined by (9).

m'—1n'—1

+m)(c+
mariy =5 (55 3 off emaly 0 1 by | ©

u m=0 n=0

where r and c represent the row and column indexes,
respectively, m and n denote the convolution filter’s row and
column indexes, respectively. M’ and n’ represent the number
of rows and columns of the convolution filter, respectively. u
is the feature map’s index in the (h-1)th layer. bj; represents
the bias term of the jth feature map in the Ath layer. wZ}Z
denotes the value of the position (m, n) in the convolution
filter that links the uth feature map in the (h-1)th layer. The
value of a position (7 ¢) in the jth new feature map in the

hth layer is represented by map;;. Likewise, mapgztﬁ)liﬁn)
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Depicts the value of the position (r + m, ¢ + n) in the uth
feature map in the (k-7)th layer. The activation function used
in each layer of the CNN is represented by g.

In this paper, two convolutional layers are used as initial
layers to process the time series converted image data. Each
convolution layer has 32 filters with a kernel size of 3 x 3 and
applies a rectified linear unit (ReLu) activation function.
Additionally, max pooling is applied using a pool size of
2 x 2 to downsample the spatial dimensions of the feature
maps received from the convolutional layers. Further, dropout
is applied at a rate of 0.25 to regularize the network and
prevent overfitting. The output from the pooling layer is then
flattened and reshaped to fit the input requirements of the
subsequent LSTM and GRU layers.

F. LONG SHORT-TERM MEMORY

LSTM is a specific variant of the RNN module used to
mitigate the vanishing and exploding gradient challenge the
RNN faces [65]. LSTM comprises three main gates: the
input gate, forget gate, and the output gate [28]. The primary
function of the three gates is to control the flow of information
in and out of the LSTM cell. More specifically, the input
gate determines how much data enters the memory cell. The
forget gate handles the retention of information and regulates
which information is eliminated from the cell. The output
gate determines which part of the information is passed on to
the subsequent unit. Furthermore, the LSTM cell mainly uses
the tangent and sigmoid activation functions. The following
equations outline the recursive computations of the LSTM
cell.

fi=o (z;fv.x@ + 1 Ry + bf) (10)
iS=CT<:}/)C(S)+l;¥h(s—1)+bi) (11)
o5 =0 (l;gx(s) + 1 hs—1y + bo) (12)
& = tanh (1% 3y + 1) + by ) (13)
= ®zs—1) +is® g, (14)
hy = o5 ® tanh 75 (15)

where tanh and o denote the tangent and sigmoid activation
functions, respectively. f, i, o, g 2z and h represent the
forget gate, input gate, output gate, temporary memory, new
memory cell, and memory block at time step s, respectively.
Q@ Represents an element-wise multiplication between two
matrices. s represents the time step, and W denotes the
magnitude of the window. [ denotes the layer weights
representing input x, and b represents the bias term. The cell
structure of the LSTM module is shown in Fig. 2. This study
uses two LSTM layers with 64 units in the first layer and
32 units in the second layer. A dropout layer is applied after
each layer with a rate of 0.2.

G. GATED RECURRENT UNIT
The GRU is another variant of the RNN model, and however,
unlike the LSTM model, the GRU has fewer gates [66].
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In the GRU, the hidden state (hs;) and cell state (cs;) ug, =o (Wx(ug)x, + Wnsyug)hi—1 +bug) (17)
g}e; [;:ontrcc)lllisd and .mergted intot one;h[67].d(ieneril]y,( th§ &y = tanh (Wyesyxr + Wansyes) (11 ® hi—1) + bes)  (18)
model comprises two gates, the update gate (ug, o —
and the reset gate (rg,). The update gate (ug,) controls esp = (1= ug)) ® csi—1 + ugr © cay (19)
the extent to which the state information hs;_i(cs;—1) at hs; = cs; (20)

the previous time step t-1 is retained in the current state

t. The reset gate (rg,) determines how the information
from the previous state will be integrated into the current
candidate activation (¢a;). The structure of the GRU cell is
shown in Fig. 3 and the update equations are defined as
follows.

