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ABSTRACT Endoscopic image analysis has played a pivotal function in the diagnosis and management of
gastrointestinal (GI) tract diseases. Gastrointestinal endoscopy is a medical procedure where a flexible tube
with an endoscope (camera) is inserted into the GI tract to visualize the inner lining of the colon, esophagus,
stomach, and small intestine. The videos and images attained during endoscopy provide valuable data for
detecting and monitoring a large number of GI diseases. Computer-assisted automated diagnosis technique
helps to achieve accurate diagnoses and provide the patient the relevant medical care. Machine learning
(ML) and deep learning (DL) methods have been exploited to endoscopic images for classifying diseases
and providing diagnostic support. Convolutional Neural Networks (CNN) and other DL algorithms can
learn to discriminate between various kinds of GI lesions based on visual properties. This study presents
an Endoscopic Image Analysis for Gastrointestinal Tract Disease Diagnosis using an inspired Algorithm
with Deep Learning (EIAGTD-NIADL) technique. The EIAGTD-NIADL technique intends to examine the
endoscopic images using nature nature-inspired algorithm with a DL model for gastrointestinal tract disease
detection and classification. To pre-process the input endoscopic images, the ETAGTD-NIADL technique
uses a bilateral filtering (BF) approach. For feature extraction, the EIAGTD-NIADL technique applies an
improved ShuffleNet model. To improve the efficacy of the improved ShuffleNet model, the EIAGTD-
NIADL technique uses an improved spotted hyena optimizer (ISHO) algorithm. Finally, the classification
process is performed by the use of the stacked long short-term memory (SLSTM) method. The experimental
outcomes of the EIAGTD-NIADL system can be confirmed on benchmark medical image datasets. The
obtained outcomes demonstrate the promising results of the ETAGTD-NIADL approach over other models.

INDEX TERMS Image processing, nature-inspired algorithms, deep learning, endoscopy images, gastroin-
testinal tract diseases.

I. INTRODUCTION cancer, and stomach cancer are [1]. Endoscopic analyses are

Gastrointestinal (GI) diseases are widespread in the human
digestive system. A major popular corresponding to fatali-
ties and occurrences namely Esophageal cancer, colorectal

The associate editor coordinating the review of this manuscript and
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required for diagnosing diseases and usually make the serious
earlier action to detect GI tract diseases. These analyses
also increase the diagnostic of medical features of diseases
for identifying their category and seriousness and to reach
suitable analyses [2]. Differences in the capability of var-
ious physicians have introduced errors in any condition,
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particularly in terms of disputed issues of analytic videos
and images from endoscopic analyses [3]. This discrepancy
should be caused by misidentifications and negative implica-
tions on patient attention. Classification of automated disease
may overcome this problem through physicians with depend-
able and objective diagnosis of numerous GI endoscopic
images thus, reducing the diagnostic error rate, enhancing
prediction, and saving medical specialists valued time [4].
As aresult, Automated GI disease classification has an avail-
able field of study for achieving efficient lesion identification
and classification accuracy [5].

Computer-aided diagnosis (CAD) system employs arti-
ficial intelligence (AI) and medical image processing to
support radiologists in identifying diseases and analyzing the
images [6]. CAD aids the radiologist in diagnosing irregular-
ities and decision-making more quickly. Primarily, machine
learning (ML) systems namely Decision Tree (DT), RF,
SVM, and Naive Bayes (NBs) are implemented for classi-
fying the endoscopic images [7]. The effectiveness of the
ML algorithm majorly depends on the detected features for
developing the frameworks [8]. The main limitation of an ML
method is the need a specialist experts like a gastroenterol-
ogist, to properly detect the essential features employed for
classification [9], [10]. Because of the new developments in
Al, Deep Learning (DL) techniques perform a crucial part
in supporting radiologists in physical analysis and assisting
in the identification of diseases [11]. DL algorithms can be
the ability to automate feature extraction, which provides for
enhancing the effectiveness of the model [12], [13]. Convolu-
tional neural networks (CNNs) indicate superior performance
for extracting features than ML techniques [14]. The pre-
diction accuracy has been resolved by the quality and size
of the database, model framework, and hyperparameter of
architecture. The main challenge of the CNN approach was
the need for a massive quantity of data to make a robust model
[15], [16]. During the medical sector, the quantity of test and
training data accessible for developing a powerful system has
been restricted. In this condition, transfer learning (TL) algo-
rithms perform a major part of designing a strong system [17].

