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ABSTRACT This paper deals with the problem of bipartite consensus for Takagi-Sugeno fuzzy multiagent
systems onmultilayer cooperation-competition networks and its application to image communication. Fuzzy
control laws are proposed by using relative output measurements between neighboring agents, where additive
couplings are considered to show the different layered-interactions. Sufficient conditions for bipartite
consensus of the multilayer networks with signed graphs are obtained by using the signed graph theory,
Lyapunov stability theory and Takagi-Sugeno fuzzy systems theory. Then, coupled chaotic Lorenz systems
over multilayer signed-networks are illustrated to show the effectiveness of the obtained results. Finally,
a new multiagent image communication system is constructed based on the bipartite consensus of the
fuzzy multilayer coopetition multiagent network, in which two agents in different layers for point-to-point
communication use the output measurements from their own and neighboring agents as the synchronous
encryption/decryption keystreams. The experimental results show that the proposed multiagent image
communication system has excellent performance against some classical attacks.

INDEX TERMS Bipartite consensus, multilayer networks, signed graph, Takagi-Sugeno fuzzy multiagent
systems, image secure communication.

I. INTRODUCTION
Recent years have seen great interest in coordination of mul-
tiagent systems due to its practical applications in a variety of
areas, such as coordination of unmanned vehicles [1], power
sharing in islanded microgrids [2], and formation control of
multiple underactuated surface vessels [3]. As one of the
critical issues on coordination of multiagent systems, con-
sensus of multiagent systems concentrates on designing a
control protocol to come to an agreement by means of the
local information depending on network topology, and much
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work has been reported (see [4], [5], [6], and the references
therein).

It is worth noting that most results on consensus con-
trol are developed under the assumption of cooperative
interactions among neighboring agents. In many real mul-
tiagent systems, however, some agents are cooperative,
while others are competitive, such as the Euler-Lagrange
systems with cooperative-competitive interactions [7]. The
cooperation-competition networks can be modeled by a
signed graph with both positive and negative edges, where
positive and negative edges represent cooperative and com-
petitive interactions, respectively. In the past decade, there
have been intensive researches on bipartite consensus for
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various multiagent systems under signed graphs, such as
linear multiagent systems [8], [9], [10], [11], nonlinear mul-
tiagent systems with Lipschitz constraints [12], [13], [14],
[15], nonlinear systems based on Takagi-Sugeno (T-S) fuzzy
model [16]. In particular, in [15], synchronization problem is
considered for multilayer reaction-diffusion neural networks
with cooperative-competitive interactions modeled by a mul-
tilayer signed graph.

As stated in [17], multilayer networks are networks with
different kinds of interactions, which incorporate multiple
sub-networks. Compared with the research on the synchro-
nization problem of multiagent systems under multilayer
unsigned graphs [18], [19], [20], [21], [22], [23], there are
fewer papers on the synchronization of multiagent systems
under multilayer signed graphs [24], [25], [26]. The problems
of bipartite synchronization under multilayer signed graphs
have been studied in the leader-following framework for
integer-order [24] and fractional-order [25], [26] multiagent
systems with Lipchitz nonlinear dynamic, respectively.

The well-known T-S fuzzy model [27] is a convenient and
flexible tool to handle complex nonlinear systems includ-
ing nonlinear complex networks [28], [29], [30], [31] and
nonlinear multiagent systems [32], [33], [34]. Nevertheless,
there were few literature related to T-S fuzzy control for
nonlinear complex networks with signed graphs [35] or mul-
tiagent systems with signed graphs [36]. In [35], the authors
have investigated bipartite synchronization of T-S fuzzy com-
plex networks with signed graphs via the combination of
impulsive control and fast fixed-time control. In [36], the
authors have studied the bipartite consensus problem for T-S
fuzzy multiagent systems via a non-fragile state-coupling
control protocol. Moreover, both [35] and [36] focus on
some single-layer and signed networks. To the best of our
knowledge, the problem of bipartite consensus for T-S fuzzy
multiagent systems on multilayer coopetition networks have
not yet been investigated.

The existing applications of consensus in multiagent
systems on cooperative networks mainly focus on sensor net-
works [37], mobile robot formation control [38], microgrid
[39], image secure communication [40], etc. However, there
are still no reports on image secure communication based
on bipartite consensus of multiagent systems on multilayer
coopetition networks. With the promotion of multiagent sys-
tems and the deepening of information exchange, this is an
issue that cannot be ignored and has application prospects.

Motivated by the above-mentioned discussion, this paper
will deal with the problem of bipartite consensus for T-S
fuzzymultiagent systems onmultilayer coopetition networks.
The main contributions can be summarized as follows.

(1) A class of multilayer signed networks is established
based on the T-S fuzzy model. The couplings between
agents are additive and antagonistic in this paper, which
is more general than [35] and [36].

(2) In order to guarantee the bipartite consensus, fuzzy
consensus control laws are proposed by using the

output measurements rather than states information
from neighboring agents, which is more general.

(3) Based on the proposed bipartite consensus results,
a new multiagent image secure communication system
is constructed to verify the validity and feasibility of
the proposed theoretical method.

The rest of our paper is organized as follows: The problem
formulation is introduced in Section II. The main results
about bipartite consensus for T-S fuzzymultiagent systems on
multilayer coopetition networks are addressed in Section III.
Section IV demonstrates the theoretical results through a
numerical simulation. The application of bipartite consensus
in a new multiagent image communication system is consid-
ered to further demonstrate the feasibility of the proposed
results. In Section V, we provide the final conclusion.

