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ABSTRACT Proportional-Integral-Derivative (PID) is a simple and intuitive feedback-based control
mechanism being useful to track set points and to reject disturbances. A key question in gradient-free
optimization is to ascertain whether the class of optimization algorithms based on the difference of
vectors generalize reasonably well to tackle a large class of PID control problems. For generalization
and practical purposes, it would be desirable to render algorithms being able to tune PID controllers
over a diverse and large set of control problems/tasks with minimal human intervention (self-adaptation
features), and under tight computational budgets. In this paper, aiming to fill the above-mentioned
gap, we propose and investigate the effectiveness of a new class of algorithm based on the difference
of vectors and self-adaptation mechanisms for PID tuning. As such, we introduce a new class of
Differential Evolution with success-based Particle Adaptations (DEPA), which unifies the principles
of difference of vectors, particle schemes and trial/parameter adaptation through archive (memory)
mechanisms. Our computational simulations using a large/relevant set of 25 control problem instances
(tracking of linear, nonlinear, continuous, and discontinuous trajectories in motor position control,
motor velocity control, magnetic levitation, inverted pendulum, crane stabilization), and the comparisons
with a large set of closely related optimization algorithms, and their extended adaptive variants (23
optimization algorithms in total) has shown the outperforming benefits of the proposed approach in
convergence performance under tight function evaluation budgets (1000 function evaluations). Also, the
experiments on a real-world inverted pendulum device show the potential for transferability of the learned
gains to unseen situations during training. Furthermore, we evaluated the algorithmic extension and
the generalization towards diverse fitness landscapes in the CEC 2017 benchmark suite, showing the
attractive/outperforming performance overall problem instances. In particular, the proposed framework
performed better in 558 control instances when using ISE as a performance metric, and in 358 control
instances when using IAE, ITAE and ITSE as performance metrics. Also, the algorithmic extension for
general optimization landscapes performed better than the related algorithms in 182, 215 and 235 problem
instances of CEC 2017 benchmark suite for 10, 30 and 50 dimensions, respectively. Our obtained
results have the potential to further advance towards developing efficient and self-adaptive optimization
algorithms based on the difference of vectors, which may find use in a wider set of optimization and
control problems.

INDEX TERMS PID control, PID tuning, differential evolution, motor velocity control, motor position
control, magnetic levitation, inverted pendulum, crane stabilization, optimization.
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I. INTRODUCTION
A. BACKGROUND
Proportional-Integral-Derivative (PID) is a feedback-based
control mechanism useful to stabilize regulated systems [1].
Its ubiquitous use in industrial systems is mainly due to the
simplicity and intuitiveness of its operation through Digital
Control mechanisms and Programmable Logic Controllers
(PLCs) [2]. Also, the reliance on parameters that encode
the proportional nature of the error gap, the accumulation of
error, and the variability of error allow the precise modulation
of logical, digital, and physical systems [3]. PID-based
control is independent of the dynamics of the system, being
attractive to allow the adaptive hybrids seamlessly [4], [5],
[6]. As such, PID is often used in servo control to track a set
point and in regulatory control to reject disturbances.

Ziegler-Nichols (Z-N) [7] and Cohen-Coon [8] are popular
schemes for PID tuning. In Z-N method, the plant is often
modeled as a first-order lag plus delay (FOLPD) system
whose parameters are estimated by a tangent and point, and
PID parameters are derived by formulae. Also, there exist
more than a thousand tuning rules to minimize tailored plant
conditions and control performance criteria [9]. In the context
of optimization, particle filtering improves the computation
complexity [10], constrained optimization enables the inclu-
sion of robustness constraints [11], and the ensembles of
Kalman Filters use fewer particles while allowing a slight
increase in computational time for complex transfer functions
[12]. A comparison of tuning rules for fractional-order PID
control is provided by [13]. Furthermore, derivative-based
and interior-point algorithms such as [14] approach PID
control and parameter tuning by iterative sampling.

B. CHALLENGES
PID parameter optimization (or sometimes referred as
parameter tuning) is key for the effective and the robust
control performance in user-defined tasks in manipulators
[15], magnetic levitation [16], industrial plants [17], higher
order systems [18], and other industrial settings. Nonetheless,
tuning the parameters of PID control systems is challeng-
ing due to the computationally expensive evaluations of
real-world surrogates and the requirement for fast adaptation
to new control tasks [6], [19]. From the viewpoint of desirable
performance in user-defined control tasks, systems governed
by PID controllers are required to undergo several design
cycles to find suitable parameter configurations, as in green-
house climate control, in which the Levenberg-Marquardt
optimization searches for desirable parameters of heating,
ventilation, fogging, and CO2 [20]. It would be desirable to
find relevant and generalizable PID parameters by efficient
and self-adaptive optimization algorithms, regardless of the
dynamics of the controlled system.

C. LITERATURE REVIEW
Generally speaking, the class of gradient-free population-
based optimization heuristics have the potential to find

high-performing PID parameters regardless of the dynamics
of the surrogate model. Several nature-inspired heuristics
for PID parameter optimization have emerged in the field
in recent years. For ease of reference, Table 1 and Table 2
summarize the related works from recent years and the
seminal works from the 90s in the field of PID parameter
tuning and optimization. Table 1 and Table 2 describe the
references, ordered by year, and both the kind of optimization
algorithms and the control problem tackled in each study. The
acronyms denoting the algorithms are described in appendix
A. Here, for instance, the seminal works in the 90s related to
PID tuning used Genetic Algorithms (GA), such as in [21]
and [22], to tackle nonlinearities in industrial practice. Since
then, several algorithms have been studied/proposed, among
which Particle Swarm Optimization (PSO) and Differential
Evolution (DE) schemes have received systematic attention
from the community. For instance, within the class of swarm-
inspired algorithm, [23] used PSO for PID optimization in
hypersonic vehicle control, [24] used Quantitative Feedback
Theory (QFT) and PSO for a DC-DC converter, [25]
used Kriging surrogates and PSO for fractional order
PID in a production-inventory control system, [26] used
PSO in magnetic-levitation control, [27] approached the
electro-hydraulic servo control system, [28] combined GA
and PSO for Gaussian adaptive PID control of a DC-DC
converter, [29] modified the inertia weight of PSO as a
piecewise nonlinear function to consider the effects of PID
parameters on control response, [30] used a fractional order
PSO in which the velocity term implements a non-integer
order equation to smooth the transition and exploration of the
search space.

Among the tackled control problems in Table 1-2, the
voltage regulation, the position/velocity control in motors
and machines have received attention as well. For instance,
the works in [5], [29], [32], [51], [60], [70], and [77]
approached the voltage regulation control problem, and the
works in [31], [36], [54], and [68] tackled the motor velocity
control problem. Most of the above-mentioned works tackled
the PID tuning problem by a single-objective optimization,
whereas a few works such as [35], [76], [80], and [86]
used multi-objective approaches, such as [76] which used
a multi-objective state transition algorithm for PID-based
goethite process control.

Furthermore, since heuristics use distinct forms of stochas-
tic sampling of the search space, it has been often a desirable
practice to compare several optimization heuristics to address
the performance of optimized PID controllers. By observing
at the algorithms in Table 1 and Table 2, [70] and [87]
studied the largest number of heuristics: [87] used eight DE
mutation schemes within the context of a parallel robot, and
[70] used eight nature-inspired algorithms within the context
of automatic voltage regulation. The particular attention in
transfer functions involving the voltage regulation control
problems has enabled the practice of re-using optimized
parameters and ease the task of comparing the performance
of several heuristics, such as in [51], [60], [70], and [77].
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TABLE 1. Recent works on PID parameter optimization (part 1).
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TABLE 2. Recent works on PID parameter optimization (part 2).
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Also, since nature-inspired heuristics are prone to stagnate
in local optima regions of the search space, it has been often
a desirable practice to evaluate the performance of heuristics
over distinct control instances. A control instance implies
the task of tracking a user-defined trajectory. Among the
listed works in Table 1-2, [85] and [64] studied the largest
number of control instances: whereas [85] evaluated two DE
schemes in the context of eight control instances of robot
position control (SCARA), [64] used a PSO-based heuristic
in eight control instances of a canonical tank system. Other
works evaluated six control instances in pressure level (tank)
[89], temperature control (cooling coil) [34], smoke control
in tunnel fires [42], bulk resumption (ore mining) [62], and
power allocation [69].
Furthermore, natural and biological processes were used

as referents to devise new heuristics for PID tuning. For
instance, [88] mimicked the behaviour of microbial evolution
for PID tuning in line-tracing robot context, [66] used a theory
of the evolution of the universe to render the Bing Bang-Big
Crunch (BBBC) algorithm for spatial inverted pendulum,
[84] used the model of social hierarchy and hunting dynamics
of grey wolves to render the Grey Wolf Optimization (GWO)
for tuning a Takagi-Sugeno-Kang PI-Fuzzy control, [55]
used fractional order fish migration for PID parameter
optimization of transfer functions, [56] proposed a modified
monkey-multiagent deep reinforcement learning for PID
tuning in quadrotor position control, [68] used the model
of force interactions in atoms through the Lennard-Jones
potential to render the atom search optimization (ASO) for
fractional-order PID tuning in motor velocity control.

Also, hybrids with Neural Networks and Fuzzy Logic
for PID tuning have been proposed. For instance, [47] used
a deep reinforcement learning (D3QN) for a robot driver
system, [48] used artificial hydrocarbon network trained with
backpropagation for a two-tank system, [93], [94] proposed
the hybrid with neural networks for inverted pendulum,
and [85] used a three-layer neural network optimized by
DE. Reference [95] used Fuzzy-PID in formation control
and Takagi-Sugeno Fuzzy inference, [44] studied the hybrid
between Fuzzy-PID, wolf colony algorithm and cuckoo
search for smart grid, [45] tackled the Fuzzy-PID control with
online optimization by DE for the semi-active suspension
system, [46] used the hybrid between Fuzzy Logic, PID
control and PSO-based parameter optimization for pH control
in water and fertilizer, [63] used a hybrid between a swarm
learning process (SLP) and Q-learning for weight updating
SLP through a deterministic rule, [64] used a single variable
for online robustness for a PID-control of a canonical tank
system.