This study presents an Endoscopic Image Analysis for
Gastrointestinal Tract Disease Diagnosis using an inspired
Algorithm with Deep Learning (EIAGTD-NIADL) tech-
nique. Primarily, the EIAGTD-NIADL technique uses a
bilateral filtering (BF) approach. For feature extraction, the
EIAGTD-NIADL technique applies an improved ShuffleNet
model. To improve the efficacy of the improved ShuffleNet
model, the EIAGTD-NIADL technique uses an improved
spotted hyena optimizer (ISHO) algorithm. Finally, the classi-
fication process is performed by the exploitation of a stacked
long short-term memory (SLSTM) method. The achieved
outcome of the ETAGTD-NIADL system can be tested with
benchmark medical image databases.

Il. RELATED WORKS
Obayya et al. [18] presented a Modified Salp Swarm
Algorithm with DL-assisted GIT Disease Classification
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(MSSADL-GITDC) on Endoscopic Images. This developed
MSSADL-GITDC method mostly considers the analysis of
wireless capsule endoscopy (WCE) images for classifying
GIT. This implemented MSSADL-GITDC approach devel-
ops enhanced CapsNet architecture for extracting features but
the CapsNet framework was adapted by the class attention
layer (CAL). The DBN-ELM has been deployed for classi-
fying GIT. Ramamurthy et al. [19] designed a new model
for classifying endoscopy images by considering feature
extraction with the help of the CNN method. This algorithm
introduced was made by incorporating a current framework
(for example, EfficientNet BO) with a customized CNN
model termed Effimix. This implemented Effimix method
utilizes an integration of excitation and squeeze layers and
self-normalizing activation layers to correctly classify GI
diseases. In [20], a DL algorithm was exploited for the clas-
sification of GI diseases. The pretrained process ResNetSO
was fine-tuned by utilizing TL for extracting deep features
from WCE images.

Su et al. [21] designed a novel and real-world technique
for diagnosing GI disease from WCE images through CNN
algorithms. This introduced approach applies 3 backbone
networks fine-tuned and adapted by the TL method like
the feature extraction, and an incorporated method exploit-
ing ensemble learning has been trained for diagnosing GI
diseases. Haile et al. [22] developed a combined NN archi-
tecture by integrating the removed features of InceptionNet
and VGGNet networks to design a GI disease diagnostic
framework. The DCNNs InceptionNet and VGGNet have
been trained and employed for extracting features at the
specified endoscopic images. Further, these removed features
were combined and categorised by utilizing ML classi-
fication models namely RF, SVM, Softmax, and KNN.
In [23], An innovative method was implemented dependent
upon the integration of geometric features and the DCNN
model. Mainly, the diseased area was extracted from spec-
ified WCE images by employing a novel method called
contrast-improved colour features. Then, Geometric features
have been removed from the segmented disease region. The
desired features could be lastly categorized through K-NN.