rgr = 0 (Wit + Wansiogyhsi—1 + byg) (16)
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where Wi(rg), Wins)irg)s Waug)» Wins)ug)> Wetes) and Winsy(es)
are the network weight matrices. by, by, and b.; denote the
bias vectors. rg, and ug, represent the vectors of the activation
values of the reset gate and update gate, respectively. This
paper uses two GRU layers, with 64 units in the first layer
and 32 in the second layer. Dropout at a rate of 0.2 is applied
after each GRU layer.
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H. COMBINED DATA NORMALIZATION-BASED DL MODEL
This section presents the flow of the combined data
normalization-based DL model for solar tracking. The model
begins by applying SCTs to the cleaned data. Thereafter, the
aggregate of data normalization methods is performed. The
transformed data is first normalized using the SN method.
The output from the SN method is then passed to the
MMN method, where the resulting output is passed to the
subsequent module. The normalized data is converted to
images using a GAF technique in the image conversion
module. In the following module, the CNN module extracts
spatial features in the image data. Thereafter, the forecasting
module is used to predict the sun’s position using both the
LSTM and GRU models, which are ideal for identifying
temporal dependencies in data sequences. The processing
flow of the combined data normalization-based DL model is
presented in Fig. 4.

I. PERFORMANCE METRICS

There are several performance metrics that various
researchers use to evaluate the predictive ability of their
models [68]. However, there is no uniform criterion for
selecting the appropriate evaluation metrics [69]. Thus, in this
study, we used the mean square error (MSE), mean absolute
error (MAE), mean absolute percentage error (MAPE), and
root mean square error (RMSE) to verify the performance of
the combined data normalization-based DL model. The MSE
was used as the loss function to calculate the average squared
difference between the actual values k; and the predicted
values I%,- as shown in (21).

n

1 AN\ 2
MSE =~ > (k,- - k,-) 1)

i=1

VOLUME 11, 2023

Similarly, MAE was used to calculate the average absolute
variation between the actual and predicted values as defined
by (22). A low MAE value is desirable for a model.

n

1
MAE:;Z

i=1

ki — k;

(22)

MAPE was used to calculate the percentage difference
between the actual and observed values as explained by (23).
It is expected for a model to have a low MAPE value.

1 < ki — ki
MAPE = — —_— 23
D D (23)
i=1

RMSE was used to calculate the square root of the mean
squared difference between the actual and predicted values as
computed by (24). Smaller index values of the RMSE indicate
a high model performance.

) 24)

The suitability of the selected performance metric lay in
the experiment’s overall purpose, which was to predict the
sun’s position. The MSE provides an essential model training,
validation, and verification benchmark. It provides an ideal
performance measure for models that predict continuous
variables because of its concept of cross-entropy [70].
Likewise, MAE is the most natural measure of average error
size, and, in contrast to RMSE, it provides an unambiguous
measure of the average error magnitude [71]. MAPE,
on the other hand, offers reliability, ease of interpretation,
clarity of presentation, and utilization of all the error-related
information, which make it significantly effective [72].
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FIGURE 4. Combined data normalization-based DL model.

RMSE is a desirable error metric for several mathematical
calculations because it avoids using absolute values [73].
Therefore, considering these metrics would allow for a more
informed conclusion about the model’s overall performance.

IV. RESULTS AND DISCUSSION

This section analyzes the performance of the SCT-SN-MMN-
CNN-LSTM-GRU model by comparing the impact of the
SN-MMN and other existing data normalization methods on
the model. We also demonstrate the benefit of integrating
the CNN, LSTM, and GRU modules by comparing the DHL
model to other DL models. Furthermore, we compare the
model’s performance on both the image-transformed dataset
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and the original tabular dataset. To appraise and demonstrate
the merits of the SCT-SN-MMN-CNN-LSTM-GRU model,
we performed 30 runs of model testing for each of the
individual comparisons. Additionally, significance testing
was performed to ensure that the differences observed in
model performance were statistically significant.