II. PROBLEM FORMULATION
Consider a class of T-S fuzzy multiagent systems composed
of N agents as follows.
Plant Rule q: IF ζ1(t) is

∏
q1 and ζ2(t) is

∏
q2. . . and ζp(t)

is
∏

qp, THEN

ẋi(t) = Aqxi(t) + ui(t)

yi(t) = Cqxi(t), i = 1, 2, . . . ,N , (1)

where ζb(t) and
∏

qb are the premise variable and the fuzzy
set, b = 1, 2, . . . , p, q = 1, 2, . . . , r , r is the num-
ber of the rules. Aq and Cq are known matrices. xi(t) =

[xi1(t), xi2(t), . . . , xinx (t)]
T

∈ Rnx is the state variable of
node i, yi(t) ∈ Rny is the output measurement of node i, ui(t)
is the control input.

According to the fuzzy inference method, the overall fuzzy
model of the system (1) can be written in the following
compact form:

ẋi(t) =

r∑
q=1

ϖq(ζ )Aqxi(t) + ui(t)

yi(t) =

r∑
q=1

ϖq(ζ )Cqxi(t), i = 1, 2, . . . ,N , (2)

where ζ = [ζ1, ζ2, . . . , ζp], ϖq(ζ ) is the normalized mem-
bership function defined by ϖq(ζ ) =

hq(ζ )
r∑

q=1
hq(ζ )

, hq(ζ ) =

p∏
b=1

5qb(ζb), where5qb(ζb) represents the degree of themem-

bership of ζb in 5qb. It is assumed that hq(ζ ) ≥ 0 and
r∑

q=1
hq(ζ ) > 0. Then, it follows that ϖq(ζ ) ≥ 0 and

r∑
q=1

ϖq(ζ ) = 1.

Due to the fact that there exist multiple interactions
between agents andwe do not always get available knowledge
of the states, a distributed and output-measurements-based
controller with M -layered antagonistic interactions is pro-
posed as follows.
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Controller Rule q: IF ζ1(t) is
∏

q1 and ζ2(t) is
∏

q2. . . and
ζp(t) is

∏
qp, THEN

ui(t) = Hq
M∑
k=1

N∑
j=1

c(k)
∣∣∣a(k)ij ∣∣∣ (sign(a(k)ij )yj(t) − yi(t)

)
(3)

where Hq indicates the gain matrix to be designed in order
to achieve bipartite consensus, c(k) is the coupling strength,
A(k)

= (a(k)ij )N×N is the adjacency matrix of the k th layer,

in which a(k)ij is defined as follows. If there is a connection

between agent i and agent j(j ̸= i), then a(k)ij = a(k)ji ̸= 0,

otherwise, a(k)ij = a(k)ji = 0(j ̸= i). Specifically, if a(k)ij =

a(k)ji > 0(< 0), then the interaction between agent i and agent
j is cooperative (competitive). sign(·) is defined as:

sign(ζ ) =


1, ζ > 0
0, ζ = 0
−1, ζ < 0

Then, the defuzzified output of the fuzzy controller is given
in the following form:

ui(t)

=

r∑
q=1

ϖq(ζ )Hq
M∑
k=1

N∑
j=1

c(k)
∣∣∣a(k)ij ∣∣∣ (sign(a(k)ij )yj(t) − yi(t)

)
(4)

Remark 1: In this paper, the membership function is
assumed to be available, hence the parallel distributed com-
pensator (PDC) controller design is performed. In the PDC
design, the fuzzy controller (3) shares the same membership
functions (MFs) with the equation (2). There is an advantage
in using the PDC control method: feedback gains can be
combined with the MFs of the model during the closed-loop
stability analysis, leading to genuine generalizations as they
may relax the too-demanding requirement of a common feed-
back gain [41].
For each k ∈ {1, 2, . . . ,M}, we denote G(k)

=

(V, E (k),A(k)), where V = {1, 2, . . . ,N } and E (k) ⊆ V × V .
It is assumed that there is no self-loop in each layer.

For each layer k ∈ {1, 2, . . . ,M}, the Laplace matrix
of the signed graph G(k) is defined as L(k)

= D(k)
−

A(k), where D(k)
= diag{

N∑
j=1

|a(k)1j |, . . . ,
N∑
j=1

|a(k)Nj |}. Let 0 =

diag{γ1, . . . , γN }, where γi = 1 for i ∈ V1 and γi = −1 for
i ∈ V2.
Assumption 1: For each layer k ∈ {1, 2, . . . ,M}, the

signed graph G(k) is connected.
Assumption 2: The multilayer and signed graphs G(k), k ∈

{1, 2, . . . ,M} are structurally balanced, which means that
there exists a bipartition of two nonempty node sets V1 and
V2 with V1 ∪V2 = V , V1 ∩V2 = ∅ such that a(k)ij ≥ 0 if agent

i and agent j belong to the same subset, otherwise a(k)ij ≤ 0.
Remark 2: The structure of the controller is similar to the

one in [42]. If M = 1, the signed graph G(k) becomes the

single-layer signed graph. In the case of single-layer signed
networks, Assumption 1 and Assumption 2 have usually been
made to study bipartite consensus problems [7], [36], [43].
Definition 1 [44]: The bipartite consensus is achieved if

the following condition is satisfied:

lim
t→∞

xi(t) −
1
N

N∑
j=1

γiγjxj(t)

 = 0, i = 1, 2, . . . ,N .