Mohapatra et al. [24] introduced a smart medical technique
for diagnosing numerous irregularities existing in the GI areas
by implementing a CNN model and time-frequency exami-
nation. The primary stage of the analysis comprises an image
preprocessing stage and then extracted predictable discrete
wavelet transform (DWT) coefficients. Escobar et al. [25]
recommended a method to support medical diagnostic pro-
cedures of diseases and abnormalities in the GIT dependent
upon the categorization of extracted features from endo-
scopic images with a category of CNN and TL algorithms
fine-tuning.

lll. THE PROPOSED MODEL

In this study, we have derived an automated gastroin-
testinal tract disease detection and classification model,
named the EIAGTD-NIADL system. The main objective
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FIGURE 1. Overall process of the EIAGTD-NIADL algorithm.

of the EIAGTD-NIADL method is to test the endoscopic
images using a nature-inspired method with a DL model
for gastrointestinal tract disease detection and classification.
The EIAGTD-NIADL technique comprises BF-based pre-
processing, improved ShuffleNet feature extractor, ISHO-
assisted parameter tuning, and SLSTM-based classification.
Fig. 1 shows the complete process of the EIAGTD-NIADL
methodology.

A. BF-BASED IMAGE PRE-PROCESSING

The BF approach is used to pre-process the input images.
BF is a basic technology in medical image processing, where
it acts as a robust mechanism to enhance the clarity and
quality of medical imaging [26]. Whilst retaining edges
and fine details by efficiently reducing artefacts and noise,
BF greatly contributes to improving the accuracy of medical
image analysis, aiding healthcare professionals and radiolo-
gists in making accurate diagnoses and treatment decisions.
It’s versatile and nature adaptive making bilateral filtering
especially suitable for augmenting diagnostic images.

B. FEATURE EXTRACTION USING IMPROVED SHUFFLENET
An enhanced ShuffleNet model is applied to extract the fea-
tures. The lightweight network model is a ShuffleNetV?2 used
to accelerate the operation and drastically decrease the size
of the models without comprising the performance [27]. The
breakthrough of this model is that it makes efficient use of the
group convolution and channel shuffle to decrease the number
of parameters and the computation amount of the models.
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In particular, channel shuffle is used to disrupt the channel
of feature maps and recreate new feature maps to resolve
the problems of worse data flow generated by the group
convolutional. Too much group convolutional might result in
a large MAC overhead. The output channel counts consec-
utively increase as the network depth upsurges, whereas the
output channel counts of Conv5, Stage 2, Stage 3, and Stage 4
successively increase, the feature extraction capability is
considerably improved, and the recognition performance is
constantly enhanced. The fundamental architecture of Shuf-
fleNetV2 comprises two kinds of blocks. Blockl1 arbitrarily
splits the input channels into 2 parts: the former preserves
its mapping and transfers directly downwards; the latter
implements separable convolutions for extracting the image
features. At the bottom of the model, the output channel of
both parts is fused to double the last output channel. Next,
an arbitrary mixing function can be implemented on the last
resultant feature graph channel. Block 2 is used to send each
feature diagram into two network branches.

In ShuffleNetV2, each feature channel has similar weights
and passes through the amount of channels doubles each time
Block 2. Much attention is paid to doubling the number of
channels to the feature channel with a significant effect on
the classification outcomes. In the meantime, the depthwise
convolution applied in Block 2 has a sensitivity to the position
of sensitive features, and excessive background details were
maintained that easily affect the classification effects.

The attention module focuses on the research area and
tries to overwhelm the role of the research area in image
enhancement. In DL-CNN, the attention mechanism is split
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into spatial and channel attention models. Spatial attention
determines the weight relationships among dissimilar pixels
in the spatial domain, which enhances the weight of area
pixels, allows greater consideration of the area of interest,
and minimizes the weight of unwanted areas. The channel
attention determines the weight relationships between the
channels, which enhance the weights of key channels, and
suppress the channel with slight inhibitive effects.

The SE attention module determines the weight in the
channel attention model that accomplishes priority by allocat-
ing weights among dissimilar channels. It adjusts the weight
based on the dissimilar feature channels, which improves the
feature channel automatically with available data in the image
as well as suppresses the feature channel irrelevant to the
target efficiently.