A. COMPARISON BETWEEN DATA NORMALIZATION
METHODS

To illustrate the benefit of applying the SN-MMN approach
to the DHL model, we compare the model’s performance
when other existing single-based data normalization methods
are applied. Furthermore, we also analyzed the effect of
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non-normalized (NN) data on the performance of the DHL
model. This study used MMN, ZS, SN, and median scaling
(MS) methods. Table 1 presents the average performance
results of the model scored when each normalization method
is applied.

TABLE 1. Average performance of the DHL model based on the different
normalization methods.

Normalization Method Performance Metrics

MAE MAPE RMSE
SN-MMN 0.0073 1.4635 0.0097
MMN 0.0138 2.7470 0.0193
YA 0.0277 5.6470 0.0540
MS 0.0383 7.5295 0.0552
SN 0.0198 3.9567 0.0324
NN 0.0395 7.7230 0.0561

Based on Table 1, it is evident that the performance of the
DHL model fluctuates based on the different normalization
methods. Among the normalization methods, the SN-MMN
method stood out with the best MAE, MAPE, and RMSE
of 0.0073, 1.4635, and 0.0097, respectively, indicating
exceptional predictive model performance. MMN followed
with slightly worse but commendable results, recording
an MAE of 0.0138, MAPE of 2.7470, and RMSE of
0.0193. SN followed, with notably higher MAE, MAPE, and
RMSE scores of about 0.0198, 3.9567, and 0.0324, respec-
tively, signaling increased prediction errors. Subsequently,
ZS normalization exhibits a further deterioration in model
performance, resulting in an MAE of 0.0277, MAPE of
5.6470, and RMSE of 0.0540, suggesting a relatively larger
predictive error compared to the previous methods. Under the
MS method, the DHL model exhibited an MAE of 0.0383,
a MAPE of 7.5295, and an RMSE of 0.0552. Finally, the NN
approach resulted in the worst model performance, with an
MAE of 0.0395, MAPE of 7.7230, and RMSE of 0.0561,
underscoring the pivotal role of normalization in enhancing
predictive accuracy.

Additionally, Fig. 5 presents the scatter plot of the proposed
DHL model when trained using the different normalization
methods. Each normalization method is presented with two
subplots, one representing the sine of the sun’s elevation
angle and the other representing the cosine of the angle. The
vertical axes of the subplots are the predicted cosine and sine
elevation angles. Similarly, the horizontal axes of the subplots
are the actual cosine and sine elevation angles. Furthermore,
the baselines are represented by the red diagonal line in the
plots. For the SN-MMN method, the scatter plot converges
well to the baseline, which demonstrates that the predicted
results match the actual results. For the MMN method, there
is evidence of a slight deviation between the blue points and
the baseline. Also, from Fig. 5, itis indeed evident that there is
a significant deviation from the baseline line for the ZS, MS,
SN, and NN methods. This further justifies the phenomenal
performance achieved when the SN-MMN method is used.
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This may have been due to the SN-MMN method’s ability to
effectively scale the data to the Gaussian distribution.

B. COMPARISON BETWEEN DIFFERENT DL MODELS

In this section, we compare the performance of different
DL models to the CNN-LSTM-GRU model. Specifically,
we compare the proposed model to CNN, LSTM, GRU, and
CNN-LSTM. This is done to analyze whether the integration
of spatial feature extraction along with short-term and long-
term temporal dependence extraction impacts the model’s
performance. Table 2 presents the average performance
results of the different DL models.

TABLE 2. Average performance of the DL models.

Performance Metrics

DL Method

MAE MAPE RMSE
CNN-LSTM-GRU 0.0073 1.4635 0.0097
CNN 0.0136 2.7501 0.0194
LSTM 0.0214 4.3419 0.0252
GRU 0.0133 2.6137 0.0158
CNN-LSTM 0.0146 2.9230 0.0190

According to Table 2, the CNN-LSTM-GRU model
achieved the best results with an MAE of 0.0073, MAPE of
1.4635, and RMSE of 0.0097. Following closely, the CNN
model also delivered a commendable performance, scoring an
MAE of 0.0136, MAPE of 2.7501, and RMSE of 0.0194. The
GRU model followed with an MAE of 0.0133, a MAPE of
2.6137, and an RMSE of 0.0158, demonstrating competitive
results. Subsequently, the CNN-LSTM model also showed
competitive performance with an MAE of 0.0146, a MAPE
of 2.9230, and an RMSE of 0.0190. Lastly, the LSTM model
exhibited the lowest performance, with an MAE of 0.0214,
a MAPE of 4.3419, and an RMSE of 0.0252. Furthermore,
Figs. 6 and 7 present the residual plot and histogram plots
of the DL models. The analysis of these residual plots and
histograms is crucial for further assessing the performance
and reliability of the DL models.