Remark 3: The notion of bipartite consensus in Def-
inition 1 means that all the agents in a network with
cooperative-competitive interactions will finally achieve the
bipartite average states of all agents.When all the interactions
among agents over a multiagent network are cooperative, the
notion of bipartite consensus in Definition 1 becomes the
classical consensus [45]. In contrast to canonical consensus
problems, such as the rendezvous control problem for net-
worked nonholonomic mobile robots under the assumption
that all the interactions among robots are cooperative [45],
[46], this paper tries to solve bipartite consensus problem
for T-S fuzzy multiagent systems from the multilayer and
signed network point of view. The primary challenges include
revealing the relationship among the multilayer and signed
topologies, node dynamics in the T-S fuzzy form and the
bipartite consensus, and facilitating the verification of the
bipartite consensus condition.

III. MAIN RESULTS
For each agent i ∈ V , define the bipartite consensus error

ei(t) = xi(t) −
1
N

N∑
j=1

γiγjxj(t). Then, by Assumption 1 and

Assumption 2, it follows that
M∑
k=1

N∑
j=1

c(k)|a(k)ij |(sign(a(k)ij )xj(t) − xi(t))

=

M∑
k=1

N∑
j=1

c(k)|a(k)ij |(sign(a(k)ij )ej(t) − ei(t)). (5)

Therefore, the dynamic of the bipartite consensus error
ei(t) is given as follows:

ėi(t) =

r∑
q=1

r∑
q̃=1

ϖq(ζ )ϖq̃(ζ )[Aqei(t)

+ Hq̃Cq
M∑
k=1

N∑
j=1

c(k)|a(k)ij |(sign(a(k)ij )ej(t) − ei(t))].

(6)

Let ēi(t) = γiei(t), ē(t) = [ēT1 (t) ēT2 (t) . . . ēTN (t)]
T .

Then, it follows that

˙̄e(t) =

r∑
q=1

r∑
q̃=1

ϖq(ζ )ϖq̃(ζ )[(IN ⊗ Aq)

−

M∑
k=1

c(k)(W (k)
⊗ Hq̃Cq)]ē(t), (7)

where W (k)
= 0L(k)0.
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Since the signed graph G(k) (k ∈ {1, . . . ,M}) is undirected
and structurally balanced, matrix W (k) is real symmetric.
Then, there exists an orthogonal matrix T such that

T−1W (k)T = 3(k), (8)

where 3(k)
= diag{λ(k)1 , λ

(k)
2 , . . . , λ

(k)
N }, and λ

(k)
i (i =

1, 2, . . . ,N ) are the eigenvalues of matrixW (k).
Let ē(t) = (T ⊗ Inx )ê(t) and ê(t) = [êT1 (t), ê

T
2 (t), . . . ,

êTN (t)]
T , then,

˙̂e(t) =

r∑
q=1

r∑
q̃=1

ϖq(ζ )ϖq̃(ζ )[(IN ⊗ Aq)

−

M∑
k=1

c(k)(3(k)
⊗ Hq̃Cq)]ê(t), (9)

which is equivalent to

˙̂ei(t) =

r∑
q=1

r∑
q̃=1

ϖq(ζ )ϖq̃(ζ )Fiqq̃ê(t), i = 1, 2, . . . ,N ,

(10)

where Fiqq̃ = Aq −

M∑
k=1

c(k)λ(k)i Hq̃Cq.

It can be found that if lim
t→∞

∥∥êi(t)∥∥ = 0, i = 1, 2, . . . ,N ,

then lim
t→∞

∥ei(t)∥ = 0, i = 1, 2, . . . ,N . Therefore, the
problem of bipartite consensus for the fuzzy multilayer
coopetition network (2) with the controller is transformed to
the stability of N subsystems (10).
Theorem 1: The fuzzy multilayer coopetition network (2)

achieves bipartite consensus under the controller (4) if there
exist matrices P > 0 and Ĥq(q = 1, . . . , r) such that

�iqq < 0, q = 1, . . . , r, i = 1, . . . ,N , (11)

�iqq̃ + �iq̃q < 0, 1 ≤ q < q̃ ≤ r, i = 1, . . . ,N , (12)

where �iqq̃ = PAq + ATq P−

M∑
k=1

c(k)λ(k)i (Ĥq̃Cq + CT
q Ĥ

T
q̃ ). In

this case, the matrices Hq(q = 1, . . . , r) can be obtained as

Hq = P−1Ĥq, q = 1, . . . , r . (13)

Proof: In order to demonstrate that the bipartite consen-
sus is achieved, it is enough to show N subsystems (10) are
asymptotically stable. Choose the Lyapunov function for the
system (10) as

Vi(t) = êTi (t)Pêi(t), (14)

Then, along the trajectories of the system (10), the deriva-
tive of Vi(t) yields

V̇i(t) = 2êTi (t)P ˙̂ei(t)

= êTi (t)

 r∑
q=1

r∑
q̃=1

ϖq(ζ )ϖq̃(ζ )
(
PFiqq̃ + FTiqq̃P

) êi(t)

= êTi (t)

 r∑
q=1

r∑
q̃=1

ϖq(ζ )ϖq̃(ζ )8iqq̃

 êi(t), (15)

where 8iqq̃ = PAq +ATq P−

M∑
k=1

c(k)λ(k)i (PHq̃Cq +CT
q H

T
q̃ P).