C. DESIGN OF ISHO-BASED HYPERPARAMETER TUNING
In this work, the ISHO method could be implemented for
the hyperparameter tuning model. The SHO relies on social
activities and the relationships among hyenas [28]. It is
mostly the encircling, attacking, searching, and hunting strat-
egy of hyenas. SHO simulates the movement of spotted
hyenas to accomplish a better performance. Encircling is
determined by the subsequent 2 formulas.

— — —
th = |AEp (x) — & (x) (H

— — —

§ x+1)=§ (x) —B.& (2

whereas £, represents the better feature vector (FV),
&(x) denotes the existing FV, and ¢, stands for the distance
to be equivalent hyena would travel to catch their target. The
coefficients A and B can be measured as:

A=24d 3)

B=2hdy—h “@
k%5

h=5-—2* (5)
maxjy

whereas, k' refers to the value of existing iteration and maxy
denotes the maximum round counts. The vector /4 has been
decreased from [5-0], as represented in Eq. (5), and d; and d»
define the random numbers from the interval of zero and one.
The subsequent formulas map the hunting areas of spotted
hyenas:

— - -

o =|ax8 - &| ©)
- = —

Sk =& —Bx @)
- =  — —

On =8k + Gev1+ ... Hl4n (®)

whereas &, signifies the searching space of equivalent
hyenas O; determines the cluster of better outcomes and
N represents the iteration counts that are measured as:

-> —> —> —
N = count, (Ch, Sht1s Sht2s - - - ,§h+M) 9
—
7 _On
L (x+1)= N (10)
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In which, n indicates the no. of solutions thgt) have been
in a region near optimum solution. The vector M illustrates
the arbitrarily adjusted vector among 0.5 and 1. An optimum
solution ?(x—}—l) supports upgrading the residual solutions
at the termination of all the iterations. The search of hyenas
is made sure to employ the arbitrary coefficients A and B but
the exploration begins if —1 < B < 1 and A from zero to
five; and assists as a weighted for the equivalent hyena. The
optimizer method starts with the initialization of an arbitrary
population, all the hyenas mark their region and with all the
iterations, the coefficient 4 can reduced linearly. Optimum
agents are then fetched after all the iterations. The ISHO
algorithm can be designed by the use of Logistic Sine-Cosine
Chaotic mappings.

Nowadays, chaotic mapping is commonly ma applied for
generating the population initialization produced by arbitrary
chaotic sequences in intelligence optimizer techniques [29].
Presently, this technique is conventional in image encryption,
image processing, and other domains, and several researchers
also applied it in early populations which generate intelli-
gence optimization techniques. The most frequently utilized
chaotic mappings are Logistic mapping and Sine mapping,
however, the low-dimension chaotic mapping was challeng-
ing to procedure population distribution, hence The sine,
Logistic dimension chaotic mapping was combined with
Cosine mapping to procedure complicated chaotic mapping
to address the shortcomings of worse distribution of lowest
dimension mappings and it can be formulated by:

Xit1 =cos(mw - (4-p-Xi) - (1 —Xi)
+ (1 — p) sin (7 - X;) —0.5) (11)

where pe [0, 1], all the individuals in the population were
considered by the rows and columns of the matrix to be the
location in space. All the points in the images are assumed
as individuals in the initial population, and the location and
distribution of duplicate individual was observed. The mixed
chaotic mapping was equally allocated, and the initialized
effects of the sparrow population were more effective than
the mapping effects of low-dimension chaos.

The fitness selection is an essential parameter in the ISHO
method. An encoded Solution is applied to measure the good-
ness of the solution candidate. Then, the accuracy values are
the major form exploited to generate a FF.

Fitness = max (P) (12)
TP
P=—— (13)
TP + FP

where FP and TP denote the false and true positive values.

