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ABSTRACT Information is conveyed by either time, antenna, and/or frequency in the conventional
modulation. In this paper, we propose a novel technique to convey information in Alamouti space-time
block coding systems. In the proposed technique, the information can be conveyed by one channel’s phase
component with orderN . The proposed technique is referred to as 2×Nr N -ary Alamouti-STBC (N -STBC),
where Nr is the number of receive antennas. The N -STBCwith Golden codewords (GCs) is further proposed
to improve error performance at high signal-to-noise ratios (SNRs). Moreover, the proposed N -STBC with
and without GCs still preserves the orthogonal transmission matrix of the Alamouti-STBC which retains
the simple linear maximum-likelihood (L-ML) detection for quasi-static frequency-flat Rayleigh fading
channels. The transmitted symbols can be directly estimated by use of the L-ML detection in the N -STBC
with and without GCs. However, only the GCs are estimated by use of the L-ML detection in N -STBC
with GCs. The signal detection subset based ML detection is further employed to detect the transmitted
M -ary quadrature amplitue modulation (MQAM) symbols inN -STBCwith GCs. The lower error probability
bounds of theN -STBCwith and without GCs are derived and validated by simulation results. As an example,
the proposed 2 × 4 16QAM 16-STBC with GCs almost maintain the error performance of the conventional
Alamouti-STBC with GCs at SNRs.

INDEX TERMS Bit error probability, Golden codewords, M -ary phase shift keying modulation, M -ary
quadrature amplitude modulation, N -ary Alamouti space-time block coding.

I. INTRODUCTION
High data transmission rates are required in 5th generation
(5G) wireless communication systems [1]. Multiple-input
multiple-output (MIMO) is a key technique to meet the high
data transmission rate and the very good channel reliability.
One type of MIMO systems is space-time block code
(STBC) system. The Alamouti space-time block code [2],
hereinafter referred to as Alamouti-STBC, employs only
two transmit antennas, which simultaneously transmit two
message symbols over two consecutive transmission inter-
vals. The transmission matrix maintains an orthogonal struc-
ture, which allows for simple linear maximum-likelihood
(L-ML) detection in a quasi-static frequency-flat Rayleigh
fading channel. Alamouti-STBC has been shown to achieve
full-diversity and half-rate, while not requiring additional
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system resources [2], [3], [4], where the rate is defined as the
number of transmitted symbols/time slots/per antenna.

Several attempts have been made to improve the spectral
efficiency of Alamouti-STBC. For example, in [5], two
quadrature phase shift keyed (QPSK) constellations are
employed in STBC, allowing for an additional bit to be
mapped to one of the constellations. Athough the scheme
maintains the simple decoupled ML detector of Alamouti-
STBC [2], the improvement is limited, since it is not gener-
alized to more than two constellations. In [6], a rate-2 STBC
based on field extensions was proposed for QPSK. However,
the computational complexity imposed for ML detection is
extremely high. In [7], a high rate STBC for QPSK was
proposed, where the signal set is enlarged by considering a
coset of the STBC transmission matrix. An additional bit is
then mapped to one of the transmission signal sets. Optimum
power scaling is further employed to ensure full-diversity;
however, the achievable spectral efficiency is limited. High
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rate embeddedAlamouti-STBC (EAST) was presented in [8].
EAST can employ even numbers of transmit antennas up to 8;
however, for 2 transmit antennas EAST reduces to STBC [2],
hence it is only half-rate. Meanwhile, space-time block
coded spatial modulation (STBC-SM) was proposed in [9].
STBC-SM combines the Alamouti-STBC with conventional
SM to improve the error performance of SM by exploiting
transmit diversity. In order to reduce the number of transmit
antennas space-time block coded spatial modulation with
cyclic structure (STBC-CSM) was proposed in [10]. Further
cyclic temporally and spatially-modulated STBC (STBC-
TSM) was proposed in [11]. STBC-TSM can further reduce
error rate compared to STBC-SM and STBC-CSM. However,
in the case of [9], [10], and [11], although only two transmit
antennas are active per transmission interval more than two
transmit antennas are required to facilitate the mapping
of additional bits. Furthermore, these schemes exploit the
concept of spatially modulated transmission [9], [10], [11],
hence being quite different from the Alamouti-STBC.