D. SCOPES
The optimization schemes based on the difference of
vectors by DE have received systematic and consistent
attention in the community. Solutions sampled from ref-
erent vectors in the population/archive are often useful

FIGURE 1. Number of studied heuristics and control instances in the
recent related works. Spheres with blue (red) color denote works in
recent (early) years.

to render attractive directions of the basins of the search
landscape [96].

This paper focuses in PID tuning/optimization based on
DE for a class of control problems related to DC motor
control, DC motor velocity control, magnetic levitation,
inverted pendulum, and crane stabilization. Since the early
works on control of transfer functions by a DE/RAND/1
mutation [92], several control instances and improved heuris-
tics have been explored. For instance, [90] decoupled tackled
the multivariable control in a context of distillation column
model in which the scaling factor of a DE algorithm was
normalized by Zaslavsky [97] mapping function. Reference
[49] showed that DE algorithms attained the lowest positional
error for PID-based visual control laws in robot manipulator.
Reference [87] used dynamic constraints in DE within
the context of control of a parallel robot, [37] used the
strategy-adaptation DE (SADE) for temperature control of
a parabolic trough, [45] used DE with Fuzzy Logic for
PID tuning of a semi-active suspension system (quarter
car), [35] used the many-objective DE for level temperature
control of a rector model, [81] proposed the distance-based
diversity enhancing mutation in DE for PID-based trajectory
tracking of a four-bar linkage mechanism, [80] used the
multi-objective differential evolution with spherical pruning
for PID-based gasifier control (pressure, temperature, bed
mass and calorific value).

E. MOTIVATION
A key aspect in nature-inspired optimization is to ascertain
whether the class of optimization algorithms based on the
difference of vectors generalize well to tackle a large class of
PID-based control problems. Although the rigorous studies
using synthetic mathematical functions have attracted the
attention of the community [98], [99], [100], [101], [102],
[103], [104], [105], [106], [107], the study of the convergence
performance in relevant and diverse control problems/tasks
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has remained elusive. The related works mentioned in
Table 1 and Table 2 have so far explored the performance
of a few algorithms over a selected number of control
problems, most of which are in the form of transfer functions.
To show the contemporary status of studies in PID tuning
by nature-inspired optimization algorithms, Fig. 1 shows the
number of studied optimization algorithms and the number
of tackled control problem scenarios. For instance, [91]
studied the performance of 4 algorithms (GA, EP, PSO,
and ACO) for PID control tuning of 3 transfer functions;
and since then, both the number of studied gradient-free
optimization algorithms and control problem instances has
remained relatively low. However, for generalization and
practical purposes, it would be desirable to design algorithms
that are able to tune PID controllers over a diverse set of
control problems with minimal human intervention (self-
adaptation features), and under tight computational budgets.

F. CONTRIBUTIONS
In this paper, aiming to fill the above-mentioned gap,
we propose and investigate the effectiveness of a new
class of algorithm based on the difference of vectors
and self-adaptation mechanisms for PID tuning. Therefore,
to investigate the above-mentioned line of inquiry, our
focus/contribution is as follows:

• We tackle PID tuning problems by a new class
of Differential Evolution with success-based Particle
Adaptations (DEPA), which integrates principles of
difference of vectors, particle schemes and adaptation
mechanisms through archive (memory) means to enable
the suitable adjustment of potential solution vectors and
sampling parameters.

• We enlarge the scope of evaluation/study of the
related/recent works, as shown by Fig. 1, through
computational simulations over a large set of control
problems (25 control instances considering the tracking
of linear, nonlinear, continuous, and discontinuous
trajectories in DC motor position control, DC motor
velocity control, magnetic levitation, inverted pendu-
lum, crane stabilization), compare the convergence per-
formance with a large set of closely related optimization
algorithms, and develop the extended adaptive variants
of the closely related works (23 optimization algorithms
were evaluated in total based on the below mentioned
algorithms).
– DERAND: DE/rand/1/bin Strategy [96],
– DEBEST: DE/best/1/bin Strategy [96],
– DESPS: DE with Speciation Strategy [104],
– JADE: Adaptive DE with External Archive [108],
– SHADE: Success-History based Adaptive DE [109],
– RBDE: Rank-based Differential Evolution [110],
– DEGL: DE with Local and Global
Neighborhoods [111],

– DESIM: DE with Similarity Based Mutation [112],
– DCMAEA: Differential CMAE [113],

FIGURE 2. Basic concept of PID.

– OBDE: Opposition Based DE [114],
– PSO: Particle Swarm Optimization [115],

• Our results show (1) the competitive/outperforming
convergence performance of the proposed algorithm
under tight function evaluation budgets, and (2) the fea-
sibility to attain reasonable control performances over
25 control instances considering the tracking of linear,
nonlinear, continuous, and discontinuous trajectories in
DC motor position control, DC motor velocity control,
magnetic levitation, inverted pendulum, crane stabiliza-
tion. Example real-world experiments on an inverted
pendulum device show the potential for transferability
of the learned gains to unseen environments.

• We evaluated the algorithmic extension/generalization
towards further optimization domains in the CEC
2017 benchmark suite, which considers single-objective
optimization problems with unimodality, multimodal-
ity, hybrid functions and compositions. Computational
experiments show the attractive/outperforming perfor-
mance overall problem instances.

G. ORGANIZATION
The rest of the paper is organized as follows:

• section II briefly introduces PID and the corresponding
fitness functions,

• section III introduces the new class of Differential Evo-
lution with success-based Particle Adaptations (DEPA),

• section IV describes and discusses the computational
simulations and the example experiments on hardware,

• section V describes the further extensions towards
further optimization problems, and

• section VI concludes the paper.

II. PID CONTROL AND FITNESS FUNCTION
This section briefly describes the basic concept of PID control
and the corresponding (fitness) performance functions.

PID control is often used to track a user-defined
set point/trajectory profile of actuators, machines and
feedback-based systems in general. Fig. 2 shows the basic
idea of the key elements in a PID-based control system,
in which the system to be controlled is modeled by the
plant, the user-defined profile for the plant is encoded by ys,
observations from the plant are encoded by y. The overall goal
is to render control policies u to render desirable performance
in terms of the error term e.
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A PID control law in continuous form is expressed by

u(t ) = kpe(t )+ ki

∫ t

0
e(τ )dτ + kd

de(t )
dt

, (1)

e(t ) = ys(t )− y(t ), (2)

where t denotes the simulation/execution time bounded by
[0,Ts] for upper bound on modeling/execution time Ts,
u(t ) is the control signal provided to the plant, kp, ki, kd
are coefficients (gains) for the proportional, integral and
derivative terms of (1), ys(t ) is the set point value, y(t ) is
the measurement from the plant, and e(t ) describes the error
between the set point and the measured value. PID gains are
often encoded by a vector

x= [kp ki kd ]. (3)

The (fitness) performance function of a PID-based control
system is often measured with the following performance
metrics

IAE(x) =

∫ Ts

0
|e(t )|dt , (4)

ITAE(x) =

∫ Ts

0
t |e(t )|dt , (5)

ITSE(x) =

∫ Ts

0
te(t )2dt , (6)

ISE(x) =

∫ Ts

0
e(t )2dt , (7)

IAE denotes the integral of the absolute of error, ITAE
denotes the integral of the time multiplied absolute error,
ITSE denotes the integral of the timemultiplied squared error,
and ISE denotes the integral of the squared error. In this paper,
we use the above-mentioned as fitness functions.

III. DIFFERENTIAL EVOLUTION WITH SUCCESS-BASED
PARTICLE ADAPTATIONS (DEPA)
Having described the basic concept of PID, this section
introduces the key concepts behind the proposed new
class of Differential Evolution with success-based Particle
Adaptations (DEPA).

The idea of using difference of vectors [96] and particle
schemes [115] to generate solutions by sampling through a
population of individuals has triggered new forms of selection
and self-adaptation in gradient-free and nature-inspired
optimization algorithms. This paper unifies the principles
of difference of vectors, particle schemes and adaptation
mechanisms into a general and integrated form, and presents
new sampling schemes for gradient-free population-based
optimization. We extend the related literature by integrating
adaptation mechanisms through memory schemes to enable
the tracking of both successful/potential solution vectors
and sampling parameters. In a nutshell, solution vectors xi
are generated by iterative sampling based on the following

equations:

xi,g+1 =

{
ui,g, if f (ui,g) < f (xi,g)
xi,g, otherwise

(8)

ui,g = xri,g+ v∗i,g (9)

v∗i,g = ωvi,g+Fi(xpbest,g−xri,g)r1 +Gi(xgbest,g−xri,g)r2
(10)

vi,g+1 =

{
v∗i,g, if f (ui,g) < f (xi,g)
vi,g, otherwise

(11)

where xi,g denotes the i-th individual/solution vector in
the g-th generation/iteration; and f (xi,g) denotes the fitness
function of the i-th individual/solution. Here, solutions are
elements of a population set xi ∈ P , i = 1,2, . . . ,N , with
N = |P |. For ease of reference, and along with the general
notations of DE [96] and PSO [115], ui,g is a trial vector; vi,g
is a velocity vector associated to the i-th individual; v∗i,g is
a trial velocity vector; ω is a smoothing coefficient on the
velocity vector; Fi, Gi are scaling factors associated with
the i-th individual; xpbest,g is the best solution of the i-th
individual up to generation g; xgbest,g is the best individual
overall the population P up to generation g; xri,g is the
referential vector related to the i-th individual; and r1, r2 are
random numbers with uniform distribution U [0,1]. In the
above formulation, individuals xi,g from the population P
and their respective velocities vi,g are initialized randomly;
and the reference vector xri,g is sampled/chosen uniformly
randomly either from the population P or from an archive
(memory) A , the latter of which serves the role of providing
a diversification mechanism by storing potential solution
vectors from the search space in case detrimental mutations
occur [104], as follows:

xri,g ∈R

{
P , if qi < Q
A , otherwise

(12)

where qi is a counter of unsuccessful trials and Q is a
user-defined threshold. The selection mechanism in (8) is
successful whenever the trial solution vector ui,g is better than
the current solution xi,g, thus f (ui,g) < f (xi,g). As such, after
initializing the archive A with the population P , it is updated
with subsequent successful trial vectors ui,g, as follows

Ag =

{
P , if g= 0
Ag∪{ui,g}, if g> 0 and f (ui,g) < f (xi,g)

(13)

in the above formulation, the size of A is set to a factor of
the population size to prevent the uncontrolled growth of the
archive (memory) A , that is |A| = λ|P | for constant λ, and
newer elements joining A replace older ones to allow tracking
attractive trial vectors in recent/later generations.