D. IMAGE CLASSIFICATION USING SLSTM MODEL

Finally, the SLSTM model can be applied to image classifi-
cation. LSTM approaches are deep RNN techniques that are
commonly applied in several applications like time series,
sentiment and language analysis, and voice detection mod-
els [30]. An RNN is a procedure of NN employed for solving
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sequential issues. It takes cyclic connections among several
layers that support it to learn the preceding data. The output
in the deep layer offers feedback as input to the other states
or networks, together with the second input vectors. This
recurrent connection works as a memory for the models,
permitting it to learn and employ the sequence of functions
as an input series. The standard RNN approach takes the
drawback of being complex for training that needs to learn
long-term temporal relations.

LSTM is a difficult RNN algorithm enhanced with memory
units, which store data for lengthy processes. LSTM differen-
tiates itself from a typical FFNN but it takes cycles that feed
network actions in a preceding timestep as an input to the
network for improving forecasts at the existing time interval.
Accordingly, the recurrent connection generates a memory
of previous implementations that is implicitly recorded from
its hidden layer parameters. Then, it offers the optimum
performances if temporal dependence from the data sequence
is a vital implicit element and learning in prior steps can be
needed to estimate ability trends in the future.
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FIGURE 2. Architecture of SLSTM.

The LSTM algorithm contains 3 kinds of gates that manage
the data flow such as forget, output, and input. An input gate
defines that data to include in the existing input to the cell
layer, the forgetting gate defines that data can be rejected
in the cell layer, leaving just correct data and the resultant
gate defines that data to output in the existing cell layer. The
formulas for LSTM can expressed in the given below:

i. =0 (Wi - [he—1, x;] + b)) (14)
fo =0 (W - [he—1, x:] + by) (15)
0; =0 (W - [he—1,x:] + by) (16)
C = tanh (Wc - [h;—1, x:]1 + bc) (17)
C. =f£0C—1 +i*C; (18)
h, = O; © tanh (C) (19)

whereas h; demonstrates the hidden layer (HL), C; defines
the cell layer, and o implies the logistic sigmoid function
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to create numbers between zero and one and explains that
several of all the components must be passed by the gates.
©® denotes the multiplication that occurred in the data flow.
Besides, tanh signifies the hyperbolic tangent function that
ranges among [—1, 1] for overcoming the gradient disappear-
ing problems and creates a novel vector that is more to the
cell layer. In a SLSTM network, multiple LSTM layers are
connected sequentially, forming a deep architecture. Fig. 2
illustrates the structure of SLSTM. The output of one LSTM
layer serves as the input to the next layer. Stacking LSTMs
allows the network to learn difficult hierarchical representa-
tions of sequential data.

IV. RESULTS AND DISCUSSION

In this section, the performance validation of the EIAGTD-
NIADL system could be analyzed using the Kvasir
dataset [31], comprising 8000 samples with 8 classes as
represented in Table 1. Fig. 3 depicts the sample images. The
proposed model is simulated using the Python 3.8.5 tool on
PC i5-8600k, GeForce 1050Ti 4GB, 16GB RAM, 250GB
SSD, and 1TB HDD. The parameter settings are given as
follows: learning rate: 0.01, dropout: 0.5, batch size: 5, epoch
count: 50, and activation: ReLU.

TABLE 1. Details on database.

Class Labels | No. of Instances
Dyed Lifted Polyps C-1 1000
1]\)/I}e/:;«.‘gliﬁsesectlon c2 1000
Esophagi Tis C-3 1000
Normal-Cecum C-4 1000
Nonnal-Pylorus C-5 1000
Nonnal-Z-Line C-6 1000
Polyps C-7 1000
Ulcerative Colitis C-8 1000
Total No. of Instances 8000

FIGURE 3. Sample endoscopic images from the Kvasir dataset.
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FIGURE 4. (a-b) Confusion matrices for 80:20 of TR phase/TS phase and (c-d) 70:30 of

TR phase/TS phase.

TABLE 2. Disease detection analysis of EIAGTD-NIADL model with 80:20
of TR phase/TS phase.