In this paper, we also focus on the Alamouti-STBC based
transmission scheme with two transmit antennas to improve
spectral efficiency and approximately retain the bit error
performance as the conventional Alamouti-STBC. In this
paper, we propose a novel technique to convey information
in the Alamouti-STBC systems, which is referred to as N -ary
Alamouti-STBC (N -STBC). The proposed N -STBC needs
two consecutive Alamouti-STBC block transmissions. Com-
pared to the conventional Alamouti-STBC, the extra informa-
tion is conveyed by one pair of coupled phase offsets to the
signal transmitted through one of the two transmit antennas
during two consecutive block transmissions in the proposed
N -STBC system. Given log2 N bits which are mapped to one
pair ofN -ary phase shift keying (NPSK) space-time labelling

diversity (STLD) signals [12], (ejθ
1
p , ejθ

2
p ), ejθ

l
p will be applied

in l block transmission.
Space shift keying (SSK) is a spatial modulation based new

modulation [13]. In SSK there are more than one transmit
antennas. But only one transmit antenna is active during
transmission. During transmission only the transmit antenna
index conveys information. The transmitted symbol does not
convey any information. Compared to SSK the proposed
N -ary Alamouti-STBC only contains two transmit antennas.
During transmission two transmit antennas are all active.
Both the transmitted symbols and one pair of NPSK STLD
signals convey information.

In order to achieve more diversity Golden code-
words (GCs) have been applied in single-input multiple-
output (SIMO) systems in [14], reconfiguration intelligent
surface-aided SIMO system in [15] and space-time line code
system in [16]. Motivated by the work in [14], [15], and [16],
the N -STBC with GCs has also been proposed in this paper.
Compared to the N -STBC without GCs, the N -STBC with
GCs achieves 4Nr diversity order, and further improve error
performance at high signal-to-noise ratios (SNRs).

The proposed technique, the N -STBC with and with-
out GCs, involves an additional pair of coupled phase

components in the transmission at one of two transmit
antennas. Additional information bits are then mapped to one
pair of the coupled phase components, which has N degrees-
of-freedom. No additional power or bandwidth is required
for the proposed technique. Furthermore, the proposed N -
STBC with and without GCs still keeps the orthogonal
transmission matrix of the Alamouti-STBC which retains
the simple L-ML detection for quasi-static frequency-flat
Rayleigh fading channels.

In the proposed N -STBC with GCs, the GCs not the
M -ary quadrature amplitude modulation (MQAM) orMPSK
symbols, are estimated by use of the L-ML detection.
The signal detection subset based ML detection (SDS-ML)
proposed in [14] is further employed to detect the transmitted
MQAM symbols to improve error performance at high SNRs.

The main contributions of this paper are:
Contribution 1: This paper proposes a novel transmission

technique in the Alamouti-STBC systems, the N -STBC with
and without GCs.

Contribution 2: This paper derives lower error probability
bounds of the proposed N -STBC with and without GCs.
The remainder of the paper is organized as follows:

Preliminary concepts of the STLD and Golden code are
introduced in Section II. In Section III, the system model
is presented. Signal detections for the N -STBC with and
without GCs are presented in Section IV. Lower error
probability bounds of the N -STBC with and without GCs are
derived in Section V. In Section VI, the numerical results are
demonstrated. Finally, the paper is concluded in Section VII.

Notation: Bold lowercase and uppercase letters are used
for vectors and matrices, respectively. [·]T , (·)H , | · |

and ∥ · ∥F represent the transpose, Hermitian, Euclidean
and Frobenius norm operations, respectively. D(·) is the
constellation demodulator function. E{·} is the expectation
operation. j =

√
−1 is a complex number. Finally ⟨,⟩ denotes

the inner product operation.

II. PRELIMINARY CONCEPTS
Both STLD and Golden code are key components in the
proposed system. In this section, as preliminaries, we briefly
present the STLD and Golden code.

A. SPACE-TIME LABELLING DIVERSITY (STLD)
STLD is an STBC with two transmit antennas. Consider an
Nt × Nr conventional STLD system, where Nt and Nr are
the numbers of transmit and receive antennas (Nt = 2, and
Nr ≥ Nt ). In the conventional STLD system, there are two
input information bit streams, bi, i ∈ [1 : 2], and two bit-
to-symbol mappers, �k

M , k ∈ [1 : 2]. Normally, �1
M is

the Gray coded mapper, while �2
M is designed for a specific

modulation scheme [12]. Let χM be the signal set ofMQAM
or MPSK. In order to achieve labelling diversty M ≥ 8. Let
the two input information bit streams be bi = [bi,1 · · · bi,r ],
i ∈ [1 : 2], r = log2M , where M is the order of
MQAM orMPSK modulation. Then bit stream bi is fed into
�k
M , which maps the r input bits onto constellation points
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from χM , and yields the symbols, xkbi = �k
M (bi), k ∈ [1 : 2],

where E{|xkbi |
2
} = 1.

The codeword matrix of the STLD is given by [12]:

XL =

[
x1b1 x

2
b2

x1b2 x
2
b1

]
. (1)

In the STLD system, transmit antennas 1 and 2 transmit,
respectively, x1b1 and x2b2 in time slot 1, and x1b2 and x2b1 in
time slot 2. Since two information bit streams are transmitted
in two time slots using two transmit antennas, the STLD has
only half-rate. However, the STLD not only achieves full-
diversity, but also achieves labelling diversity [12].