Inspired by adaptive parameter adaptation schemes [116],
each individual xi,g at generation/iteration g is associatedwith
scaling factors Fi and Gi, each of which is sampled from the
Cauchy distributions

Fi ∼ Cauchy(M ai
F ,σ 2

F ) (14)

Gi ∼ Cauchy(M bi
G ,σ 2

G) (15)
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where Cauchy(µ,σ 2) denotes the values sampled from a
Cauchy distribution with location parameter µ and scale
parameter σ 2 [108], the parameter M ai

F denotes the ai-th
element of an h-dimensional tuple (memory) MF , and the
positive integers ai, bi is sampled uniformly from the range
[1,h], ai ∼ U [1,h], bi ∼ U [1,h], h = N . When the values
of Fi and Gi are negative, they are regenerated until positive
values are obtained.

The elements of the archives MF , MG are updated by
using the weighted Lehmer mean that considers not only the
potential/useful parameters that led to successful mutations,
but also the contribution to fitness improvements [109].
After a successful selection in (8), when f (ui,g) < f (xi,g)
in (8), the coefficients Fi and Gi associated to the i-th
individual are recorded into corresponding (archive) sets SF
and SG, with |SF | = |SG| = n denoting the number of fitness
improvements through successful mutations/selections; and
at the end of each generation/iteration, the mean values
MF ,MG are updated with the weighted Lehmer mean as
follows

M k
F =

n∑
j=1

wj ·S2F,j

n∑
j=1

wj ·SF,j

, k ∈ [1,h] (16)

M k
G =

n∑
j=1

wj ·S2G,j

n∑
j=1

wj ·SG,j

, k ∈ [1,h] (17)

wj =
△fj
n∑
s=1

△fs

(18)

△fj =
∣∣∣f (ui,g)−f (xi,g)∣∣∣ (19)

where wj is the weight associated to a successful trial vector
ui,g; △fj denotes the j-th improvement of the fitness function
by trial vector ui,g from respect to current solution xi,g;
M j
F , M j

G denote the weighted mean of scaling parameters
Fi,Gi respectively. The key motivation of using two different
archives M j

F , M j
G is to track/log distinct scaling parameters

that lead to successful mutations through best referent
solution vectors xpbest,g and xgbest,g, respectively. The above
update mechanisms imply that the scaling parameters Fi,Gi
are updated considering concomitant normalized improve-
ments during the search procedure. The pseudocode of the
complete DEPA algorithm is outlined in Algorithm 1.
In the flow of the overall algorithm, in every generation,

(1) we compute scaling parameters Fi and Gi associated to
each individual; (2) generate trial vectors accordingly; (3)
perform mutation and selection mechanisms and, whenever
successful mutations occur, we store potential reference vec-
tors and scaling parameters into their corresponding archive

Algorithm 1 DEPA

1 FEs= 0, g= 0, qi = 0, k = 0;
2 Generate a set of N individuals randomly as initial

population set P ;
3 Initialize the archive A from the population set P ;
4 Initialize the tuples M k

F and M k
G;

5 FEs= FEs+N ;
6 while FEs≤MaxFEs do
7 g= g+1;
8 SF = {}, SG = {};
9 for i= 1 to N do
10 Sample ai ∼ U [1,h], bi ∼ U [1,h];
11 Generate Fi and Gi using (14)-(15);
12 end
13 Find out the best individual xgbest,g overall P ;
14 for i= 1 to N do
15 Update the i-th best individual xpbest,g;
16 Generate the trial vector ui,g using (9)-(12);
17 if f (ui,g) < f (xi,g) then
18 xi,g+1 = ui,g, vi,g+1 = v∗i,g;
19 ui,g → A;
20 Delete an element from A if |A| > λ|P |;
21 Fi → SF , Gi → SG;
22 qi = 0;
23 else
24 xi,g+1 = xi,g;
25 vi,g+1 = vi,g;
26 qi = qi+1;
27 end
28 FEs= FEs+1;
29 end
30 if SF ̸= {}∧SG ̸= {} then
31 k = k+1;
32 Update M k

F and M k
G using (16) and (17);

33 Set k = 1 if k > h;
34 end
35 end

(memory) mechanisms; and (4) update the memory archives
considering useful parameters that led to successful fitness
improvements. The procedure is repeated until the maximum
number of fitness evaluations (MaxFEs) is reached. The
complexity is estimated as O(MaxFEs.(n + N (f + D))),
in which O(f ) is the complexity of evaluating the fitness
function and D is the dimensionality of solution vector x.
DEPA unifies the principles of difference of vectors, stochastic
particle schemes and parameter adaptation mechanisms into
an integrated formulation where solutions are rendered
through potential referent vectors, and where memory-based
adaptation enables to track useful parameters that lead to
fitness improvements. Compared to related works in archive-
based self-adaptive DE [104], [108], [109], DEPA extends the
sampling mechanism of new solutions by using the difference
of best vectors and by considering the archive of trial vectors
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that led to successful mutations through Eq. (8) - Eq. (13).
Also, DEPA uses two different archives M j

F ,M j
G to track and

adapt distinct scaling parameters that render successful trial
vectors through best referent solution vectors xpbest,g and
xgbest,g, respectively. Furthermore, compared to successful
parent selection schemes [57], [58], [79], [104],DEPA extends
the adaptation mechanisms through memory schemes to
enable the tracking of successful/potential solution vectors
ui,g as well as velocities v∗i,g and scaling parameters Fi,Gi
through Eq. (11) and Eq. (14) - Eq. (19). In the next section,
we rigorously compare the performance of the proposed
DEPA algorithm to the related works in the context of PID
parameter tuning.

IV. COMPUTATIONAL SIMULATIONS AND EXPERIMENTS
ON HARDWARE
Having described the proposed new class of Differential
Evolution with success-based Particle Adaptations (DEPA),
this section describes the performance evaluations and
benchmarks of DEPA using computational and experimental
studies in a relevant set of control systems and tasks.

Thus, to evaluate the performance of the algorithm in
finding feasible PID gains, we conducted computational
simulations to evaluate the convergence ability of the
algorithms, as well as the control performance. In this
section we first describe the control problems tackled in
this paper, and then describe our obtained results rendered
from computational experiments, and finally present an
example of the performance on hardware to show the control
performance on unseen environments during training.

A. MOTOR POSITION CONTROL
The control of the angle of rotation of a DC motor considers
the RLC circuit model as shown in Fig. 3, as follows

La
d
dt
i(t)+Rai(t)+

1
C

∫
i(t)dt = V (t), (20)

where

• V (t) is the input voltage,
• va(t) is the voltage at both ends in the capacitor,
• Ra is the effective resistance of the combined load,
source and components,

• La is the motor inductance (inductor component), and
• C is the capacitance coefficient.

Considering linear relations

T (t) = kT i(t), (21)

va(t) = kE
dθ

dt
, (22)

• θ is the angle of rotation of the motor,
• T is the motor torque,
• kT is a torque constant,
• kE is the electromotive force constant.

FIGURE 3. DC motor model.

The governing equations of the DC motor system can be
obtained from Newton’s Law and by combining (20)-(22):

LaJ
kT

d3θ
dt

+

(LaDv+RaJ
kT

)d2θ
dt

+

(RaDv

kT
+ kE

)dθ

dt
= V (t),

(23)

• J is the inertia moment, and
• Dv is the mechanical friction (viscous coefficient).
For initial angular position θ0, the motor position control

aims at tracking a user-defined profile θs(t). As such, the
tracking error is defined by

e(t ) = θs(t )− θ (t ), (24)

were the gains of a PID control framework considers

xmp = [kmpp kmpi kmpd ], (25)

B. MOTOR VELOCITY CONTROL
It is possible to obtain the governing equations for motor
velocity from (23) as follows

LaJ
kT

d2ω
dt

+

(LaDv+RaJ
kT

)dω

dt
+

(RaDv

kT
+ kE

)
ω = V (t)

(26)

where ω =
dθ
dt denotes the angular velocity of the motor.