In Fig. 6, the subgraphs of residuals are labeled with index
values on the x-axis and residuals on the y-axis. These graphs
illustrate the variation between the true target values and the
predicted values of the sine and cosine of the sun’s elevation
angles. As expected, the CNN-LSTM-GRU model displays
a consistent spread of residuals across the entire range of
predicted values. This indicates that the model maintains
dependable performance regardless of whether predictions
are high or low. Moreover, the absence of discernible patterns
or trends in the differences between the model’s predictions
and actual values suggests that it avoids consistently overes-
timating or underestimating in specific situations. Similarly,
the CNN-LSTM model also exhibits a relatively consistent
spread of residuals and maintains a fairly random pattern.
However, the absence of the GRU model may have limited its
performance. Conversely, it is evident that the CNN, LSTM,
and GRU models do not display random patterns, as most
of the points are consistently above and below the baseline.
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This suggests that the majority of the sun’s elevation angle
cosine values are systematically overpredicted by these three
models. Similarly, the indication also suggests that the sine
values are consistently underpredicted by the models, with
this pattern being significantly evident in the case of the GRU
and LSTM models.

In Fig. 7, the x-axis represents the range of residual values,
and the y-axis represents the frequency of residuals within
each range. It is evident that the residuals from the CNN-
LSTM-GRU model form a symmetric bell-shaped curve
centered near zero, implying that these residuals follow a
Gaussian distribution. This observation suggests that the
CNN-LSTM-GRU model effectively captures the hidden
relationships within the data, demonstrating its ability to learn
from the data effectively. In contrast, the other models exhibit
more skewed distributions, indicating that they may struggle
to capture the underlying patterns in the data accurately.
Furthermore, the scarcity of unusual or extreme values in
the residuals of the CNN-LSTM-GRU model indicates its
capability to make reliable predictions across a diverse range
of naturally occurring situations. Indeed, both the residual
plot and histogram collectively highlight the superiority of
the CNN-LSTM-GRU model, which is consistent with the
remarkable performance observed in the MAE, MAPE, and
RMSE results. Certainly, the integration of the CNN’s spatial
feature extraction capabilities, along with the LSTM-GRU’s
short and long-term temporal dependence extraction, signifi-
cantly contributes to the model’s outstanding performance.

C. COMPARISON OF MODEL PERFORMANCE BASED ON
IMAGE AND TABULAR DATA

In this section, we compare the performance of the model
on image data and tabular data. This is done to illustrate
the significance of the image conversion module that is
incorporated into our model. Table 3 shows the average
performance results of the DHL model on image and tabular
data.

TABLE 3. Average performance of DHL model using different data types.

Performance Metrics

Data Type

MAE MAPE RMSE
Image 0.0073 1.4635 0.0097
Tabular 0.0380 7.4467 0.0430

Based on Table 3, the DHL model demonstrates remark-
able accuracy when trained using image data. The model
achieved outstanding MAE, MAPE, and RMSE results
of 0.0073, 1.4635, and 0.009, respectively. In contrast,
the DHL model exhibits significantly poorer performance
when trained on tabular data. The model obtained MAE,
MAPE, and RMSE scores of 0.0380, 7.4467, and 0.0430,
respectively. These results indicate that the image conversion
module significantly enhances the model’s effectiveness by
revealing fine-grained relationships in the data through its
conversion of tabular data into images. To further illustrate
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the remarkable performance of the DHL model’s image
transformation module, Fig. 8 presents an analysis of the
DHL model’s convergence when trained with tabular data and
image data.