There are two pairs of MQAM or MPSK symbols,
(x1b1 , x

2
b1
) and (x1b2 , x

2
b2
), in the STLD system. The STLD

system has two key behaviors. One is that both x1bi and x
2
bi
in

each pair (x1bi , x
2
bi
) convey the same information. The other

is that the error performance of the STLD system mainly
depends on the minimum product Euclidean distance [12],
which is determined by two bit-to-symbol mappers. The
first mapper is Gray mapper which is given. We only need
to design the second mapper. The objective of designing
the second mapper �2

M is to maximize the minimum
product Euclidean distance, which is a massive combinatorial
problem [12]. In this paper, only one pair of NPSK STLD
symbols is used in the proposed N -STBC technique. As an
example, the two mappers for one pair of 16PSK STLD
shown in Fig. 1 in [12] is also tabulated in TABLE 1 in this
paper.

TABLE 1. Constellation mappers for 16PSK.

In TABLE 1, q stands for the corresponding decimal index
of the input information bits and θx denotes for ej

2π
16 ×x .

Suppose that the input information bits are 0100 then q = 4
and the pair of 16PSK STLD symbols is (ej

2π
16 ×7, ej

2π
16 ×15).

Designing the second mapper in TABLE 1 is solved by a
heuristic approach [12]. Similarly we also use the heuristic
approach to design the second mapper for 8PSK and 32PSK.
The two mappers of 8PSK and 32PSK are tabulated in
TABLEs 2 and 3 in Appendix A.

B. THE GOLDEN CODE AND THE GOLDEN CODEWORDS
The Golden code is a linear dispersion space-time block code
(LD-STBC) with two transmit antennas and two or more
receive antennas [17]. The Golden code achieves full rate and
full diversity. The Golden encoder takes four complex-valued
symbols xi, and generates four super-symbols. The Golden

codeword matrix is given by [17]:

XG =

[ 1
√
5
α(x1 + x2θ ) 1

√
5
α(x3 + x4θ )

1
√
5
jᾱ(x3 + x4θ̄ ) 1

√
5
ᾱ(x1 + x2θ̄ )

]
. (2)

where θ =
1+

√
5

2 , θ̄ = 1 − θ , α = 1 + jθ̄ , and ᾱ = 1 + jθ .
Note xi ∈ χM .

In (2), there are four super-symbols, 1
√
5
α(x1 + x2θ ),

1
√
5
ᾱ(x1 + x2θ̄ ), 1

√
5
α(x3 + x4θ ) and 1

√
5
jᾱ(x3 + x4θ̄ ). In this

paper, we refer to these super-symbols as the Golden
codewords (GCs). There are two pairs of GCs,

{ 1
√
5
α(x1 +

x2θ ), 1
√
5
ᾱ(x1 + x2θ̄ )

}
and

{ 1
√
5
α(x3 + x4θ ), 1

√
5
jᾱ(x3 + x4θ̄ )

}
.

In this paper, only the pair of GCs
{ 1

√
5
α(x1+x2θ ), 1

√
5
ᾱ(x1+

x2θ̄ )
}
is used in the proposed N -STBC technique.

III. SYSTEM MODEL
The proposed system model is based on the Alamouti-
STBC scheme. In order to enhance the spectral efficiency
of the Alamouti-STBC and approximately retain the bit
error performance as the conventional Alamouti-STBC,
we introduce a dimension (a pair of coupled phase offsets)
of order N into one of two transmit antennas, which maps an
additional log2 N bits into a pair ofNPSK STLD symbols per
four time-slots, which is refered as N -STBC in this paper.

Consider that the proposed N -STBC system contains Nt =

2 transmit antennas and Nr receive antennas. The proposed
N -STBC scheme operates as follows: Given r = log2M
and s = log2 N , a (4r + s)-tuple message is partitioned into
4r-tuple vectors mi =

[
mi,1 mi,2 · · · mi,r

]
, i ∈ [1 : 4]

and an s-tuple vector m =
[
m1 m2 · · · ms

]
. Let qi be the

decimal index of the input binary vector mi, i ∈ [1 : 4],
where qi ∈ [1 : M ]. The vector mi is then mapped onto
MQAM or MPSK constellation points x i with E{|x i|2} = ε,
i ∈ [1 : 4], in the Argand plane, and x i ∈ χ s. χ s is the signal
set ofMQAM orMPSK with modulation orderM . However,
onlyMQAM is considered in this paper. Let p be the decimal
index of the input binary vector m, where p ∈ [1 : N ]. The
vectorm is mapped onto a pair of NPSK STLD constellation
points (x1p , x

2
p ), in the Argand plane. x

k
p ∈ χp, χp is the signal

set of NPSK with modulation order N . Obviously we have
E{|xkp |

2
} = 1, k ∈ [1 : 2].