Thus, for initial angular velocity configuration in θ0 and
ω0, the velocity control aims at tracking a user-defined speed
profile ωs(t). Similar to position control, the tracking error is
defined by

e(t ) = ωs(t )−ω(t ), (27)

where the PID gains encoding the proportional, integral and
derivative gains are

xmv = [kmvp kmvi kmvd ], (28)

C. MAGNETIC LEVITATION
Being used in magnet-based trains, fans of desktop comput-
ers, bearings, pumps and turbines, the magnetic levitation
systems are appealing for vibration damping. Generally
speaking, a magnetic levitation system consists of a coil
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FIGURE 4. Magnetic levitation model.

mounted on an actuator applying electrical current to a
metal-based levitating component (e.g. sphere). As such,
considering the downward side as positive displacement as
shown by Fig. 4, the governing equation of a levitating
component is

mr̈ = mg− k
i2

r2
, (29)

• m is the mass of the levitating component,
• k is an electromagnet parameter (coil-dependent),
• i is the inductor current,
• r is the vertical displacement of the levitating component
(spacing between the electromagnet and the levitating
component).

The above ignores non-ideal factors such as hysteresis,
saturation of the core, and eddy currents. Since the current
i is proportional to the control voltage u, it is reasonable to
define the following relationship

i= k1u, (30)

and simplifying terms considering negligible perturbations
around the equilibrium, the dynamics become

r̈ =
−2gi
i0

+
2gx
r0

, (31)

where i0 and r0 denote the equilibrium state and g is the
gravity constant. The control framework considers moving
the levitating component to track a user-defined displacement
trajectory rs(t ); thus the tracking error is defined by

e(t ) = rs(t )− r(t ), (32)

The search space for parameter tuning is defined by a 3-
dimensional tuple encoding proportional-integral-derivative
gains of the gap spacing

xml = [kmlp kmli kmld ], (33)

FIGURE 5. Inverted pendulum model.

D. INVERTED PENDULUM
Used in applications requiring vertical stabilization such
as two-wheeled personal transporters (segway), building
structures, and aircraft landings, the stabilization of a
self-lifting arm attached to a car (cart) as shown by Fig. 5 is
a nonlinear control problem whose governing equations are
often expressed by

(m+M )r̈+bṙ+mLθ̈ cosθ −mLθ̇2 sinθ = f , (34)

(I +mL2)θ̈ −mgL sinθ +mLr̈ cosθ +d θ̇ = 0, (35)

• m is the pole mass,
• M is the car (cart) mass,
• L is the length of the arm,
• g is the gravity constant,
• I is the moment of inertia of the arm,
• b is the friction coefficient of the car,
• d is the damping coefficient of the pendulum,
• f is the dragging force,
• r is the car position,
• θ is the inclination angle of the pendulum arm.

For initial configuration (orientation) of the pendulum arm
at θ0 and the position of the car at r0 = 0, the inverted
pendulum stabilizes the arm at θ = 0 (the vertical position)
and car position at r = 0 by controlling the position of the car
and the arm (by moving the car in the horizontal direction and
rotating the arm). As such, the tracking error is defined by

ec(t ) = rs(t )− r(t )︸ ︷︷ ︸
car

(36)

ea(t ) = θs(t )− θ (t )︸ ︷︷ ︸
arm

. (37)

where ec denotes the error term in the car position, and ea
denotes the error term in the arm angular position; the nature
of the control instance of the inverted pendulum requires that
rs = 0m and θs = 0rad. The control framework using PID
considers combining the control signals from the car and the
arm as follows u(t ) = uc(t )+ ua(t ) where the script uc (ua)
denotes the control signal for the car (arm). The gains are
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FIGURE 6. Crane stabilization model.

encoded by

xc = [kcp k
c
i k

c
d ], (38)

xa = [kap k
a
i k

a
d ] (39)

E. CRANE STABILIZATION
Being used to stabilizemoving loads in construction, logistics
and ship building, the crane stabilization problem is appealing
for ensuring safety in transporting loads attached to a cable
or arm. As such, the stabilization of the crane considers
the control of the car of the inverted pendulum to track a
user-defined profile rs(t) while setting the arm at the fixed
position θ = π , as shown by Fig. 6. The governing equations
of the crane stabilization problem are defined by Eq. (34) -
(35).

For initial configuration at θ0 = π rad and r0 = 0, the
tracking error is defined by the errors from the car and
the arm following (36) and (37), with θs = π rad (vertical
position, pointing downwards). The control framework using
PID considers combining the control signals from the car and
the arm as follows

u(t ) = uc(t )− ua(t ), (40)

where uc (ua) denotes the control signal for the cart (arm).
Aligned with the inverted pendulum problem, a PID-control
for the crane stabilization problem encodes the gains with
(38) - (39).

F. SIMULATION IMPLEMENTATIONS
Having described the models of target systems to be
controlled, this subsection describes the key computational
considerations and parameters to simulate a relevant set of
diverse control profiles/tasks.

The corresponding governing equations of modeled and
controlled systems were evaluated and numerically solved
through Matlab 2021b by using Simulink instances which
correspond to simulation interfaces of existing real-world
systems [117], [118], [119]. The parameter configuration for
all the modeled/controlled systems are described by Table 3.
The motivation behind using the parameter set in Table 3
is due to the reasonable alignment with existing real-world
units of servo motors, magnetic levitation, inverted pendulum
and crane stabilization [117], [118], [119]. Through several

simulation instances, the following solvers rendered feasible
solutions efficiently: the fifth order Dormand-Prince formula
(ode5) for magnetic levitation, inverted pendulum, and crane
model stabilization, and a quasi-constant step size solver
with numerical Jacobian estimations (ode15s) for motor
position and velocity control. The modeling/simulation time
Ts for each controlled system is also shown in Table 3,
with the simulation time step dt = 0.01s. Also, for each
type of system, we used a set of control profiles that
correspond to tasks inspired by real-world phenomena.
As such, we modeled each control profile by mathematical
functions aiming to portray distinct behaviors of the system
that consider linear, nonlinear, continuous, and discontinuous
transitions, as shown by Table 3.

• For DC motor position (velocity) control problems
[117], the set variable is the angular rotation θs (angular
velocity ωs), and five instances model the behavior of θs
(ωs) as a function of time as rendered in Table 3.

• For magnetic levitation [118], the goal is to move the
position r of the ball to reach the nonlinear control
profiles given by instance 1 to instance 5.

• For inverted pendulum [119], the goal is to move the car
in the horizontal direction to reach the angular position
of the pendulum arm at θ = 0rad (vertical position of the
arm, pointing upwards) and car position at r = 0, given
initial conditions on the configuration of the pendulum
arm at θ0 = {0.05, 0.2, 0.35, 0.5, 0.65}rad.

• For crane stabilization [119], the goal is to move the
position r of the car to reach the nonlinear control
profiles through instances 1 to instances 5 while keeping
the angular of the pendulum arm fixed at θs = π .

Each model instance considers five control profiles
(tasks), thus the total number of tackled control instance
problems is 25 (= 5 systems × 5 instances). Furthermore,
the performance/fitness function considers the key control
performance metrics such as IAE, ITAE, ITSE, ISE defined
by (4)-(7), each of which is computed by trapezoidal numer-
ical integration. Models of inverted pendulum and crane
stabilization use a two-error term defined by (36) and (37),
as such, the performance/fitness composes two terms. For
instance, to compute IAE metric for inverted pendulum and
crane stabilization, we compute, and numerically estimate by
trapezoidal integration the composition of the following:

IAE(xc,xa) = IAE(xc)+ IAE(xa).

And to compute ITAE and ITSE metrics for inverted
pendulum and crane stabilization, we compose the following:

ITAE(xc,xa) = ITAE(xc)+ ITAE(xa).

ITSE(xc,xa) = ITSE(xc)+ ITSE(xa).

The composition of other performance/fitness metrics
such as the ones defined in (4)-(7) would follow a similar
procedure.
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TABLE 3. System parameters and control profiles.
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G. BENCHMARK HEURISTICS
Having described the key considerations and parameters to
simulate control profiles/tasks, this subsection describes the
set of DE-based benchmark heuristics used in evaluations and
overall comparisons.

To explore the performance frontiers of gradient-free
metaheuristics and evaluate the ability to tackle compu-
tationally expensive PID-based control problems through
population-based approaches being inherently native to
parallelization, we used the following heuristics:

• DEPA and DEP: the proposed algorithm with and
without parameter adaptation. Whereas DEPA (section
III) implements the adaptation mechanisms (14)-(19),
DEP forgoes such adaptation mechanisms and uses fixed
parameters F,G for all individuals in the population.

• DERAND and DERANDA: DE with DE/rand/1/bin muta-
tion strategy [96], this algorithm is considered highly
exploratory, and implements the random-based differ-
ence of vectors.

• DEBEST and DEBESTA: DE/best/1/bin strategy [96]; due
to using a best reference solution vector, this algorithm is
regarded as having a high degree of exploitation strategy.

• DESPS and DESPSA: DE with successful parent selection
strategy [104]; due to using archive-based adaptation
of reference vectors, this algorithm is known to avoid
stagnation in local optima.

• SHADE: Success-History based adaptive Differential
Evolution [109]; this algorithm uses a success-based
history adaptation of scaling parameters based on
weighted Lehmer mean.

• PSO and PSOA: Particle Swarm Optimization [115]; this
algorithm is used as a closely related work due to the use
of particle schemes.

• RBDE and RBDEA: Rank-based Differential Evolution
[110]; this algorithm uses a adaptive selection pressure
using the Whitley distribution.

• JADE and JADEA: Adaptive Differential Evolution with
External Archive [108]; this algorithm uses an archive-
based success-based history adaptation of scaling
parameters based on weighted arithmetic mean.

• DEGL and DEGLA: DE with Local and Global Neighbor-
hoods [111]; this algorithm uses adaptation mechanism
using best local and global reference vectors, this algo-
rithm is used as referent due to the use of global/local
best.

• DESIM and DESIMA: Differential Evolution with Similar-
ity BasedMutation [112], this algorithm uses adaptation
based on similarity to the best individual in the
population.