Class | Accu, | Prec, | Reca, | Fopre | AUC | McC
TR Phase (80%)

C1 | 9897 |9593 |9593 | 9593 | 97.67 | 9534
C2 | 9900 |9673 |9529 | 9600 | 9741 | 9544
C3 | 9875 | 9452 | 9547 | 9499 | 97.34 | 9428
C4 | 9897 |9657 |9513 |9584 | 9732 | 9526
Cs | 9894 | 9547 | 9595 | 9571 | 9766 | 9511
C6 | 9908 | 9650 |9613 | 9631 |97.82 | 9579
C7 | 9900 | 9625 |9578 | 9601 | 97.62 | 9544
C8 | 9898 | 9480 |97.08 | 9593 | 9817 | 9536
Ave. | 9896 | 9585 | 9585 | 9584 | 97.63 | 95.25
TS Phase (20%)

C-1 | 9888 | 9385 |9683 | 9531 |97.99 | 94.69
C2 | 9925 |97.88 | 9585 | 9686 | 97.79 | 9644
C3 | 9869 |9510 | 9463 | 9487 | 9696 | 9411
C4 | 9856 | 9403 | 9450 | 9426 | 9682 | 93.44
C5 | 9931 | 9760 |97.13 | 9736 | 9838 | 96.97
C6 | 9881 | 9686 | 9343 | 9512 | 9650 | 9446
C7 | 9906 | 9500 | 9744 | 9620 | 9836 | 95.68
C8 | 9894 |9575 |9621 |9598 | 9778 | 9537
Ave. | 9894 | 9576 | 9575 | 9575 | 97.57 | 95.14

The confusion matrices achieved by the EIAGTD-NIADL
approach with 80:20 and 70:30 of the TR phase/TS phase
are given in Fig. 4. The outcomes signified the efficient
identification and classification of all 8 classes.

The disease detection results of the EIAGTD-NIADL tech-
nique on 80:20 of the TR phase/TS phase are presented in
Table 2 and Fig. 5.
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FIGURE 5. Average of EIAGTD-NIADL system at 80:20 of TR phase/TS
phase.

In Table 3 and Fig. 6, the disease detection outcome of
the EIAGTD-NIADL system at 70:30 of the TR phase/TS
phase is depicted. The achieved values depicted the bet-
ter performance of the EIAGTD-NIADL algorithm on all
classes. With 70% TR phase, the EIAGTD-NIADL tech-
nique attains average accity, precy, recaj, Fycore, AUCscore,
and MCC of 98.66%, 94.65%, 96.64%, 94.64%, 96.94%,
and 93.88% correspondingly. Next, with a 30% TS phase,
the EIAGTD-NIADL methodology achieves average accu,,
precy, recay, Fcore, AUCscore, and MCC of 98.68%, 97.74%,
94.70%, 94.72%, 96.97%, and 93.96% correspondingly.
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TABLE 3. Disease detection outcome of EIAGTD-NIADL algorithm at 70:30

of TR phase/TS phase.
Class ‘ Accu, | Prec, | Reca ‘ F. ‘ AUC McC
Labels y n 1 ‘Score Score
TR Phase (70%)
C-1 98.79 | 94.04 | 96.44 | 9522 | 97.78 94.54
C-2 98.80 | 95.89 | 9437 | 9513 | 96.90 94.45
C-3 98.75 9497 | 9549 | 9523 | 97.36 94.51
C-4 98.57 | 93.06 | 9527 | 94.15 | 97.15 93.35
C-5 98.52 94.17 93.76 93.96 96.47 93.12
C-6 98.54 | 9494 | 93.62 | 94.27 | 96.44 93.44
C-7 98.41 93.81 93.41 | 93.61 | 96.27 92.70
C-8 98.91 96.31 94.78 95.54 97.13 94.92
Average | 98.66 | 94.65 94.64 | 94.64 | 96.94 93.88
TS Phase (30%)
C-1 98.88 95.61 95.29 | 9545 | 97.33 94.81
C-2 98.92 95.47 96.09 95.78 97.71 95.16
C-3 98.96 | 95.52 95.17 | 95.34 | 97.30 94.76
C-4 98.33 93.56 | 94.14 | 93.85 | 96.56 92.88
C-5 98.38 93.87 93.57 | 93.72 | 96.33 92.79
C-6 98.58 9520 | 92.47 | 93.82 | 9593 93.03
C-7 98.79 | 94.46 | 96.03 | 9524 | 97.61 94.55
C-8 98.58 94.25 94.86 | 94.55 | 97.00 93.74
Average | 98.68 94.74 | 9470 | 94.72 | 96.97 93.96
100
@ Training Phase (70%)
@ Testing Phase (30%)
99 |
98
g
§ 97 1
g. 96
g
<
95
94 ] .
93 - n