In the following two subsections, the N -STBC systems
with and without GCs will be presented, respectively.

A. N-STBC WITHOUT GCs
There are two codeword matrices in the proposed N -STBC
technique. Based on the conventional Alamouti encoding, the
k th codeword matrix of the proposed N -STBC is given by:

Xk
=

[
x2k−1 xkp x

2k

−(x2k )∗ xkp (x
2k−1)∗

]
. (3)

Let Xk
=
[
x11 x

1
2

]
and xkp = ejθk . Then we have:

⟨x11,x
1
2⟩ = x2k−1(xkp x

2k )∗ − (x2k )∗(xkp (x
2k−1)∗)∗ = 0. (4)
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and

Xk (Xk )H =

(
|x2k−1

|
2
+ |x2k |2

)
I2 (5)

where I2 is a 2 × 2 identity matrix.
Both (4) and (5) prove that (3) still preserves orthogonality,

which retains the simple L-ML detection at the receiver.
It takes two time slots to transmit each Xk . In time slot 1,

antenna 1 transmits the symbol x2k−1, while antenna 2 trans-
mits the symbol xkp x

2k . In time slot 2, antenna 1 transmits
the symbol −(x2k )∗, while antenna 2 transmits the symbol
xkp (x

2k−1)∗. The received signals at the receiver are given by:

y2k−1
= x2k−1h2k−1

+ xkp x
2kh2k + w2k−1, (6.1)

y2k = −(x2k )∗h2k−1
+ xkp (x

2k−1)∗h2k + w2k , (6.2)

where yl ∈ CNr×1 is the signal vector received at the receiver,
l ∈ [1 : 4]. hl ∈ CNr×1 is the channel coefficient vector. Each
hl lasts two time slots, and takes another independent channel
coefficient vector in the next two time slots.wl ∈ CNr×1 is the
additive white Gaussian noise (AWGN) vector. The entries
of both hl and wl are mutually independent and identically
distributed (i.i.d.) complex Gaussian random variables (RVs)
distributed as CN (0, 1) and CN (0, 2ε

ρ
), where ρ is the SNR at

each receive antenna.

B. N-STBC WITH GCs
The proposed N -STBC without GCs achieves diversity order
2Nr . In order to improve error performance at high SNRs,
in this paper, we further propose N -STBC with GCs. The
proposed N -STBC with GCs achieves diversity order 4Nr .
In order to achieve diversity order 4Nr x2k is rotated by
xkp , k ∈ [1 : 2] in the Golden encoding.
There are two encodings in the proposed N -STBC

with GCs.
Encoding 1: Golden Encoding.
Based on the pair of GCs

{ 1
√
5
α(x1+x2θ ), 1

√
5
ᾱ(x1+x2θ̄ )

}
the Golden encoded symbols are given by:

xkg =
1

√
5
α(x2k−1

+ xkp x
2kθ ), (7.1)

xk+2
g =

1
√
5
ᾱ(x2k−1

+ xkp x
2k θ̄ ), (7.2)

where k ∈ [1 : 2].
Again, since E{|x i|2} = ε, then we also have E{|x lg|

2
} = ε,

l ∈ [1 : 4].
Encoding 2: N -Alamouti Encoding.
Similar to the N -STBC without GCs there are two

codeword matrices of the proposed N -STBC with GCs.
Based on the conventional Alamouti encoding, the k th

codeword matrix of the proposed N -ary Alamouti encoding
is given by:

Xk
G =

[
x2k−1
g xkp x

2k
g

−(x2kg )∗ xkp (x
2k−1
g )∗

]
. (8)

Again, (8) also preserves orthogonality, which also makes the
L-ML detection feasible at the receiver.

The received signals for N -STBC with GCs are the same
as (6.1) and (6.2) by replacing x l with x lg, l ∈ [1 : 4].

IV. SIGNAL DETECTION
It is assumed that the channel state information (CSI) is
known at the receiver. In the following three subsections,
we discuss the signal detection forN -STBC systems with and
without GCs, respectively.

A. LINEAR-ML DETECTION FOR N-STBC WITHOUT GCs
The whole signal detection is actually a joint detection of
the transmitted pair of coupled phase offsets and the trans-
mitted two symbols. In the following detection algorithm,
we calculate the Frobenius distances for all possible pairs of
coupled phase offsets. In theN -STBCwithout GCs, the actual
detection includes two steps:

Step 1:Given a pair of coupled phase components (x1p , x
2
p )

detecting the transmitted symbols, where x1p , x
2
p ∈ χp.