Let PHq = Ĥq, q = 1, . . . , r, then Hq = P−1Ĥq, q =

1, . . . , r, and 8iqq̃ becomes �iqq̃. It follows from (11) and
(12) that V̇i(t) < 0 for êi(t) ̸= 0. Therefore, N subsystems
(10) are asymptotically stable. This completes the proof.
Remark 4: Theorem 1 indicates that the criterion of

bipartite consensus for T-S fuzzy multiagent systems over
multilayer and signed networks is equivalent to the stability
condition of N subsystems (10). This decoupled result is
based on the assumption that themultilayer and signed graphs
are undirected. It is a limitation of the proposed consensus
algorithm.
Remark 5: The decoupled result given by Theorem 1 can

be applied to solve the bipartite consensus problem of T-S
fuzzy multiagent systems over multilayer networks with a
large number of agents. This is an advantage of the pro-
posed bipartite consensus strategy. Meanwhile, there also
exist some disadvantages. First, the multilayer and signed
graphs are required to be undirected and structurally bal-
anced, and this may result in limitations of the proposed
method in practice. Second, the proposed method does not
consider the communication delay. These will be our research
topic in near future.

IV. NUMERICAL EXAMPLE
Consider the fuzzy multilayer coopetition network (2) with
6 agents and 2 layers, where the multilayer coopetition net-
work topology is shown in Fig. 1, where both Layer 1 and
Layer 2 are structurally balanced with the bipartition of the
nodes V1 ={1, 2, 3} and V2 ={4, 5, 6}, which satisfies
Assumption 2.

FIGURE 1. Two-layer coopetition networks with six nodes.

The T-S fuzzy chaotic Lorenz system is considered as each
agent, and the parameters are given as follows:

A1 =

 −10 10 0
28 −1 25
0 −25 −8/

3

 ,
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A2 =

 −10 10 0
28 −1 −25
0 25 −8/

3

 ,

C1 =

[
1 1 0
0 1 1

]
, C2 =

[
0 1 0
0 0 1

]
,

Suppose that c(1) = 0.1, c(2) = 1. Then by solving the
linear matrix inequalities (11) and (12) in Theorem 1, the
controller gain matrices are obtained as follows:

H1 =

 8.9743 5.5396
29.9682 6.9860
21.6075 27.2358

 ,

H2 =

 17.2925 5.5743
40.7321 6.0500
0.9494 27.6925

 .

In the simulation, by using the sector nonlinearity approach
[47], the membership functions are taken as ϖ1(x11(t)) =
−x11(t)+25

50 , ϖ2(x11(t)) = 1 − ϖ1(x11(t)). Fig. 2 exhibits
a chaotic behavior of agent 1 in the absence of controller.
Fig. 3 represents the state trajectories of the agents with
the designed controllers. Fig. 4 shows the evolution of the
bipartite consensus errors, from which it can be found that
the bipartite consensus is achieved.

FIGURE 2. Chaotic behavior of agent 1 without controller.

V. APPLICATION OF BIPARTITE CONSENSUS TO IMAGE
COMMUNICATION
In this section, a multiagent image communication system
is constructed to verify the validity and practicality of the
obtained results in section II and III. Meanwhile the proposed
bipartite consensus results are the key to the implementation
of the multiagent image communication system.

A. SYSTEM DESCRIPTION
In the practical applications of multiagent systems, such
as the coordination of unmanned vehicles, power sharing
in islanded microgrids, and formation control of multiple
underactuated surface vessels, information exchange and
sharing are all involved. However, in the process of network
information transmission, security issues such as network
eavesdropping and deception attacks may be encountered,
so it is necessary to encrypt the transmitted information.

FIGURE 3. Trajectories of states xi1, xi2 and xi3 with the controller.

In this case, a multiagent image secure communication sys-
tem is proposed and constructed based on the bipartite
consensus.

For a fuzzy multiagent system on a multilayer coopetition
network, it is assumed that each agent is equipped with an
image encryption/decryption device which has no impact on
the dynamic model of the agent itself. The typical multiagent
image communication system consists of two parts, namely
the transmitter and receiver, as shown in Fig. 5. Without loss
of generality, take the example of multiagent image secure
communication in different network layers, such as transmit-
ting color or grayscale images from agent i in the upper layer
to agent j in the lower layer.
Using the output measurements of its own and neighboring

agents as the encryption keystreams, the agent i encrypts the
plain image. The specific encryption algorithm is shown in
section V-B. Subsequently, the encrypted image, the charac-
teristic information of the plain image and the transmitted
agent number i are combined into a data packet for trans-
mission. After receiving the data packet, the agent j splits the
data packet, and similarly uses the output measurements from
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FIGURE 4. Evolution of all bipartite consensus errors.

its own and neighboring agents as the decryption keystreams
to decrypt the decomposed image. The specific decryption
algorithm is shown in section V-B. It is worth mentioning
that the channel for packet transmission is independent of the
multiagent signed network, and the transmission adopts ‘‘one
image, one packet, single transmission’’ mode.

Image encryption/decryption keystreams come from out-
put measurements generated by its own agent and adjacent
agents with connection. However, how can we ensure that
the encryption and decryption keystreams are synchronized?
With the proposed fuzzy consensus control laws, the bipartite
consensus for T-S fuzzy multiagent systems on multilayer
coopetition networks can be achieved, that is, the output mea-
surements of all agents can also achieve bipartite consensus.
Remark 6: The output measurements from the agent itself

and its neighboring agents are used as encryption and
decryption keystreams, which is different from the states
information from neighboring agents as keystreams. To the
best of our knowledge, for a signed network with balanced
structure, any agent has at least one neighboring agent. Using

output measurements as keystreams for parallel encryp-
tion/ decryption can not only facilitate applications, but also
improve encryption efficiency.
Remark 7: The idea of internal keys is introduced, where

the characteristic information of plain image is used as the
internal keys for image encryption. Only when the image
encryption keys and decryption keys are completely consis-
tent, including the internal keys and external keys, can the
effective operation of multiagent image secure communica-
tion system be guaranteed, as well as the recovery of the
original plain image.