Accuracy Precision Recall F-Score AUC Score mcc

FIGURE 6. Average of EIAGTD-NIADL model at 70:30 of TR phase/TS
phase.

The training and validation accuracy curves of the
EIAGTD-NIADL approach at 80:20 of the TR phase/TS
phase depicted in Fig. 7, offer valuable insights into the out-
come of the ETAGTD-NIADL approach over several epochs.
These curves highlight the essential insights into the learning
process and the model’s ability to generalize. Besides, it can
be noticeable that there is a consistency improvement in the
TR and TS accuracy over maximum epochs. It detected the
model’s capacity to learn and recognize patterns within both
the training and testing databases. The increasing testing
accuracy proposes that the model not only adjusts to the
training data but also excels in making accurate predictions on
previously unseen data, highlighting its robust generalization
capabilities.
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FIGURE 7. Accuy curve of EIAGTD-NIADL algorithm at 80:20 of
TR phase/TS phase.

In Fig. 6, we signify a comprehensive view of the TR
and TS loss outcomes for the EIAGTD-NIADL approach
at 80:20 of the TR phase/TS phase across various epochs.
The TR loss progressively reduces as the model improves its
weights to diminish classification errors on both the TR and
TS databases. These loss curves offer a clear picture of how
well the model aligns with the training data, underlining its
capability to efficiently hold patterns in both datasets. It is
worth noting that the proposed model incessantly refines its
parameters to reduce the discrepancies between the predictive
and the actual TR classes.

With respect to the precision-recall curve as pro-
vided in Fig. 9, the outcomes clearly confirm that the
EIAGTD-NIADL model at 80:20 of TR phase/TS phase
steadily accomplishes improved precision-recall values
across every class. The outcomes highlight the effectual capa-
bility of the model in the discrimination of different classes,
highlighting the effectiveness in the detection of classes.

Moreover, in Fig. 10, we present ROC curves produced by
the EIAGTD-NIADL approach at 80:20 of the TR phase/TS
phase, which excels in differentiating among the classes.
These curves offer valuable insights into the balance among
TPR and FPR across different classification thresholds and
epochs. The outcomes highlight the accurate classification

Training and Validation Loss (80:20)
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0 SN
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FIGURE 8. Loss curve of EIAGTD-NIADL algorithm with 80:20 of
TR phase/TS phase.
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FIGURE 9. PR curve of EIAGTD-NIADL algorithm with 80:20 of
TR phase/TS phase.
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FIGURE 10. ROC curve of EIAGTD-NIADL algorithm at 80:20 of
TR phase/TS phase.

outcome under distinct classes, highlighting the performance
in tackling various classification challenges.

To investigate the improved effectiveness of the EIAGTD-
NIADL technique, a brief comparative analysis is examined
in Table 4 and Fig. 11 [18], [32]. The results pointed
out that the EIAGTD-NIADL methodology reaches bet-
ter performance. Based on prec,, the EIAGTD-NIADL
technique offers increasing prec, of 95.85% while the
MSSADL-GITDC, ECA-Net Model, DL-OCT, LSMT-CNN,
Attention-Guided CNN, VGG16, and LR Tree models obtain
decreasing prec, values of 92.16%, 89%, 90.09%, 90.14%,
91.44%, 92.01%, and 87.04% respectively.