Since both CSI and xkp are known at the receiver, we define

h̃
2k

= xkph
2k . Then (6.1) and (6.2) are rewritten as:

y2k−1
= x2k−1h2k−1

+ x2k h̃
2k

+ w2k−1, (9.1)

y2k = −(x2k )∗h2k−1
+ (x2k−1)∗h̃

2k
+ w2k . (9.2)

Then (9.1) and (9.2) become the received signals for the
conventional Alamouti-STBC scheme. For each pair of
NPSK symbols, (x1p , x

2
p ), x

k
p ∈ χp, k ∈ [1 : 2] the combined

signals at the receiver may be formulated as follows:

z2k−1
= [(h2k−1)Hy2k−1

+ (y2k )H h̃
2k
], (10.1)

z2k = [(h̃
2k
)Hy2k−1

− (y2k )Hh2k−1]. (10.2)

Equivalently, (10.1) and (10.2) may be rewritten as:

z2k−1
= βkx2k−1

+ v2k−1, (11.1)

z2k = βkx2k + v2k , (11.2)

where:

βk = ∥h2k−1
∥
2
F + ∥h̃

2k
∥
2
F .

v2k−1
= (h2k−1)Hw2k−1

+ (w2k )H h̃
2k

;

v2k = (h̃
2k
)Hw2k−1

− (w2k )Hh2k−1.

Finally, the estimated symbol is given by:

x̂ l,p = D
(
zl

βk

)
, (12)

where l ∈ [1 : 4].
Note (12) denotes that the estimation of the transmitted

symbol x l is x̂ l,p given a pair of phase components (x1p , x
2
p ).

Step 2: Jointly detecting the transmitted signals x l and
(x1p , x

2
p ).

For convenience of discussion, we define the detected
signal vector as x̂p1 = (x̂1,p, x̂2,p, x̂3,p, x̂4,p) for given xp2 =
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(x1p , x
2
p ). Finally, the estimation of the transmitted signals x l

and (x1p , x
2
p ) is given by:

[x̂p1, x̂
p
2] = min

x1p ,x2p∈χp

4∑
k=1

EDk , (13)

where:

ED1 = ∥y1 − x̂1,ph1 − x1p x̂
2,ph2∥2F ;

ED2 = ∥y2 +

(
x̂2,p

)∗

h1 − x1p
(
x̂1,p

)∗

h2∥2F ;

ED3 = ∥y3 − x̂3,ph3 − x2p x̂
4,ph4∥2F ;

ED4 = ∥y4 +

(
x̂4,p

)∗

h3 − x2p
(
x̂3,p

)∗

h4∥2F .

B. THE L-ML DETECTION FOR N-STBC WITH GCs
Based on the detection in subsection A the L-ML detection
for N -STBC with GCs includes three steps:
Step 1:Given a pair of coupled phase components (x1p , x

2
p )

detecting the transmitted GCs, where x1p , x
2
p ∈ χp.

Detecting the transmitted GCs is the same as detecting the
transmitted symbols in the N -STBC without GCs. Similar to
(11.1) and (11.2), we have:

r2k−1
g = x2k−1

g + v2k−1/βk , (14.1)

r2kg = x2kg + v2k/βk . (14.2)

Step 2: Estimating the transmitted symbols.
Based on xkg =

1
√
5
α(x2k−1

+ xkp x
2kθ ) and xk+2

g =

1
√
5
ᾱ(x2k−1

+xkp x
2k θ̄ ), in (7.1) and (7.2) we can easily obtain:

r2k−1
x =

√
5

µ

(
θrk+2
g

ᾱ
−

θ̄rkg
α

)
, (15.1)

r2kx =

(
xkp
)∗

√
5

µ

(
rkg
α

−
rk+2
g

ᾱ

)
, (15.2)

where:µ = θ − θ̄ .
Finally, the estimated symbol is given by:

x̂ l,p = D
(
r lx
)

, (16)

where l ∈ [1 : 4].
Step 3: Jointly detecting the transmitted signals x l and

(x1p , x
2
p ).

This step is very similar to Step 2 in N -STBC without
GCs. From (16) we obtain the estimated x̂ l,p. Then we further
have estimated GCs x̂k,pg =

1
√
5
α(x̂2k−1,p

+ xkp x̂
2k,pθ ) and

x̂k+2,p
g =

1
√
5
ᾱ(x̂2k−1,p

+xkp x̂
2k,pθ̄ ). Finally, the estimation of

the transmitted signals x l and (x1p , x
2
p ) is the same as (13) by

replacing x̂ l,p with x̂ l,pg .

C. SIGNAL DETECTION SUBSET BASED ML DETECTION
(SDS-ML) FOR N-STBC WITH GCs
The detection complexity of the above simple L-ML
detection for N -STBC with GCs is very low. However,

the above simple signal detection cannot achieve the ML
performance at high SNRs because (15.1) and (15.2) convert
joint detection into individual detection.