According to Fig. 8, the loss curve of the DHL model,
when trained with image data, exhibits a more rapid initial
drop compared to when it is trained with tabular data.
Furthermore, the DHL model trained with image data
maintains a consistently lower level of loss and remains stable
until the end, in contrast to the tabular data-trained DHL
model. This demonstrates that the utilization of image data
significantly influences the model’s training, enabling it to
maintain a low training loss and achieve better convergence
performance. This remarkable achievement can be attributed
to the DHL model’s use of the 2D-CNN module, which
allows it to learn deeper spatial relationships. In contrast,
when the model is trained on tabular data, it is limited to using
the 1D-CNN module, which restricts the number of features
it can learn. Additionally, unlike the conventional GAF
image transformation approach, which employs a single data
normalization operation, the DHL model incorporates SN and
MMN techniques. Moreover, it applies an initial SCT before
image transformation and employs a cosine transformation
during image transformation. These combined approaches
likely contribute to the DHL model’s high accuracy by
leveraging fine-grained image-transformed data.

D. SIGNIFICANCE TESTING
Statistical significance testing was employed to verify that the
performance of the DHL model across the different models,
normalization methods, and data types was statistically
significant. The model was evaluated for significance based
on their MAE, MAPE, and RMSE scores. To start with,
we assessed the performance results of the DHL model
across the different models, normalization methods, and data
types. This included determining whether the MAE, MAPE,
and RMSE results followed a normal distribution. Given
our small sample size, which was derived from 30 model
testing runs across the different comparisons, we employed
the Shapiro-Wilk test to assess the normality [74]. Using a
significance level of 0.05, if the p-value exceeds 0.05, the
data distribution is not significantly different from a normal
distribution. Conversely, if the p-value is less than 0.05,
it indicates a significant departure from normal distribution.
Table 4 presents the Shapiro-Wilk normality test outcomes for
the comparisons across the different models, normalization
methods, and data types based on their performance results.
Based on Table 4, the Shapiro-Wilk test showed that
although all the samples contained 30 elements, some of
the method’s performance results departed significantly from
normality with p-values < 0.05 and very high statistic (W)
values. Thus, due to the sample deviation from the normal
distribution, the Kruskal-Wallis (H) non-parametric test was
used on the samples to verify that the results from the different
methods differ significantly [75]. The null hypothesis of the
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TABLE 4. Shapiro-wilk normality test results for different comparision types.
Comparison types Methods MAE MAPE RMSE
w p-value w p-value w p-value
Normalization methods SN-MMN 0.86172 0.00075 0.80845 0.00006 0.85698 0.00059
MMN 0.81761 0.00009 0.81560 0.00008 0.95148 0.15876
A 0.97537 0.65823 0.96846 0.45805 0.97547 0.66134
MS 0.98326 0.88685 0.96221 0.31542 0.97734 0.71930
SN 0.92985 0.03879 0.93046 0.04034 0.95577 0.20967
NN 0.80866 0.00006 0.92054 0.02150 0.85773 0.00061
DL models CNN-LSTM-GRU 0.81877 0.00015 0.75832 0.00001 0.81031 0.00010
CNN 0.94108 0.09727 0.93315 0.05958 0.97936 0.80839
LSTM 0.88393 0.00347 0.89253 0.00554 0.89905 0.00796
GRU 0.89588 0.00667 0.89612 0.00676 0.90702 0.01253
CNN-LSTM 0.77278 0.00002 0.74287 0.00001 0.80404 0.00008
Data types Image 0.86172 0.00075 0.80845 0.00006 0.85698 0.00059
Tabular 0.87701 0.00169 0.87844 0.00183 0.88114 0.00212

Kruskal-Wallis (H) test is that the data samples do not differ.
If the p-value falls below the specified significance level
(¢ = 0.05), we reject this null hypothesis and conclude
the existence of a notable distinction in medians among the
groups. Therefore, the Kruskal-Wallis results for comparing
the different method performance result samples are shown
in Table 5.