• DCMAEA and DCMAEAA: Differential Covariance
Matrix Adaptation Evolutionary Algorithm [113],
this algorithm implements/hybridizes the Covariance
Matrix operators into the DE formulation, showing
a balanced adaptation of explorative and exploitative
behaviors.

• OBDE and OBDEA: Opposition Based Differential Evo-
lution [114], this algorithm implements the opposition
operator in initialization/mutations, having shown the
attractive performance compared to an adaptive DE.

In the above, the ‘‘ A’’ subscript implies that the heuristic
implements the adaptation mechanism based on the weighted
composition of potential parameters that lead to successful
mutations/crossover as well as fitness improvements [109].
The key motivation of the above is to enable fair comparisons
across adaptive mechanisms in PID tuning. DEPA extends
the above-mentioned adaptation principle through (14)-
(19), whereas heuristic SHADE inherently implements such
adaptation scheme, yet using a distinct notion of difference
of vectors. As such, for fair comparisons, we implemented
the adaptation of both scaling parameters Fi and crossover
rate CRi for each individual across all the above-mentioned
DE-based algorithms [96], [104], [108], [110], [111], [112],
[113], [114]. It is noteworthy to mention that JADEA
implements the weighted Lehmer mean that considers the
contributions in fitness improvements, instead of the original
weighted arithmetic mean. Also, since PSO does not use
crossover rate CR [115], PSOA extends the adaptation of
scaling parameters over the personal best (pbest) and the
global best (gbest), akin to the behaviour of Fi and Gi
in (10). By counting both the original and the extended
adaptive versions of each of the above mentioned algorithm,
we evaluated the performance of 23 optimization algorithms
in total, including the proposed algorithms DEPA and DEP.

Furthermore, our motivation in using the above-described
algorithms is to evaluate distinct forms of initialization,
selection pressure, parameter adaptation, archive history,
similarity-based sampling, and the performance frontiers
of different forms of adaptation of exploration-exploitation
mechanisms based on the difference of vectors for PID
controller tuning. In addition to the class of DE variants,
we included PSO as a benchmark due to the fact of using
the concept of particle scheme. Although it is possible to
use local-based search methods and nonlinear constrained
optimization approaches such as Sequential Quadratic Pro-
gramming, their performance is constrained by the ability to
identify an initial guess, the differentiability of the objective
function, the exploitative nature of sampling the search space,
and the computational cost involved in computing gradients
when expensive simulations are involved. The evaluation of
gradient-based and local heuristics is out of the scope of
this paper, whose study and potential hybridization to the
above-mentioned metaheuristics is left for future work in our
agenda.

H. HEURISTICS WITH FIXED PARAMETERS
Having described the overall set of DE-based benchmark
heuristics for overall comparisons in subsection IV-G,
this subsection describes the convergence and control
performance of the subset of optimization algorithms for-
going the parameter adaptation mechanisms, that is the
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original/unmodified versions without the ‘‘ A’’ subscript as
described in section IV-G.

Therefore, in the first set of experiments, we studied
the convergence performance using different population
sizes and a fixed set of scaling and crossover parameters
in DE and PSO heuristics. As such, in this section we
used DEP, which is the heuristic forgoing the parameter
adaptation mechanisms presented in (14)-(19), as described
in section IV-G. For benchmark comparisons, we used the
original algorithms described in section IV-G, that is the
original/unmodified versions without the ‘‘ A’’ subscript as
described in section IV-G. Thus, for parameter configuration,
we used the probability of crossover CR= 0.5, scaling factor
F = 0.7, population sizes N = {10,50,100} for all DE-based
algorithms, which are used in related literature [104]. The
bias term in RBDE ρ = 2, ω = 0.5, Fi = c1 = 0.5 weight
on pbest, and Gi = c2 = 2 as weight on gbest in PSO and
DEP, respectively, and the termination criterion is set to
MaxFEs= 5000 function evaluations. In this section, we used
ISE as the fitness/performance function for all algorithms
and control instances. Also, due to the stochastic nature of
the above-mentioned metaheuristics, 30 independent runs
were evaluated for each algorithm and each configuration.
Other parameters followed the suggested values of the above-
mentioned references. Considering that each algorithm used
three types of population size, the total number of algorithm
configurations is 36, which is the result of 12 algorithms×

3 types of population. The key motivations for using the
above parameters are as follows:

• Crossover probability withCR= 0.5 andω = 0.5 imple-
ment the equal importance and consideration to his-
torical search directions up to the current number of
iterations t .

• Weights c1 = 0.5 and c2 = 2 enable the higher preference
for global best compared to the local best while sampling
the search space; thus PSO andDEP algorithms consider
the higher selective pressure towards the global best.

• Small population sizeN = 10 and number of evaluations
up to 5000 allow evaluating the (frontier) performance of
the gradient-free algorithms to find feasible gains under
relatively tight computational budgets.

• Relatively large population, N = 100, allows to evaluate
the ability of generating close to optimal solutions at
the early stage (due to the stochastic nature of random
initialization).

• Using distinct population sizes, as N = {10,50,100},
allows to evaluate the performance and feasibility of
quick convergence of each mode of sampling and
selection pressure in the above-mentioned algorithms.

To show the convergence ability of the studied algorithms,
Table 4 - Table 8 show the overall convergence performance
of all studied algorithms under distinct population sizes,
evaluated on each control instance. In these figures, the x-axis
denotes the number of function evaluations, and the y-axis
denotes the value of the fitness/performance metric. The

convergence figures in Table 4 - Table 8 represent the mean
over 30 independent runs, and curves denote the evolution of
the fitness/performance of the heuristic as new solutions are
sampled. The legend of the convergence curves is encoded in
the bottom of each figure.
By observing the convergence performance of all algo-

rithms overall control instances, we observe that using
relatively large population size is beneficial in obtaining
reasonable convergence; however, we also observe that
it is possible to obtain competitive fitness/performance
convergence with smaller population sizes, whereby attaining
the desirable/reasonable convergence at 500 - 1500 func-
tion evaluations. For instance, by observing the results in
motor velocity control Table 5, convergence occurs in the
range of 500 - 1500 function evaluations; yet convergence
on instances 1 - 3 becomes more challenging for some
algorithms in smaller population sizes. On the other hand,
by observing the results on inverted pendulum control in
Table 7, we note that convergence occurs in the range of
500 - 4000 function evaluations, yet it is possible to obtain
competitive fitness/performance convergence in the range of
500 - 1500 function evaluations across all control instances.
Although the above-mentioned similar observations can be
obtained on crane stabilization problem, results in Table 8
show the highest variability across convergence of algo-
rithms. This observation pinpoints the difficulty in attaining
convergence in crane stabilization control problems across
independent runs.
In order to compare the performance of the algorithm

across independent runs, we performed statistical compar-
isons using the Wilcoxon rank-sum test at 5% significance
level; as such, by conducting pairwise statistical significance
tests between algorithms, it is straightforward to com-
pare fitness/performance metrics across independent runs
to evaluate when an algorithm is significantly better(+),
equal(=), or worse(−) compared to another algorithm. Since
we evaluate 12 algorithms, we conducted 132 pairwise
comparisons per control instance and population size. Then,
it is possible to count the number of times an algorithm is
significantly better(+), equal(=), or worse(−) compared to
other algorithms overall control instances. Table 9 shows the
summary of the statistical comparisons overall algorithms
and control instances. Here, in the top, Table 9 shows whether
a heuristic performs better (bars in blue), similarly to (bars in
cyan), or worse than (bars in yellow) other algorithms across
all control instances. As such, the x-axis of Table 9 shows the
algorithm instance, ordered by rank from left to right, and the
y-axis shows the count of the number of instances.
By observing the comparative results fromTable 9, we note

that DEP performs better than other algorithms in 558 times
across all control instances, achieving the highest rank overall
control problems and instance runs; on the other hand,
OBDE underperforms in 564 times, achieving the lowest rank
among all algorithms. For detailed reference over distinct
classes of control problems, Table 9 also shows the statistical
comparisons per type of control problem; for instance,
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TABLE 4. Convergence performance of DC motor position control.
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TABLE 5. Convergence performance of DC motor velocity control.
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TABLE 6. Convergence performance of magnetic levitation control.
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TABLE 7. Convergence performance of inverted pendulum control.
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TABLE 8. Convergence performance of crane stabilization control.
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TABLE 9. Summary of statistical comparisons.
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TABLE 10. Performance of best obtained gains overall algorithms.
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we observe that DEP performs better than other algorithms
in 165 times in the motor position control problem, showing
no instances of equal nor underperformance (numbers in zero
corresponding to equal/underperformance cases). However,
DESIM underperforms in 113 of cases, attaining the lowest
rank across all the motor position control instances. Overall,
DEP shows the attractive performance over most control
problem instances, whereas algorithms with an explorative
behaviour such as DERAND and OBDE underperform com-
pared across all control problems.

By observing the order of ranks from left to right in
Table 9, we observe that the second best performer is
DESPS, followed by DEBEST, JADE and SHADE. The fact
of both DEP and DESPS using archives to track potential
solutions through successful mutations/selection clarifies
the importance of using memory-based and alternatives
schemes in case detrimental mutations occur along the search
procedure. However, the particle-based difference of vectors
in DEP outperforms the conventional DE-based difference
of vectors. Furthermore, although DEP in this section does
not use parameter adaptation schemes, it outperforms the
implicit parameter adaptation approaches from JADE and
SHADE. Although JADE and SHADE follow similar parameter
adaptation principles, they are unable to outperform the
archive-based algorithms and a DE-based algorithm based on
an exploitative strategy.