SDS-ML detection scheme has been proposed to improve
the error performance of the SIMO system with GCs [14].
In this subsection, we also use the SDS-ML detection scheme
to improve error performance of the N -STBC with GCs at
high SNRs. The only difference between the simple L-ML
detection and the SDS-ML detection is that the SDS-ML
detection will estimate x̂2k−1,p and x̂2k,p more accurately
in Step 2 of the previous subsection. In this subsection,
we mainly focus on the estimation of x̂2k−1,p and x̂2k,p using
the SDS-ML detection.

The SDS-ML detection is based on the signal detection
subset, which is defined as Definition 1.
Definition 1: Let X =

(
x1, x2

)
be a pair of MQAM

symbols and Xg =
(
x1g , x

2
g
)
be a pair of GCs. Xg is

constructed by X . A signal detection subset of Xg is defined

as χ (Xg, δ) =

{
(x1j , x

2
j ),
∏2

i=1 |x ij − x ig|
2

≤ δ, j ∈ [1 : M2]
}
,

where δ > 0.
Compared to the simple L-ML detection in previous

subsection, the SDS-ML detection estimates the transmitted
symbols more accurately in Step 2.

Based on the estimation of x̂ l,p from (16), we can easily
obtain x̂kg and x̂k+2

g for each pair of symbols (x̂2k−1,p, x̂2k,p),
further obtain the detection subset χ

(
X̂q, δx̂

)
.

For further detection, (14.1) and (14.2) may be rewritten
as:

z2k−1
g = βkx2k−1

g + v2k−1, (17.1)

z2kg = βkx2kg + v2k . (17.2)

Finally, the SDS-ML detection is given by

[x̂1g , x̂
3
g ] = argmin

x̂2k−1
g ∈χ (X̂g,δ)

l∈[1:2]

2∑
k=1

|z2k−1
g − βk x̂2k−1

g |
2, (18.1)

[x̂2g , x̂
4
g ] = argmin

x̂2kg ∈χ(X̂g,δ)
l∈[1:2]

2∑
k=1

|z2kg − βk x̂2kg |
2. (18.2)

Based on x̂kg and x̂k+2
g obtained from (18.1) and (18.2),

x̂2k−1,p and x̂2k,p will be estimated more accurately.

V. ERROR PERFORMANCE ANALYSIS
In this section, we will derive the error probabilities of the
Alamouti-STBC with and without GCs, then prove that the
error probabilities of the Alamouti-STBC with and without
GCs are the lower error probability bounds of the N -
Alamouti-STBC with and without GCs, respectively.

A. ERROR PERFORMANCE OF THE ALAMOUTI-STBC
The N -STBC becomes the conventional Alamouti-STBC
when xkp = 1. Then the equivalently received signal in (11.1)
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becomes:

zk = (∥h1∥2F + ∥h2∥2F )x
k

+ vk , k ∈ [1 : 2], (19)

where:

v1 = (h1)Hw1
+ (w2)Hh2;

v2 = (h2)Hw1
− (w2)Hh1.

As discussed in Section III, E{|x i|2} = ε in (19) and the
element of wi, i ∈ [1 : 2] is distributed as CN (0, 2ε

ρ
). (19)

is equivalent to a SIMO system with 2Nr receive antennas
and ρ

2 transmit power, which is well known in the literature.
Based on the exact symbol error probability of MQAM in

Equ. (8.10) in [18], and the approximated expression of the
Gaussian Q-function using the trapezoidal rule, the average
bit error probability (ABEP) of the above MQAM SIMO
system with 2Nr receive antennas and

ρ
2 transmit power may

be derived as:

pe =
a

n log2M

[
B1 − B2 + B3 + B4

]
, (20)

where:

B1 =
1
2

(
2

2 + bγ̄

)2Nr
;

B2 =

(a
2

)
×

(
1

1 + bγ̄

)2Nr
;

B3 = (1 − a)
∑n−1

i=1

(
ui

ui + γ̄

)2Nr
;

B4 =

∑2n−1

i=n

(
ui

ui + bγ̄

)2Nr
.

In (20), n ≥ 6 is the number of summations for convergence,
γ̄ =

ρ
2ε , a = 1 −

1
√
M
, b =

3
M−1 , and ui = 2 sin2 ( iπ4n ).

B. ERROR PERFORMANCE OF THE ALAMOUTI-STBC WITH
GCs
The N -STBC with GCs becomes the conventional Alamouti-
STBCwith GCswhen xkp = 1. Then the equivalently received
signals in (14.1) and (14.2) become:

z2k−1
g = βkr2k−1

g = βkx2k−1
g + v2k−1, (21.1)

z2kg = βkr2kg = βkx2kg + v2k , (21.2)

where βk = ∥h2k−1
∥
2
F + ∥h2k∥2F .