Based on Table 5, all the p-values recorded are consider-
ably less than 0.05, indicating strong evidence against the
null hypothesis of equal medians in performance scores for
the comparisons across the different models, normalization
methods, and data types. Therefore, we reject the null
hypothesis, suggesting that at least one of the individual
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methods has a significantly different median performance
score compared to the others. To further investigate the
pairwise differences between the comparison types, post-hoc
testing was done using Bonferroni-Dunn’s test. A two-tailed
null hypothesis at the 0.01 and 0.05 level of significance was
employed. Table 6 presents the results of the significance
testing for the DHL model with the SN-MMN method against
the other single-based methods.

As seen in Table 6, the group-wise p-value comparison
between the SN-MMN method and the other normalization
methods, except MMN, is statistically significant at the
0.001 level. Nevertheless, the difference observed between
the SN-MMN and other methods is statistically significant
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TABLE 5. Kruskal-wallis test results based on comparison types.

. MAE MAPE RMSE
Comparison types
H p-value H p-value H p-value
Normalization methods 1.79E+02 1.10E-36 1.79E+02 1.06E-36 1.64E+02 1.26E-33
DL models 6.04E+01 2.39E-12 6.10E+01 1.78E-12 6.64E+01 1.33E-13
Data types 4.73E+01 6.21E-12 4.73E+01 6.21E-12 4.73E+01 6.21E-12

TABLE 6. Post-Hoc tests results of the SN-MMN and other normalization
methods.

TABLE 8. Post-Hoc tests results of the DHL model on image data against
tabular data.

Performance p-value (two-tailed)

Performance p-value (two-tailed)

. Comparison . Comparison
Metrics (o = 0.001) (a = 0.05) Metrics (o = 0.001) (a = 0.05)
SN-MMN vs. MMN > 0.001 < 0.05 MAE Image vs. Tabular < 0.001 < 0.05
MAE ggﬁﬁg vs. g’ll\? < 888} < 882 MAPE Image vs. Tabular < 0.001 <0.05
- VS. < 0. < 0.
SN-MMN vs. ZS < 0.001 < 0.05 RMSE Image vs. Tabular < 0.001 < 0.05
SN-MMN vs. NN < 0.001 < 0.05
SN-MMN vs. MMN > 0.001 < 0.05
SN-MMN vs. MS < 0.001 < 0.05
MAPE SN-MMN vs. SN < 0.001 < 0.05 Based on Table 8, it is evident that the p < 0.001 for each
ggﬁxg V8. gsN z 888} 2 882 of the comparisons between the image data and the tabular
- VS. . . . . . . oo
SNLMMN vs. MMN 0.001 0.05 data is statistically significant. Thus, we can conclude that
- VSs. > 0. < 0. . . e
SN-MMN vs. MS <0001 <005 the perfo.rmance results of the DHL model differ significantly
RMSE SN-MMN vs. SN < 0.001 < 0.05 when trained on image and tabular data.
SN-MMN vs. ZS < 0.001 < 0.05
SN-MMN vs. NN < 0.001 < 0.05

at the 0.05 significance level. Therefore, it can be con-
cluded that the outcomes produced by the methods are
significantly different. Table 7 displays the considerable
testing results for the DHL model compared to the other
DL models.

TABLE 7. Post-Hoc tests results of the DHL model and other DL models.

Performance C . p-value (two-tailed)
Metric omparison
(a=0.001)(a=0.05)
CNN-LSTM-GRU vs. CNN < 0.001 <0.05
CNN-LSTM-GRU vs. LSTM < 0.001 <0.05
MAE CNN-LSTM-GRU vs. GRU < 0.001 <0.05
CNN-LSTM-GRU vs. CNN-LSTM < 0.001 < 0.05
CNN-LSTM-GRU vs. CNN < 0.001 <0.05
CNN-LSTM-GRU vs. LSTM < 0.001 <0.05
MAPE CNN-LSTM-GRU vs. GRU < 0.001 < 0.05
CNN-LSTM-GRU vs. CNN-LSTM < 0.001 < 0.05
CNN-LSTM-GRU vs. CNN < 0.001 <0.05
CNN-LSTM-GRU vs. LSTM < 0.001 <0.05
RMSE CNN-LSTM-GRU vs. GRU < 0.001 <0.05
CNN-LSTM-GRU vs. CNN-LSTM < 0.001 < 0.05