Meanwhile, based on reca;, the EIAGTD-NIADL
method attains an enhanced reca; of 95.85% while the
MSSADL-GITDC, ECA-Net Model, DL-OCT, LSMT-CNN,
Attention-Guided CNN, VGGI16, and LR Tree approach
gains lesser reca; values of 92.13%, 91.24%, 90.29%,
91.75%, 90.32%, 90.13%, and 89.17% correspondingly.
At last, based on accuy, the EIAGTD-NIADL method-
ology achieves a maximal accu, of 98.96% while the
MSSADL-GITDC, ECA-Net Model, DL-OCT, LSMT-CNN,
Attention-Guided CNN, VGGI16, and LR Tree systems
achieve lesser accuy values of 98.03%, 92.68%, 90.20%,
92.82%, 93.25%, 96.02%, and 94.13% correspondingly.
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TABLE 4. Comparative outcome of EIAGTD-NIADL algorithm with recent
approaches [18], [32].

Methods Prec, Recaq, Accu,, Fcore
EIAGTD-NIADL 95.85 95.85 98.96 95.84
MSSADL-GITDC 92.16 92.13 98.03 92.11
ECA-Net Model 89.00 91.24 92.68 88.42
DL-OCT Model 90.09 90.29 90.20 89.00
LSMT-CNN 90.14 91.75 92.82 91.98
Attention-Guided CNN | 91.44 90.32 93.25 91.05
VGG16 Model 92.01 90.13 96.02 91.24
LR Tree Algorithm 87.04 89.17 94.13 91.53
== EIAGTD-NIADL I LSMT-CNN Algorithm
[0 MSSADL-GITDC @ Attention-Guided CNN
[ ECA-Net Model == VGG16 Model
100 - I DL-OCT Model I LR Tree Algorithm
98
g 96
0
]
2 94
s
92
90 4
88 -
86 -

Precision Recall Accuracy F-score

FIGURE 11. Comparative outcome of EIAGTD-NIADL algorithm with
recent approaches.

These results confirmed the supremacy of the EIAGTD-
NIADL technique.

V. CONCLUSION

In this study, we have derived an automated gastroin-
testinal tract disease detection and classification model,
named EIAGTD-NIADL technique. The main objective of
the EIAGTD-NIADL system is to examine the endoscopic
images using a nature-inspired method with a DL model
for gastrointestinal tract disease detection and classifica-
tion. The EIAGTD-NIADL technique comprises BF-based
pre-processing, improved ShuffleNet feature extractor,
ISHO-assisted parameter tuning, and SLSTM-based classi-
fication. The achieved outcomes of the EIAGTD-NIADL
method are examined on the benchmark Kvasir dataset.
The obtained results demonstrate the promising results of
the ETAGTD-NIADL algorithm over other models with a
maximum accuracy of 98.96%. The improved ability of
the EIAGTD-NIADL approach is utilized for accurately
analyzing endoscopic images and videos leading to better
diagnostic accuracy. This has great to decrease misdiag-
noses and ensure that patients receive the correct treatment
promptly. By providing more correct disease classification
and monitoring, the ETAGTD-NIADL supports the progress
of personalized treatment plans for patients. In summary,
the EIAGTD-NIADL approach has practical implications
that comprise better diagnostic accuracy, early recognition,
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real-time medical support, personalized treatment, cost sav-
ings, better patient outcomes, and contributions to medical
training and research.

Future work is to observe the computational complexity
of the presented method on real-time databases. For future
work, the EIAGTD-NIADL technique can be extended to
contain a broader spectrum of gastrointestinal diseases, actu-
ally improving its clinical applicability. Furthermore, the
integration of real-time endoscopic image analysis and more
refinement of optimizer approaches offer avenues for enhanc-
ing the model’s responsiveness and diagnostic accuracy,
ultimately helping patient care and medical decision-making.
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