B. IMAGE ENCRYPTION/DECRYPTION ALGORITHM
The proposed image encryption/decryption algorithm adopts
a framework of ‘‘permutation-diffusion’’, which utilizes
relative output measurements as keystreams for image
encryption/ decryption based on bipartite consensus. Simulta-
neously considering the combination of external and internal
keys, the image encryption and decryption results not only
rely on external keys and keystreams, but also depend on the
original plain image.

Without losing generality, the proposed algorithm is
applied to both color and grayscale images, and the specific
algorithm steps are described as follows.
Step 1: Layer the plain image A as shown in Fig. 6 to obtain

8 bit-level images, represented as BL1, BL2, BL3, BL4, BL5,
BL6, BL7, BL8.

At the same time, we establish the characteristic informa-
tion ξA of the plain image, which is the internal key for image
encryption, calculated as follows:

ξA =

∑m
k=1

∑L
t=1 (1 + 0.17 × k + 0.37 × t)P(k, t)

300 × 256 × m× L

where L = 3n for color image and L = n for grayscale image.
Step 2: Layer extraction - Circular bit-shifting (row by row,

column by column) - Layer backfilling
(1) Extract the 1st, 3rd, 5th, 7th, 9th, 11th, 13th and 15th

decimal values of characteristic information ξA using a cus-
tomized function η(ξA, k) = ⌊(ξA×10k−1

−⌊ξA × 10k−1
⌋)×

10⌋, and obtain the sequence S ={η(ξA, 1), η(ξA, 3),
η(ξA, 5), η(ξA, 7)η(ξA, 9), η(ξA, 11), η(ξA, 13), η(ξA, 15)}.
According to the ascending sorting rule of sequence S, certain
layers are extracted from the 8 layer bit-level images in order,
and the extracted layers are concatenated up and down to form
a matrix BP, with a size of 8m×3 n or 8m× n.
(2) For the setting external encryption key R_Sft, we per-

form a circular right bit-shifting operation on the matrix BP
row by row, where the number of bit-shifts in the kth row is
expressed as follows,

Number_Sft1

= mod
(⌊
yi(1,R_Sft) × 1012 + ξA × 1013

⌋
,L

)
(16)

where yi(1,R_Sft) is the output measurement of agent i at
time R_Sft . At the same time, after each row shift, update the
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FIGURE 5. Block diagram of the multiagent image communicaton system based on bipartite consensus.

FIGURE 6. Image layer process.

external key R_Sft, which is

R_Sft = R_Sft + bin2dec (BP(k,L − 8 : L − 5)) + 1.

Repeat the above process until the last row.
Then for the setting external encryption key C_Sft, we per-

form a circular upward bit-shifting operation on the matrix
BP column by column, where the number of bit-shifts in the
lth column is calculated as follows,

Number_Sft2

= mod
(⌊
y′i(2,C_Sft) × 1014 + ξA × 1015

⌋
, 8m

)
(17)

where y′i(2,C_Sft) is the output measurement from a neigh-
boring agent of agent i at time C_Sft . At the same time, after
each column shift, update the external key P_Sft as

C_Sft = C_Sft + bin2dec (BP(8m− 8 : 8m− 5, l)) + 1.

Repeat the above process until the last column.
(3) Similarly, using the customized function η(ξA, k),

extract the 2nd, 4th, 6th, 8th, 10th, 12th, 14th and 16th
decimal values of characteristic information ξA to obtain
the sequence S ={η(ξA, 1), η(ξA, 3), η(ξA, 5), η(ξA, 7),
η(ξA, 9), η(ξA, 11), η(ξA, 13), η(ξA, 15)}. According to the
descending sorting rule of sequence S, thematrixBP is evenly
divided into 8 blocks from top to bottom, and backfilled
into the 8 layer bit-level images to obtain the permutated
numerical matrix PC.
Remark 8: The proposed ‘‘permutation’’ operation of the

proposed image encryption algorithm embeds row and col-
umn cyclic bit-shifting into the layer extraction and backfill-
ing of 8 bit-level images, which is different from the common
pixel scrambling and layered bit-level image shifting directly.
By combining the layel extraction and backfilling rely-
ing on internal keys with the cyclic bit-shifting relying on
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FIGURE 7. Cases of different partition blocks.

external keys, the algorithm has both confusion and diffusion
functions.
Step 3: Set the external encryption keys S_dif, E_dif and

V_dif, and divide the image matrix PC into 6 blocks as shown
in the Fig. 7, where the actual size is indicated by a solid
black line, while the ideal size that can be divided equally
is indicated by a dashed blue line. These 6 image blocks
can undergo parallel diffusion operations simultaneously.
As shown in the figure, there may be situations where the
image matrix PC cannot be evenly divided (such as labeled
cases 2-6). Please refer to Algorithm 1 for details.
Remark 9: The ‘‘diffusion’’ operation of the proposed

image encryption algorithm takes only dividing the image
into 6 blocks as an example for parallel diffusion. In fact,
due to the diversity of the combination methods of the output
measurements of the agent itself and its neighboring agents,
the image can be divided into more blocks, which can greatly
improve the efficiency of image encryption.
Step 4:According to the layering method in step 1, reorga-

nize the diffused image C to obtain the encrypted image.
Correspondingly, the image decryption algorithm is the

inverse process of image encryption. It must be pointed out
that whether the receiving agent can perfectly recover the
original plain image depends on three aspects. Firstly, the
multiagent system can achieve bipartite consensus to ensure
that the encryption and decryption keystreams are bipartite
synchronized accordingly. Secondly, the internal encryption
key is packaged and sent by the data packet, ensuring the con-
sistency of the internal key at the receiving and sending ends.
Finally, the external encryption keys and external decryption
keys must be exactly the same, which can be agreed upon in
advance.