In order to show the tracking performance across control
instances and independent runs, Table 10 shows the best con-
trol profile responses that correspond to optimized PID gains
by each algorithm. Here, for each algorithm, we computed
the best response out of 3 types of population sizes and
30 independent runs. Thus, due to comparing 12 optimization
algorithms, 25 control instances, Table 10 shows 300 (= 12×

25) response curves depicting the performance of 300 elite
optimized PID gains. The x-axis of all figures in Table 10
show the simulation time t in seconds, and the y-axis shows
the observed state of the system. As such, the y-axis shows
the angular rotation of the motor θ for a motor position
control problem, the angular velocity of the motor ω for a
motor velocity control instance, the displacement r of the
levitating object for magnetic levitation, the orientation of the
pendulum arm θ for an inverted pendulum control problem,
and the position of the cart r for crane stabilization. Also,
for ease of reference and clarity of plots, we use alpha-
transparency to show the overlapping nature of obtained
responses across algorithms. The set trajectory is depicted
with a dashed style, whereas the achieved response trajectory
rendered from the obtained PID control is depicted with
a continuous line. By observing the results of Table 10,
we note the reasonable control performance across control
instances. Although we observe overshooting and noticeable
oscillations at the early stages of the change of set trajectories,
we observe the reasonable tracking of the set trajectories
within a few seconds, irrespective of the challenging nature
of the task. The above-mentioned observations show the
amenability of the obtained gains based on the difference

of vectors, suggesting the ability to compute feasible PID
configurations within a small number of function evaluations.

I. HEURISTICS WITH ADAPTATION MECHANISMS
Having described the overall set of DE-based benchmark
heuristics for overall comparisons in subsection IV-G, and
the performance of optimization algorithms forgoing the
parameter adaptation mechanisms in subsection IV-H, this
subsection describes the control and convergence perfor-
mance of the subset of optimization algorithms using the
parameter adaptation mechanisms, that is the modified
versions with the ‘‘ A’’ subscript as described in section IV-G.

Therefore, in a second set of experiments, we studied
the convergence performance using the adaptive versions of
the list of algorithms mentioned in section IV-G. As such,
in this section we used DEPA, which is the heuristic using
the parameter adaptation mechanisms presented in (14)-(19).
For fair comparisons across benchmark algorithms, we used
the extended heuristics described in section IV-G, that is the
modified versions with the ‘‘ A’’ subscript, as described in
section IV-G. Also, to complement our evaluations presented
in section IV-H, we used IAE, ITAE and ITSE as the
fitness/performance functions for all algorithms and control
instances. Furthermore, we used 10 independent runs for each
algorithm execution/configuration, the population size N =

10, and the termination criterion atMaxFEs= 1000 function
evaluations. Other parameters followed the suggested values
of the above-mentioned references.

To show the convergence of the studied algorithms,
Table 11 - Table 15 show the overall convergence per-
formance of all adaptive algorithms under distinct fit-
ness/performance metrics, evaluated across each control
instance. In these figures, the x-axis shows the number of
function evaluations, and the y-axis denotes the value of
the fitness/performance metric. The convergence figures in
Table 11 - Table 15 are ordered by fitness/performance
metric (horizontal direction) and control instance (vertical
direction). Also, the convergence curves represent the mean
over 10 independent runs. The corresponding legend of
the heuristic is presented at the bottom of each figure.
By observing the convergence performances, we observe that
it is possible to obtain reasonable convergence behaviours
across fitness/performance metrics and control instances.
Although most control problems show the suitability for
quick convergence in the order of 250 - 500 function
evaluations (e.g., magnetic levitation control in Table 13),
the convergence results in crane stabilization in Table 15
show the highest variability across control instances and
fitness/performance metrics, pinpointing the difficulty to
realize the effective sampling of the search space.

To evaluate the comparative performance across indepen-
dent control instances, we conducted statistical comparisons
using the Wilcoxon rank-sum test at 5% significance level.
Table 16 shows the summary of the statistical comparisons
overall adaptive algorithms and fitness/performance metrics.
Following a similar organization to section IV-H, the top of
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TABLE 11. Convergence performance using parameter adaptation in DC motor position control.
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TABLE 12. Convergence performance using parameter adaptation in DC motor velocity control.
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TABLE 13. Convergence performance using parameter adaptation in magnetic levitation control.
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TABLE 14. Convergence performance using parameter adaptation in inverted pendulum control.
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TABLE 15. Convergence performance using parameter adaptation in crane stabilization control.
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TABLE 16. Summary of statistical comparisons considering IAE, ITAE and ITSE and parameter adaptation in all algorithms.
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TABLE 17. Performance of best obtained gains overall algorithms for DC motor position control.
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TABLE 18. Performance of best obtained gains overall algorithms for DC motor velocity control.
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TABLE 19. Performance of best obtained gains overall algorithms for magnetic levitation control.
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TABLE 20. Performance of best obtained gains overall algorithms for inverted pendulum control.

136250 VOLUME 11, 2023



V. Parque, A. Khalifa: PID Tuning Using Differential Evolution With Success-Based Particle Adaptations

TABLE 21. Performance of best obtained gains overall algorithms for crane stabilization control.
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Table 16 shows whether a heuristic performs better (bars
in blue), similarly to (bars in cyan), or worse than (bars
in yellow) other algorithms across all control instances
and performance metrics. Thus, the x-axis of each figure in
Table 16 shows the adaptive algorithm instance, ordered by
rank from left to right, and the y-axis shows the count of the
number of times/cases.

By observing the comparative results from Table 16,
we note that DEPA performs better than other algorithms in
358 times/cases across control instances and performance
metrics, achieving the highest rank overall control instances.
We also note that PSOA underperforms in 814 of the
times, achieving the lowest rank among all algorithms.
In line with the organization section IV-H, Table 16
shows a detailed comparison for distinct classes of control
problems. For instance, we observe that DEPA performs
better than other algorithms in 99 (71) times in motor
position (velocity) control problem, showing no instance
of underperformance (numbers in zero corresponding to
underperformance cases). Although DEPA performs similar
to other algorithms in the crane stabilization problem (144
times), we observe that DEPA underperforms in inverted
pendulum control instances (138 cases). This observation
pinpoints the difficulty of the landscape for the type of DEPA-
based algorithms. By observing the results overall control
instances and fitness/performance metrics, DEPA shows the
attractive performance over most control problem instances
and fitness/performance functions, whereas algorithms using
composition of global-local donors/difference of vectors
such as DEGLA and PSOA underperform compared across all
control problems and fitness/performance metrics.

By observing the order of ranks of the comparative
performances in Table 16, from left side (showing the best
heuristic) towards the right side (showing the heuristics
with largest number of underperformance cases), the overall
attractive performances of DEPA is followed by the merito-
rious performances of DEBESTA, JADEA, DESPSA and SHADE.
On the other hand, we can also note that PSOA underperforms
overall control instances. Whereas DEBESTA is an algorithm
known for its exploitative behaviour [112], its adaptive
extension through the archive-based parameter adaptation is
meritorious against other algorithms with highly exploitative
features such as RBDEA. We also note that algorithms
with exploitative features such as DEBESTA and DESPSA
outperformed other exploration and exploration-exploitation
switching mechanisms such as DERANDA, DESIMA and
OBDEA, each of which was unable to counter-balance the
convergence of performance of other variants.

Also, the modified JADEA follows the same mutation
principle (current-to-pbest/1/bin strategy) and the same
adaptation principle compared to SHADE; however, JADE
uses a less explorative approach when generating the best
referent vectors for mutation. Furthermore, although DEPA
and DESPSA use similar parameter adaptation principles, the
use of particle adaptation schemes in DEPA is meritorious
when considering the overall control instances. Yet, the use of

archives to track potential solutions through successful muta-
tions/selection mechanisms in DEPA and DESPSA clarifies
the usefulness of using archive-based schemes to counteract
detrimental mutations during sampling. The exploitation
mechanism of DEPA relies on the adaptive importance of the
direction towards the global and local best, yet DEPA has
a regulated and sporadic stagnation-avoidance mechanism
that allows for a possible exploration of the search space
through a historical archive. It is noteworthy to mention
that each of the above-mentioned algorithms embeds a form
of exploitative behaviour along with a degree explorative
mechanism. We argue that algorithms with a higher degree
of exploitation and regulated exploration of the search space,
such as DEPA, DEBESTA, JADEA, DESPSA and SHADEA have
the potential to tackle the search space of PID optimization
in the scope of motor control, magnetic levitation, inverted
pendulum and crane stabilization problems.

Following a similar principle in section IV-H, in order
to show the profile of tracking performance across control
instances and distinct fitness/performance metrics, Table 17
- Table 21 show the best control profile responses that
correspond to optimized PID gains by each algorithm. The
x-axis of all figures in Table 17 - Table 21 show the simulation
time t in seconds, and the y-axis shows the observed state
of the system. Also, for ease of reference, we use alpha-
transparency to render the most common behaviours of
obtained responses across algorithms. We use the same
style to render plots of control profiles: the set trajectory
is shown with a dashed style, and the achieved response
trajectory from the PID control is shown by a continuous
line. Due to using distinct performance metrics, response
profiles are rendered with different, yet distinctive colors.
By observing the results of Table 17 - Table 21, we note
the reasonable control performance overall control instances
and fitness/performance metrics. By observing the response
results from Table 17 - Table 21, it is possible to note
overshooting and oscillation behaviours, mainly during the
early stages of the simulation and during the change of the
non-continuous set of trajectories. Yet, the set trajectories can
be generally tracked with reasonable performance.

The above-mentioned observations pinpoint the feasibility
of attaining competitive convergence for PID parameter
tuning. Investigating the performance of the proposed
algorithm in the corresponding diverse class of hardware
environments and devising new operators for many-objective
optimization (e.g., inclusion of robustness constraints as
an additional objective, or combination of multiple fit-
ness/performance metrics), and the suitable switching of
exploration-exploitation mechanisms that lead to efficient
convergence on a broader class of control problems and
dynamic scenarios are on our agenda.