As seen in Table 7, the difference between the CNN-
LSTM-GRU and other DL models was statistically signif-
icant at the 0.001 significance level. Furthermore, Table 8
shows the results of the significance testing of the perfor-
mance of the DHL model when trained with image data
against tabular data.
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E. COMPARISON OF THE PROPOSED MODEL WITH
OTHER RECENTLY PUBLISHED MODELS

As discussed in the literature review, several recent studies
have proposed various DL-based solar tracking models.
These models represent some of the most recent intelligent
models designed to predict the sun’s position efficiently.
However, their robustness and superiority can vary based
on factors like the variables used for training, preprocessing
techniques, and model complexity. Therefore, this section
aims to compare the most recently developed DL models
for solar tracking with the DHL model proposed in this
study. We consider four recent articles in this comparison
to evaluate and assess the superiority and contribution of
the proposed DHL model. It’s worth noting that each of
the models proposed in the previous studies was trained
and tested on non-publicly available datasets. To compare
their performance against that of the proposed model, all
the models were trained and tested on the publicly available
dataset used in this study. Table 9 provides a comparison
between the proposed model and the other recently published
models.

TABLE 9. Comparision of the proposed model with other recently
published models.

Reference Model MAE MAPE RMSE
Proposed model CNN-LSTM-GRU  0.0073 1.4635 0.0097
Al-Muswe et al. [38] LSTM 0.0886 0.0677 8.4934

Haris et al. [41] RNN
Kaul et al. [42] LSTM
Syahram & Effendy [45] RNN-LSTM

0.0655 0.0474 6.3247
0.0665 0.0508 6.6629
0.0711 0.0538 6.9575
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As depicted in Table 9, the proposed model consistently
outperforms all the models in previous studies. This high-
lights several key factors. Firstly, it is important to note
that data types may impact the performance of models.
Specifically, the previous studies’ models used tabular data,
and similarly, this study also utilized tabular data. However,
relying solely on tabular data often limits the utilization
of spatial features inherent in the data. Thus, this study
incorporates a tabular-to-image conversion, which enables
the extraction of spatial features. Secondly, the recent
studies employed both RNN and LSTM models. The use of
individual RNN and LSTM models in those studies allowed
them to capture short-term and long-term dependencies in the
data. In contrast, this study integrates the advantages of CNN,
LSTM, and GRU models, enabling the simultaneous capture
of spatial and long-term relationships in the data. Finally,
a noteworthy observation in the previous studies is the use of
methods based on single data normalization. Conversely, this
study incorporates two different data normalization methods,
effectively scaling the features by leveraging the strengths
of each technique. By harnessing these capabilities, the
proposed model achieves superior performance compared to
previous studies.

F. CONCLUSION

This study provides empirical evidence that using the
SN-MMN method with cyclic transformations, image con-
version, spatial feature extraction, and short-term and long-
term feature extraction significantly enhances solar tracking.
Our experiments demonstrate three essential aspects for
achieving success. These aspects include effective feature
scaling while preserving original data relationships, lever-
aging image representation of the dataset, and modeling
spatial and temporal dynamics using CNN, LSTM, and
GRU modules. Furthermore, The proposed hybrid model
outperforms existing methods on a publicly available dataset,
achieving outstanding performance with MAE, MAPE, and
RMSE scores of 0.0073, 1.4635, and 0.0097, respectively.
However, this study has limitations. Since the proposed
model was only trained on data from a single geographical
location, the model may require reconfiguration according
to the location of its implementation. Additionally, it should
be noted that the model was trained on data collected over
272 days through three years, representing approximately
25% of the period. This may limit the generalizability of the
model. Thus, future work should consider training the model
on a larger dataset, as well as investigating the integration of
image and tabular data for improved solar tracking. It would
also be interesting to combine the two data types with
ensemble and other state-of-the-art methods.
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