Furthermore, as an example, the equivalently received
signals for detecting a pair of GCs (x1g , x

3
g ) become:

z1g = β1x1g + v1, (22.1)

z3g = β2x3g + v3. (22.2)

From the equivalently received signals, it is easily seen
that the orthogonality of the Alamouti-STBC converts the
MIMO system into SIMO systems. Since x1g =

1
√
5
α(x1 +

x2θ ) and x3g =
1

√
5
ᾱ(x1 + x2θ̄ ), both x1g and x3g convey

the same information. Thus we can regard both x1g and x3g

are transmitted in non-identical fading channels in a SIMO
system. The error performance of the SIMO systemwith GCs
has been derived in [14]. The ABEP of the SIMO systemwith
GCs derived in (5) of [14] is given by:

Pe(ρ) ≤
1

2M2r

M2∑
g=1

M2∑
ĝ ̸=g

N (g, ĝ)P
(
Xg → X ĝ

)
, (23)

where r = log2M . Xg =
(
x1g x

3
g
)
and X ĝ =

(
x1ĝ x

3
ĝ

)
. N (g, ĝ)

is the number of bit errors for the associated pairwise error
probability (PEP) event. P

(
Xg → X ĝ

)
is the PEP that the

transmitted GC Xg is detected as X ĝ at the receiver. In [14],
the PEP of the SIMO with GCs is given by:

P
(
Xq → X q̂

)
=

1
4n

[
A1 + A2

]
, (24)

where:

A1 =
1
2

∏2

i=1

(
1 +

ρ

4ε
|d ix |

2
)−Nr

;

A2 =

∑n−1

k=1

∏2

i=1

(
1 +

ρ

4ε
|d ix |

2 1
uk

)−Nr
.

In the derivation of (24), the trapezoidal approximation of the
Gaussian Q-function is applied for integration. n in (24) is
the same as the meaning of n in (20). uk = sin2

( kπ
2n

)
and

d ix = x ip − x ip̂, i ∈ [1 : 2].
The average ABEP for the Alamouti-STBC with GCs can

be easily derived by replacing Nr with 2Nr and replacing ρ

with ρ
2 in (24).

C. LOWER ERROR PROBABILITY BOUND OF THE N-STBC
WITHOUT GCs
In this subsection, we derive the lower error probability bound
of the N -STBC without GCs.

In the N -STBC without GCs, let xkp = ejθk in (6.1) and
(6.2). Then we have:

y2k−1
= x2k−1h2k−1

+ ejθk x2kh2k + w2k−1, (25.1)

y2k = −(x2k )∗h2k−1
+ ejθk (x2k−1)∗h2k + w2k . (25.2)

We can treat ejθk as an interference. Let ejθk x2k = x2k+δ1 and
ejθk (x2k−1)∗ = (x2k−1)∗+δ2. Then (25.1) and (25.2) become:

y2k−1
= x2k−1h2k−1

+ x2kh2k + w̃2k−1, (26.1)

y2k = −(x2k )∗h2k−1
+ (x2k−1)∗h2k + w̃2k , (26.2)

where:

w̃2k−1
= δ1h2k + w2k−1

;

w̃2k
= δ2h2k + w2k .

It is assumed that the CSI is known at the receiver. Since both
δ1 and δ2 are RVs, both δ1h2k and δ2h2k are also RVs, which
are regarded as extra noises. So based on (26.1) and (26.2),
the error probability of the conventional Alamouti scheme is
the lower error probability bound of N -STBC without GCs.

VOLUME 11, 2023 129959



H. Xu et al.: N-Ary Alamouti Space-Time Block Coding With and Without Golden Codewords

Similarly, we can also easily derive that the error
probability of the Alamouti scheme with GCs is the lower
error probability bound of the N -STBC with GCs.

VI. NUMERICAL RESULTS
In this section, we present the simulation results for the
proposed N -STBC with and without GCs. In the simulations,
it is assumed that the CSI is fully known at the receiver.
It is also assumed that the channel fading coefficients hi, i ∈

[1 : 4] with AWGN are the same as discussed in Section III.
The constellation mappers for STLD with 16PSK is given
in TABLE 1. The constellation mappers for STLD with
other MPSK are given in Appendix A. In the SDS-ML
detection, δ is set to be 16. For comparison, we also calculate
the theoretical results of (20) and (23) and validate these
theoretical results as lower error probability bounds for N -
STBCwith andwithout GCs by simulations. In all figures, the
legends 2×Nr MQAM N -STBC L-ML and 2×Nr MQAM
STBC bound, denote the simulated bit error rate (BER) using
L-ML detection and the lower error probability bound for
2×Nr N -STBCwithout GCs. 1-STBC denotes the Alamouti-
STBC. The legends, 2×Nr MGQAMN -STBC L-ML, 2×Nr
MGQAM N -STBC SDS-ML and 2 × Nr MGQAM-STBC
bound, denote the simulated BER using L-ML, simulated
BER using SDS-ML and the lower error probability bound
for 2 × Nr N -STBC with GCs.