C. EXPERIMENT AND PERFORMANCE ANALYSIS
Based on the example in Section IV, the network topology
and system parameters of the multilayer multiagent system
have been given. Assuming that in the multiagent communi-
cation system, agent 3 on the upper layer transmits images
to agent 5 on the lower layer. The output measurements of
agent 3 and its neighboring agents (such as 2, 4, 6) are used
as the encryption keystreams, while the output measurements

Algorithm 1 Image Diffussion Encryption Step
Set the external encryption keys S_dif, E_dif and V_dif,
the transient values Y1_tmp, Y2_tmp, Y3_tmp, Y4_tmp,

Y5_tmp and Y6_tmp;
[L1, L2]=size(PC);

for k = 1:ceil(L1/2)
for l = 1:ceil(L2/3)
Y1 = mod( floor(yi(1, S_dif)∗10(mod(E_dif ,15)+1)), 256);
Y2 = mod( floor(yi(2, S_dif)∗10(mod(E_dif ,15)+1) ), 256);
Y3 = mod( floor((yi(1, S_dif) + yi(2, S_dif))
∗10(mod(E_dif ,15)+1)),256);
Y4 = mod(floor((y′i(1, S_dif) – y

′
i(2, S_dif))

∗10(mod(E_dif ,15)+1)),256);
Y5 = mod(floor((–y′i(1, S_dif)+y

′
i(2, S_dif))

∗10(mod(E_dif ,15)+1)),256);
Y6 = mod(floor((–y′i(1, S_dif)–y

′
i(2, S_dif))

∗10(mod(E_dif ,15)+1)),256);
C(k , l)= mod( PC(k , l) + Y1– bitxor(V_dif, Y1_tmp),
256);
V_dif = mod(V_dif + C(k , l), 256); % block ①
C(k , ceil(L2/3)+ l)=mod(PC(k , ceil(L2/3)+ l) + Y2–

bitxor(V_dif, Y2_tmp), 256 );
V_dif=mod(V_dif+ C(k, ceil(L2/3)+l ),256); % block ②
if l <=( L2–2∗ ceil(L2/3))
C(k , 2∗ ceil(L2/3)+l)= mod( PC(k , 2∗ ceil(L2/3)+l) +

Y3–
bitxor(V_dif, Y3_tmp), 256 );

V_dif = mod(V_dif + C(k , 2∗ ceil(L2/3)+l),256);
end % block ③
if k<=( L1– ceil(L1/2))
C(ceil(L1/2)+k , l)= mod( PC(ceil(L1/2)+k , l) + Y4–

bitxor(V_dif, Y4_tmp), 256 );
V_dif = mod(V_dif + C(ceil(L1/2)+k , l),256);
C(ceil(L1/2)+k ,ceil(L2/3)+l) = mod( PC(ceil(L1/2)+k ,

ceil(L2/3)+l) + Y5– bitxor(V_dif, Y5_tmp), 256 );
V_dif=mod(V_dif+C(ceil(L1/2)+k ,ceil(L2/3)+l),256);
end % block ④,⑤
if k<=( L1–ceil(L1/2)) && l <=( L2–2∗ ceil(L2/3))

C(ceil(L1/2)+k ,2∗ ceil(L2/3)+l)=
mod(PC(ceil(L1/2)+k ,

2∗ ceil(L2/3)+l)+Y6– bitxor(V_dif, Y6_tmp), 256
);
V_dif= mod(V_dif+ C(ceil(L1/2)+k,2∗ ceil(L2/3)+ l),
256);

end % block ⑥
S_dif = S_dif + mod(V_dif, 17)+1;
E_dif = E_dif + C(k , l) + C(k , ceil(L2/3)+l)+ V_dif;
Y1_tmp = Y1; Y2_tmp = Y2; Y3_tmp = Y3;
Y4_tmp = Y4; Y5_tmp = Y5; Y6_tmp = Y6;
end
end

of agent 5 and its neighboring agents (such as 4, 6) are used
as the decryption keystreams.
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FIGURE 8. Encryption and decryption results of different images: (a)plain
image, (b)encrypted image and (c)decrypted image of ‘‘Lena’’; (d)plain
image, (e)encrypted image and (f)decrypted image of ‘‘Cameraman’’.

Given the external encryption keys as start shifting times-
tamps R_Sft = 2234 and C_Sft = 2134, start diffusion
timestamp S_dif = 2345, diffusion initial value V_dif =

98, and diffusion exponential value E_dif = 12, the plain
images ‘‘Lena’’ and ‘‘Cameraman’’ are encrypted by agent
3 respectively to obtain encrypted images. Then the encrypted
image, characteristic value of the plain image, the number 3 of
the transmitted agent are combined to form a data packet for
transmission. Similarly, given the external decryption keys as
start shifting timestamps Rd_Sft= 2234 and Cd_Sft= 2134,
start diffusion timestamp Sd_dif =2345, diffusion initial
value Vd_dif= 98, and diffusion exponential value Ed_dif=
12, the agent 5 decrypts the encrypted image decomposed
from the receiving data packet to obtain the decrypted image
and recover the original plain image. The encryption and
decryption results of color and grayscale images are shown
in Fig. 8.