J. EXPERIMENTS ON HARDWARE
Having described the convergence and control performance
through computational experiments (simulations) in subsec-
tion IV-H and subsection IV-I, this subsection describes the
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TABLE 22. Performance of the inverted pendulum device.

control performance and the experiments in hardware when
using optimized PID gains on an inverted pendulum device.

For simplicity, we evaluated four arbitrary obtained gains
on a cart-pendulum device by Feedback Model 33-936S
[119] (which is related to the scope of study). In order
to evaluate the performance in unseen environments during
training, we used the initial angle θ0 = π rad, which is far
from the initial set in the range θ0 ∈ [0.05,0.65]rad used
during training (simulation). Table 22 shows the performance
of the pendulum angle θ and the car position r . By looking
at Table 22, we can note the oscillations in the arm and the
car to attain the desirable state at θ = 0rad (vertical position)
over four independent trials, each using distinct learned gains.
In order to show a glimpse of the pendulum states, Table 23
shows the transition of the states from initial configuration
(top-left) to the attained desirable state (bottom-right). Our
results portray the potential for transferability of the learned
gains to unseen environments.

V. COMPUTATIONAL EXPERIMENTS ON SYNTHETIC
MATHEMATICAL FUNCTIONS
Having described the performance and benchmark compar-
isons in control systems/tasks in section IV, this section
describes the performance in a different class of optimization
problems derived from the evolutionary computing commu-
nity.

Thus, in this section, we considered the potential exten-
sion/generalization to other problem domains and use the
CEC 2017 benchmark set [120] as a key reference to tackle
single-objective benchmark functions with varying land-
scapes such as unimodality, multimodality, hybrid functions
and their compositions. Since the formulations in section
III were inspired by/towards the suitable exploitation in
expensive PID control problems, the suitable adaptation
between exploration and exploitation in the difference of
vectors and overall dimensions becomes essential to ensure

the reasonable convergence performance for a diverse set of
problem domains such as the CEC 2017 benchmark set [120].
In particular, we consider the following potential extension
of DEPA to consider both exploitative and explorative vectors
into the sampling mechanisms, and their adaptation mecha-
nisms. For simplicity and ease of reference, we describe the
full algorithm, as follows:

xi,g+1 =

{
ui,g, if f (ui,g) < f (xi,g)
xi,g, otherwise

(41)

ui,g = xi,g+ v∗i,g (42)

v∗i,g = ωvi,g+Fi(xpbest,g−xi,g)ri+Fi(x
r1
i −xr2i )ri (43)

vi,g+1 =

{
v∗i,g, if f (ui,g) < f (xi,g)
vi,g, otherwise

(44)

where xi,g denotes the i-th individual/solution vector in
the g-th generation/iteration; and f (xi,g) denotes the fitness
function of the i-th individual/solution. Along with the
general notations of section III, ui,g is a trial vector, v∗i,g is
a trial velocity vector associated to the i-th individual, ω is
a smoothing coefficient on the velocity vector, and Fi is a
scaling factor associated with the i-th individual. Here, the
major differences consist in the following:

• We implement (43) to allow the suitable balance
between exploitation and exploration and the fair
comparisons with the related adaptation mechanisms in
the CEC 2017 benchmark set [108], [109], [116], [120].
As such, we allow xi,g = xri,g to become the reference
solution vector, enable a single step parameter Fi = Gi
for individual i, and compute xpbest,g as a best arbitrary
solution from the top 100p% solutions at generation
g, for small p ∈ [0,1]. In the above, xpbest,g − xi,g
implies the vector favoring exploitation, whereas xr1i −

xr2i implies the vector favoring exploration in which
r1 ̸= r2.
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TABLE 23. Performance of the experiment on inverted pendulum.
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• Furthermore, we generalize the scaling coefficients as
a binary vector ri ∈ {0,1}D, for dimensionality D,
to consider the suitable adaptation of steps in each
dimension, as follows:

ri,j =
{
1, if ru < CRi | j= jrand
0, otherwise

(45)

• The reference vectors xr1i and xr2i are sampled/chosen
uniformly randomly either from the population P or
from an archive (memory) A , as follows:

xr1i,g, x
r2
i,g ∈R

{
P , if qi < Q
A , otherwise

(46)

where qi is a counter of unsuccessful trials and Q is a
user-defined threshold. The archive A accumulates the
successful trial solution vectors ui,g following (13).

Furthermore, inspired by parameter adaptation schemes
[116], and following similar adaptation principles to
(14) - (15), each individual xi,g at generation/iteration g is
associated with scaling factors Fi and crossover rate CRi,
each of which is sampled from the Cauchy and Normal
distributions:

Fi ∼ Cauchy(M ai
F ,σ 2

F ) (47)

CRi ∼N (M ai
CR, σ 2

CR) (48)

where Cauchy(µ,σ 2) denotes the values sampled from a
Cauchy distribution with location parameter µ and scale
parameter σ 2 [108], N (µ, σ 2) denotes values sampled from
the normal distribution with mean µ and variance σ 2, the
parameters M ai

F and M ai
CR denote the ai-th element of h-

dimensional tuples MF and MCR, respectively. The positive
integer ai ∼ U [1,h], h= N , Fi ∈ (0,1], and CRi ∈ [0,1].
Following the archive of successful parameters in section

III, the parameters Fi andCRi associated to the i-th individual
are recorded into corresponding (archive) sets SF and SCR,
in which n = |SF | = |SCR| denotes the number of fit-
ness improvements through successful mutations/selections.
As such, the elements of the archives MF are updated by the
weighted Lehmer mean following (16),

M k
F =

n∑
j=1

wj ·S2F,j

n∑
j=1

wj ·SF,j

, k ∈ [1,h], (49)

whereas the elements of MCR are updated by the weighted
mean [109], [121]:

M k
CR =

n∑
j=1

wj ·SCR,j, k ∈ [1,h] (50)

where wj is the weight associated to a successful trial vector
ui,g following (18). The key motivation of using the archives
M j
F , M j

CR is to track/log parameters that lead to successful
mutations through selective scaling and difference of vectors.

Algorithm 2 DEPA2

1 FEs= 0, g= 0, qi = 0, k = 0;
2 Generate a set of N individuals randomly as initial

population set P ;
3 Initialize the archive A from the population set P ;
4 Initialize the tuples M k

F and M k
G;

5 FEs= FEs+N ;
6 while FEs≤MaxFEs do
7 g= g+1;
8 SF = {}, SG = {};
9 for i= 1 to N do
10 Sample ai ∼ U [1,h];
11 Generate Fi using (47);
12 Generate CRi using (48);
13 end
14 for i= 1 to N do
15 Generate the trial vector ui,g using (42)-(46);
16 if f (ui,g) < f (xi,g) then
17 xi,g+1 = ui,g, vi,g+1 = v∗i,g;
18 ui,g → A;
19 Delete an element from A if |A| > λ|P |;
20 Fi → SF , CRi → SCR;
21 qi = 0;
22 else
23 xi,g+1 = xi,g;
24 vi,g+1 = vi,g;
25 qi = qi+1;
26 end
27 FEs= FEs+1;
28 end
29 if SF ̸= {}∧SG ̸= {} then
30 k = k+1;
31 Update M k

F and M k
CR using (49) and (50);

32 Set k = 1 if k > h;
33 end
34 end

The pseudocode of the extended algorithm, labeled as
DEPA2, is outlined in Algorithm 2. As such, in every
generation, (1) we compute parameters Fi and CRi associated
to each individual; (2) generate trial vectors accordingly; (3)
perform mutation and selection mechanisms and, whenever
successful mutations/selections occur, we store potential
trial vectors and scaling/mutation parameters into their
corresponding archive (memory) mechanisms; and (4) update
thememory archives considering useful parameters that led to
successful fitness improvements. The procedure is repeated
until the maximum number of fitness evaluations (MaxFEs)
is reached. The complexity is estimated as O(MaxFEs.(n+

N (f +D+N 2))), in which O(f ) is the time complexity of
evaluating the fitness function, D is the dimensionality of the
solution vector x, and the term O(N 2) is due to the quick
sort algorithm. DEPA2 extends the principles of difference of
vectors and success-based parameter adaptation mechanisms
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into a formulation where solutions are rendered by current-
to-pbest-like sampling, and where memory-based adaptation
enables to track useful trial vectors and parameters that
lead to fitness improvements. Compared to related works
in archive-based self-adaptive DE [104], [108], [109], [116],
DEPA2 extends the sampling mechanism of new solutions
by perturbing the difference to the pbest vectors, and by
considering the archive of successful trial vectors that lead
to successful mutations through (41) - (46). Compared with
parameter adaptation mechanisms [108], [109], DEPA2 logs
the successful trial vectors ui,g into the archive A, and
distinguishes the source of exploration in the difference xr1i −

xr2i . Also, DEPA2 distinguishes between the archive A and
the population P to render the referent vectors xr1i,g and x

r2
i,g,

whereas the existing approaches use the union of P ∪ A to
render a potential reference vector. Furthermore, compared
to successful parent selection schemes [57], [58], [79], [104],
DEPA2 extends not only the adaptation mechanisms through
memory schemes to enable the tracking of successful trial
solution vectors and sampling parameters Fi and CRi, but
also extends the current-to-pbest strategy at (43) to consider
adaptive reference vectors xr1i,g, xr2i,g from population and
archive. In the next section, we rigorously compare the
performance of the proposed DEPA2 algorithm to the related
works in the context of CEC 2017 benchmark set.