A. LOWER ERROR PROBABILITY BOUND FOR N-STBC
WITH AND WITHOUT GCs
In this subsection, we simulated 2 × 2 16QAM and 64QAM
N -STBC with and without GCs. The simulated BERs and the
theoretical bounds of (20) and (23) are shown in Figs. 1 and 2.
From Fig. 1 it is observed that the lower error probability
bounds well predict the BER at high SNRs for both 16QAM
and 64QAM for 16-STBC without GCs. From Fig. 2 it is
observed that the lower error probability bounds well predict
the BER at high SNRs for both 16GQAM for 8-STBC and
64GQAM for 16-STBC with GCs.

FIGURE 1. BER and bound for 2 × 2 16QAM and 64QAM 16-STBC
without GCs.

FIGURE 2. BER and bound for 2 × 2 16QAM 8-STBC and 64QAM 16-STBC
with GCs.

FIGURE 3. BER comparison between L-ML and SDS-ML 2 × 2 and 2 × 4
16QAM 16-STBC with GCs.

B. L-ML VS SDS-ML FOR N-STBC WITH GCs
In this subsection, we compared the error performance
between the L-ML and the SDS-ML for N -STBC with GCs.
The simulated BERs are shown in Figs. 3 and 4 for 2 × 2,
2 × 4 8-STBC and 16-STBC with GCs, respectively.

From Figs. 3 and 4, it is observed that 16-STBC with
GCs using L-ML improved error performance compared to
16-STBC without GCs. Similarly it is also observed that
16-STBC with GCs using SDS-ML improved error per-
formance compared to 16-STBC with GCs using L-ML.
However, as the number of receive antennas increases, the
SNR gain achieved by the SDS-ML is becoming smaller
compared to the L-ML.

C. NPSK VS THE NUMBER OF RECEIVE ANTENNAS
In the proposed N -STBC with and without GCs, the number
of receive antennas Nr determines the PSK modulation
order N . In this subsection, we discuss how Nr affects PSK
modulation order N . We only simulated 2 × 2 and 2 × 4
16QAMN -STBCwith and without GCs. The simulated BER
results are shown in Figs. 5 and 6. From Fig. 5 it is observed
that 4-STBC achieves the error performance of 1-STBC for
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FIGURE 4. BER comparison between L-ML and SDS-ML 2 × 2 and 2 × 4
64QAM 16-STBC with GCs.

FIGURE 5. NPSK vs Nr for 16QAM N-STBC without GCs.

FIGURE 6. NPSK vs Nr for 16QAM N-STBC with GCs.

2× 2 STBC without GCs, while 16-STBC achieves the error
performance of 1-STBC for 2×4 STBCwithout GCs. Similar
observation is found in Fig. 6 for N -STBC with GCs. So the
value of N increases as Nr increases to achieve the error
performance of 1-STBC with and without GCs.

FIGURE 7. BER comparison for 2 × 2 16QAM and 64QAM 16-STBC with
and without GCs.

FIGURE 8. BER comparison for 2 × 4 16QAM and 64QAM 16-STBC with
and without GCs.

D. THE N-STBC WITH GCS VS THE N-STBC WITHOUT GCs
In this subsection, we compare the error performance of
the N -STBC systems between with and without GCs. The
simulated BERs for 2 × 2 and 2 × 4 16QAM and 64QAM
16-STBC with and without GCs are shown in Figs. 7 and 8,
respectively. From Figs. 7 and 8 it is observed that
16-STBC with GCs outperforms 16-STBC without GCs at
least 0.8 dB and 1.5 dB for 16QAM and 64QAM at the
BER of 2 × 10−5. The SNR gain achieved by the N -STBC
with GCs increases as M increases. This is because
N -STBC with GCs achieves diversity order 4Nr , while
N -STBC without GCs only achieves diversity order 2Nr .

VII. CONCLUSION
In this paper, we proposed a novel N -STBC technique to
convey information in MIMO systems. In the proposed
N -STBC technique, the extra information is conveyed by
one channel’s phase component. The N -STBC with GCs is
further proposed to improve error performance compared to
the N -STBC without GCs at high SNRs. We also discussed
the L-ML detection in the N -STBC with GCs. Moreover,
we discussed both L-ML and SDS-ML for the N -STBC
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without GCs. We also derived the lower error probability
bounds of the N -STBC with and without GCs. Finally, the
simulation results demonstrate that the proposed N -STBC
with and without GCs almost maintain the error performance
of 1-STBC with and without GCs at high SNRs.

APPENDIX A

TABLE 2. Constellation mappers for 8PSK.

TABLE 3. Constellation mappers for 32PSK.
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