1) KEY SPACE
The encryption keys of the proposed image encryption
scheme consist of encryption keystreams, internal encryption
key and external encryption keys. The encryption keystreams
are mainly related to the system model parameters (A1, A2,
C1 and C2) and discretization step size T, the internal encryp-
tion key only depends on the original plain image, and the
external encryption keys are discussed and set by the receiver
and sender in advance, such as R_Sft, C_Sft, S_dif, V_dif
and E_dif. According to the computer’s calculation precision
of 10−16, the key space of the proposed image encryption
scheme can amount to 10(16 × 7 + 3 × 5) = 10127, which
is large enough to resist exhaustive attacks.

2) KEY SENSITIVITY
A robust image secure communication must be sensitive to
keys, that is, even a slight change of the keys can result in the
‘‘completely different’’ outcome. The key sensitivity of the

system is mainly analyzed from two aspects, the sensitivity
of the encryption keys and the sensitivity of the decryption
keys.

a: SENSITIVITY OF ENCRYPTION KEYS
To facilitate testing the sensitivity of encryption keys, only
a single minor change is made to individual encryption key
every time, such as a = 10 + 10−15 or b = 25 + 10−15

or V_dif = 99, so as to observe the difference of encrypted
images. Comparing the encrypted image obtained from the
slightly changed encryption keys with the encrypted image
shown in Fig. 8 (b) and (e), the corresponding error images
can be obtained, as shown in Fig. 9, where Fig. 9 (a) - (c) are
the corresponding error images of color image ‘‘Lena’’, and
Fig. 9(d) - (f) are the corresponding error images of grayscale
image ‘‘Cameraman’’. Obviously, even a small change in the
encryption keys can lead to significant differences between
encrypted images.

FIGURE 9. Error images with slight changed encryption keys, (a) - (c) are
the corresponding error images of color image ‘‘Lena’’, and (d) - (f) are the
corresponding error images of grayscale image ‘‘Cameraman’’.

In order to further quantitatively analyse the impact of sub-
tle changes in encryption keys on encryption performance,
NPCR (number of pixel change rates) and UACI (unified
average change intensity) are introduced, as defined,

NPCR =

∑m
i=1

∑n
j=1D(i, j)

m× n
× 100% (18)

UACI =

∑m
i=1

∑n
j=1 |C1(i, j) − C2(i, j)|

255 × m× n
× 100% (19)

where D(i, j) stands for the difference between encrypted
image C1(i, j) and encrypted image C2(i, j), defined by the
following formula,

D(i, j) =

{
1, if C1(i, j) ̸= C2(i, j)
0, else

(20)

Here, we analyse the encryption effect of six types of slight
changes in encryption keys, such as (1)a = 10 + 10−15,
(2)b = 25 + 10−15, (3)c = 28 + 10−15, (4)R_Sft = 2235,
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TABLE 1. NPCR and UACI values of different images.

(5)C_Sft = 2344 and (6)V_dif = 99, still using color image
‘‘Lena’’ and grayscale image ‘‘Cameraman’’ as examples.
As shown in Table 1, the NPCR of the encrypted image
is close to 1, and its UACI also reaches the ideal value,
indicating that even a single slight change in the encryption
key can lead to completely different encrypted image.

b: SENSITIVITY OF DECRYPTION KEYS
Similarly, only a single minor change is made to decryption
keys each time, such as ã = 10 + 10−15 or b̃ = 25 + 10−15

or Vd_dif = 99. The decrypted effects of the color encrypted
image (as shown in Fig. 8(b)) and the grayscale encrypted
image (as shown in Fig. 8(e)) are exhibited in Fig. 10, respec-
tively. As can be clearly seen, the recovered images are all in
a mess and do not reveal any traces of plain images.

In order to assess the quality of decrypted images more
clearly, PSNR (peak signal-to-noise ratio) and RMSE (root
mean square error) are used to measure the difference
between the decrypted image and original plain image. The
PSNR is defined as,

PSNR = 10 log10
2552

MSE
(21)

where MSE (mean square error) is expressed as follows,

MSE =

∑m
i=1

∑n
j=1

∑3
k=1 [X (i, j, k) − Y (i, j, k)]

2

3 × m× n
,

for color image

MSE =

∑m
i=1

∑n
j=1 [X (i, j) − Y (i, j)]2

m× n
,

for gray scale image

(22)

wherem and n denote the size of the original image X and the
compared image Y.

The RMSE is written as,

RMSE =

√√√√∑m
i=1

∑n
j=1

∑3
k=1 [X (i, j, k) − Y (i, j, k)]

2

3 × m× n
,

for color image

RMSE =

√∑m
i=1

∑n
j=1 [X (i, j) − Y (i, j)]2

m× n
,

for gray scale image

(23)

The PSNR and RMSE of decrypted images in
Fig.8 (c) and (f) are ∞ and 0, respectively, which is an ideal
condition to prove that the decrypted images have the same
values as plain images. The adopted subtle changes in decryp-
tion keys are similar to encryption keys. However, the PSNR
and RMSE values of the decrypted images are completely
different from the ideal values, as shown in Table 2.

FIGURE 10. Decrypted images with slight changed decryption keys (a-c
for color image ‘‘Lena’’, d-f for gray image ‘‘Cameraman’’).

TABLE 2. NPCR and UACI values of different images.