To show the performance of the proposed/studied algo-
rithms in the CEC 2017 benchmark set [120], for simplicity
and clarity of exposition, we labeled here the objective
functions (and problems) with f1, f3, f4, . . . , f30,1 in which fi
implies the mex function cec17_func(x, i) for variable x and
i ∈ [1,30]. We used the original implementations from [120],
which extends the mex-based compilations of 30 objective
functions in Matlab. Furthermore, we used dimensions D =

{10, 30, 50} to evaluate the performance and scalability of
the evaluated algorithms. And, following the general settings
of the benchmark suite, the maximum number of function
evaluations is set as D× 104. For fairness of comparisons,
we used the class of algorithms extending the adaptation
mechanisms, population size N = 50 and 30 independent
runs for each algorithm. Other parameters for DEPA2 include
Q= 1, and p= 0.05, which are set to induce a high selection
pressure during sampling.

In order to show the convergence performance of the pro-
posed/studied algorithms, Table 24 - Table 26 show the
convergence features of all studied functions. Here, the
x-axis show the number of functions evaluations, whereas
the y-axis shows the value of the mean fitness function
over 30 independent runs. Labels (colors) of each algorithm
are shown at the bottom side of each plot in Table 24 -
Table 26. Thus, by observing the convergence figures in
Table 24 - Table 26, we can note the following facts:

• Table 24 shows that convergence in problems with
dimensions D = 10 occur in the order of 2 × 104 -
4× 104 function evaluations, whereas, the convergence

1CEC’17 benchmark suite disabled the use of function f2.

behaviour of problems of higher dimensions (D =

30 and D = 50) occur in the range 1 × 105 - 2 ×

105 evaluations.
• Overall dimensions, there exists a subset of problems
which require small number of function evaluations for
convergence, such as f4, f15, f19 and f28.

• Overall dimensions, all algorithms are able to converge
to the basins of the landscapes within the allocated
number of function evaluations.

To outline the statistical performance of the evaluated
algorithms across the objective functions, Table 27 - Table 29
show the summary of mean converged error values and
standard deviations over independent runs. Here, the symbol
▲/▼/♦ shows DEPA2 is significantly better, worse or similar
to the algorithm in the column by considering the Wilcoxon
pairwise statistical comparative tests over independent runs.
For each function, the mean and standard deviation is
provided, and the bottom part of the grid shows the count
of the number of problems in which DEPA2 is significantly
better, worse or similar when compared to other algorithms.
By observing the results from Table 27 - Table 29, we observe
the following facts:

• On problems with D = 10 dimensions, the counts
on instances depicted by ▲ show that DEPA2 either
outperforms or performs equally well compared to most
algorithms overall problems. On the other hand, the
counts depicted by ▼ show that DEPA2 underperforms
in low number of cases (e.g. 9 cases when compared to
DESIMA).

• The results on D= 30 and D= 50 show a similar trend
to the above-mentioned case, in which DEPA2 shows the
larger number of cases of outperformance for most of
the problems.

To evaluate the comparative performance across all prob-
lem instances, we performed pair-wise statistical compar-
isons among all algorithms instances by using the Wilcoxon
rank-sum test at 5% significance level. Table 9 shows the
summary of the statistical comparisons overall algorithms
and problem dimensions. Following the same principle
described in section IV-H, Table 9 shows whether a heuristic
performs significantly better (bars in blue), similarly to
(bars in cyan), or worse than (bars in yellow) other
algorithms across all problem instances and dimensions.
As such, the x-axis of each figure in Table 9 presents the
algorithm instance, ordered by best rank from left to right,
and the y-axis shows the count of the number of cases.
By observing the comparative results from Table 9, we can
observe that DEPA2 performs better than other algorithms
in 182, 215 and 235 problem instances for D = 10, D =

30 and D = 50, respectively, achieving the highest rank
overall problem instances. Conversely, PSOA underperforms
in 318, 319 and 317 problem instances for each respective
dimension, achieving the lowest rank among all algorithms.
By observing the results overall dimensions, DEPA2 shows
the attractive performance over most problem instances,
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TABLE 24. Convergence performance using parameter adaptation in CEC 2017 benchmark, D = 10.
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TABLE 25. Convergence performance using parameter adaptation in CEC 2017 benchmark, D = 30.
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TABLE 26. Convergence performance using parameter adaptation in CEC 2017 benchmark, D = 50.
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TABLE 27. Results of computational experiments on CEC 2017 benchmark functions for D = 10.
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TABLE 28. Results of computational experiments on CEC 2017 benchmark functions for D = 30.
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TABLE 29. Results of computational experiments on CEC 2017 benchmark functions for D = 50.
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TABLE 30. Summary of statistical comparisons on CEC 2017 considering parameter adaptation in all algorithms.

seconded by algorithms using mutations based on similarity
(DESIMA), rank-based selection mechanisms (RBDEA), and
mutation based on covariance matrix adaptation (DCMAEAA).
The above-mentioned results show the potential to tackle

optimization problems with diverse landscapes and dimen-
sionalities. Further research on gradient-free optimization
using different benchmark sets and the study of large-scale
problems are in our agenda. For generalization purposes,
it is desirable that the optimization algorithm operates over
a diverse, and possibly dynamic and changing, set of control
and optimization problemswithminimal human intervention,
thus self-adaptation of sampling parameters becomes key.
Also, the studied algorithms are mainly single-objective
optimization heuristics, that is they are inherently unable to
consider performance and robustness. Although a straight-
forward approach consists in composing performance and
constraints into a single objective function (e.g., weighted
sum), the approach opens questions as to how to suitably
compose performance and robustness functions, how to
choose suitable parameters for the composition functions,
and how to suitably select from the Pareto frontier. Such
questions are better addressed by multi-objective heuristics
and the recent variants. The study of multi-objective and
constraint satisfaction techniques is part of our future
work.

VI. CONCLUSION
In this paper, we proposed an approach to tackle the PID
parameter tuning problem by a new class of Differential
Evolution algorithm with success-based Particle Adaptations
(DEPA, in short). The basic idea of the proposed algorithm
is to integrate the principles of difference of vectors, particle
schemes and adaptation mechanisms by using particle-based
sampling and adaptation through archive (memory) schemes
to enable the tracking of both potential solution vectors and
sampling parameters through the search process. As such,
an advantageous feature of the proposed approach is the
self-adaptation under tight computational budgets and the
ability to select potential referent vectors depending on
success-based selections.

In the context of PID tuning, we extend the scope of
analysis in terms of number of optimization and control
instances. The rigorous computational simulations over a
large set of control problems (25 control instances consider-
ing the control trajectories with linear, nonlinear, continuous,
and discontinuous state transitions in DC motor position
control, DC motor velocity control, magnetic levitation
control, inverted pendulum, crane stabilization), and the
comparisons with a large set of closely related optimiza-
tion algorithms, and their extended adaptive variants (23
optimization algorithms were evaluated in total) has shown
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the competitive/outperforming convergence performance of
the proposed algorithm under tight function evaluation
budgets (in the order of 1000 function evaluations). And the
experiments on a real-world inverted pendulum device show
the potential for transferability of the learned gains to unseen
situations.

In particular, the overall statistical results on control
performance suggest that:

• the proposed framework using a fixed set of parameters
performs better in 558 control instances when using ISE
as performancemetric and population sizes of 10, 50 and
100,

• the proposed approach using adaptation mechanisms
outperformed in 358 control instances compared to
other algorithms for PID control tasks using IAE, ITAE
and ITSE as performance metrics, outperforming other
related adaptation-based optimization algorithms,

• on DC motor position control, DC motor velocity
control, magnetic levitation, inverted pendulum, and
crane stabilization the proposed approach outperformed
other related adaptation-based optimization algorithms
in 99, 71, 154, 15 and 19 control instances,

• the proposed approach performed better than other
algorithms in motor position and velocity control;
however, DEPA performed similar to other algorithms
in the crane stabilization problem (in 144 cases), and
underperformed in inverted pendulum control instances
(138 cases).

The above-mentioned observations pinpoint the merits and
the ability of DEPA-based algorithms for control applica-
tions. Overall control instances, DEPA shows the attractive
performance over most control problem instances whereas
algorithms using composition of global-local donors such as
DEGLA and PSOA underperform compared across all problems
and fitness/performance metrics.

Furthermore, we evaluated the algorithmic extension and
the generalization towards further optimization landscapes
considering the CEC 2017 benchmark suite, which models
single-objective fitness functions with unimodality, multi-
modality, hybrid functions and compositions. The computa-
tional experiments show the attractive/outperforming perfor-
mance overall problem instances. The statistical comparisons
show that the extension performs better than other related
algorithms in 182, 215 and 235 problem instances in 10,
30 and 50 dimensions.

Our proposed approach is useful to suggest PID parameters
within tight computational budgets attaining reasonable
control performances. The analysis of the convergence using
different population size (a key parameter in population-
based algorithms) has been presented in the paper. Yet, since
the extended algorithms using adaptation mechanisms adapt
the step size F and the crossover rate CR, the sensitivity
analysis to such parameters becomes unnecessary.

An important line of future research is to develop
continual learning algorithms for general control problems.

TABLE 31. Heuristic acronyms.
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TABLE 31. Continued. Heuristic acronyms.

The optimization-based and gradient-free approaches to
exploring control rules has the potential to learn a repertoire
of behaviours not seen by optimal control and classical
reinforcement learning. Another line of future work is to
explore the potential adaptation mechanisms for discrete and
combinatorial problems. Furthermore, studying the many-
objective schemes, robustness constraints, the large-scale
domains (hundreds and thousands of dimensions), and the
improved switching of exploration and exploitation through
modular decompositions for a wider set of control and
optimization problems is in our agenda.

APPENDIX A
ACRONYMS
See Table 31.
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