3) PERFORMANCE AGAINST STATISTICAL ATTACKS
Statistical attacks are used to decipher original image infor-
mation by analyzing the statistical rules of encrypted images,
which are mainly reflected in the histogram, correlation and
information entropy of the image. That is to say, an excellent
image encryption scheme must be able to resist statistical
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TABLE 3. Histograms of several images.

attacks including histogram, correlation, and information
entropy of the image.

a: HISTOGRAM
Some typical images are selected from the standard image
database, which have been tested and presented in Table 3,
including four color images (‘‘Lena’’, ‘‘Peppers’’, ‘‘House’’,
‘‘Airplane’’) and four grayscale images (‘‘Cameraman’’,
‘‘Clock’’, ‘‘Pallon’’, ‘‘Boat’’). From Table 3, it can be demon-
strated that the histograms displayed in the last column is
completely different from the histograms shown in the third
column, with uniform distribution to eliminate the distribu-
tion information of the original plain image.

b: CORRELATION
To analyze the correlation performance, 10000 pairs of
adjacent pixels (horizontal, vertical, diagonal, and counter-
diagonal directions) are randomly selected from plain and
encrypted images. Still taking the color image ‘‘Lena’’ and
grayscale image ‘‘Cameraman’’ as examples, Fig. 11 exhibits
the correlation distribution between different color channels
and different adjacent pixel directions, which indicates that

FIGURE 11. Correlation of differen image channels: (a)red channel,
(b)green channel and (c)blue channel of plain image ‘‘Lena’’; (d) plain
grayscale image of ‘‘Cameraman’’; (e)red channel, (f)green channel and
(g)blue channel of encrypted image with ‘‘Lena’’; (h) encrypted grayscale
image of ‘‘Cameraman’’, where black dots represent the horizontal
direction, yellow dots represent the vertical direction, rose-red dots
represent the diagonal direction, and cyan-blue dots represent the
counter-diagonal direction.

unlike the strong correlation between adjacent pixels in plain
images, the correlation between adjacent pixels in encrypted
images is significantly reduced and is evenly distributed.

In order to further quantitatively analyze the statistical
performance of image encryption, the correlation coefficient
is introduced. The correlation coefficients of adjacent pix-
els in the horizontal, vertical, diagonal and counter-diagonal
directions are calculated using the following formula,

rx,y =
E((x − E(x))(y− E(y)))

√
D(x) · D(y)

(24)

where x and y are the grayscale values of two adja-
cent pixels, and E(x) = 1/

10000
∑10000

k=1 xk , D(x) =

1/
10000

∑10000
k=1 (xk − E(x))2. From Table 4, it is evident that
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TABLE 4. Correlation coefficients of different images in four directions.

FIGURE 12. Information entropies of differnet encrypted images.

the values of correlation coefficient are mainly distributed in
different directions of the plain image, which indicates that
the correlation of the pixels is very high (closer to 1). While
the correlations of encrypted images are uniform and are
almost uncorrelated (closer to zero). Therefore, the proposed
image encryption scheme can greatly reduce the correlation
of the plain image.

c: INFORMATION ENTROPY ANALYSIS
Information entropy (IE) is a key parameter for calculating
the randomness of encrypted images, which can be calculated
as follows,

H (m) =

∑m×n

i=1
P(mi) log2

(
1

P(mi)

)
(25)
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TABLE 5. NPCR and UACI values of encrypted images with slight changed plain images.

where P(mi) stands for the probability of pixel grayscale
value mi, and 0 ≤ P(mi) ≤ 1,

∑m×n
i=1 P(mi) = 1. Assuming

that the probability of pixel grayscale values 0-255 is equal,
the ideal value of information entropy for randomly selected
image is 8. Eight typical images are still selected for analysis,
and the experimental results are shown in Fig. 12, indicating
that all encrypted images can provide nearly ideal information
entropy performance.

From the above analysis, it further confirms that the pro-
posed multiagent image encryptiong/decryption scheme has
a strong ability to resist the statistical attacks.

4) RESISTANCE TO DIFFERENTIAL ATTACKS
Due to the introduction of the concept of internal encryption
keys, which means that the image encryption effect is related
to the original plain image, NPCR and UACI indicators are
used to analyze the impact of encryption effect. Minor modi-
fications are made to the pixel values of the plain image, such
as subtracting 1 and then taking the absolute value, selecting
the positions of the modified pixels as (1) top-left corner,
(2) top-right corner, (3) bottom-left corner, (4) bottom-right
corner and (5) middle position. The corre-sponding results
of 8 standard testing images are listed in Table 5. From the
table, it can be observed that the NPCR of each encrypted
image is close to 100%, and the UACI also approaches to
the ideal value. Therefore, the proposed multiagent system

image encryption scheme can effectively resist differential
attacks, as even if the original plain image undergoes slight
changes, the generated encrypted image will be completely
different.

VI. CONCLUSION
This paper has investigated the bipartite consensus problem
for T-S fuzzy multilayer cooperation-competition multiagent
networks with additive couplings and its application. Fuzzy
control laws are proposed by using the output measurements
from neighboring agents. Under the assumptions of the mul-
tilayer signed graphs that are undirected and simutaneously
structurally balanced, sufficient conditions of bipartite con-
sensus have been obtained for the considered multilayer
multiagent networks. Coupled chaotic Lorenz systems over
multilayer and signed networks have been provided to verify
the validity of the derived results. Then, the obtained results
are applied to image encryption/ decryption by constructing
a multilayer multiagent image communication system. The
experimental results show that the system has excellent per-
formance in resisting exhaustive attacks, statistical attacks
and differential attacks. It could be very interesting to extend
the developed results to interval type-2 T-S fuzzy Markov
jump multiagent systems, which will be our research topic
in near future.
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