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ABSTRACT Joint velocity estimation is one of the essential properties that implement for accurate
robot motion control. Although conventional approaches such as numerical differentiation of position
measurements and model-based observers exhibit feasible performance for velocity estimation, instability
can be occurred because of phase lag or model inaccuracy. This study proposes a model-free approach
that can estimate the velocity with less phase lag by batch training of a neural network with pre-collected
encoder measurements. By learning a weighted moving average, the proposedmethod successfully estimates
the velocity with less latency imposed by the noise attenuation compared to the conventional methods.
Practical experiments with two robot platforms with high degrees of freedom are conducted to validate the
effectiveness of the proposed method.

INDEX TERMS Robotics, robot control, neural network, machine learning, state estimation.

I. INTRODUCTION
In recent years, machine learning has made remarkable
advances and is being applied to various fields of engi-
neering. One of the most prominent areas of research is
robotics, which is making significant progress [1], [2], [3],
[4], [5], [6]. However, machine learning is conservatively
applied in robot control applications since stability, one of
the most important characteristics of the controller, is hard
to guarantee. Accordingly, recent studies utilize machine
learning to partially replace a part of the conventional
control process to improve performance without adversely
affecting stability [7], [8], [9], [10], [11], [12], [13]. In a
robot controller, joint velocity estimation results can cause
instability of the feedback controller such as proportional-
integral-derivative (PID) and proportional-derivative (PD)
controller. The instability of a single actuator can adversely
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affect the whole system since most robots have high degrees
of freedom (DoFs) where the joints are dynamically coupled.
Moreover, many modern robots (e.g., co-bots, humanoid
robots, quadruped robots, etc.) utilize PD-based control
schemes which heavily rely on joint velocity estimation
accuracy [14], [15], [16]. In addition, estimating the velocity
in slow motion is more challenging [17] while the task space
motion of the articulated robot has a high probability that slow
motion occurs in several joints. However, velocity estimation
is still considered a challenging task although there have been
related studies for decades [16], [18], [19], [20], [21], [22].
According to the significance, there are still demands for
a reliable robot joint velocity estimator. One of the most
well-known approaches to estimating joint velocity is based
on the numerical differentiation of position measurements
with the encoder attached to each actuator of robot joints.
It can be extrapolated by dividing the difference between
the last two sampled positions by the sampling period [23],
[24], [25], [26], [27], [28]. This approach mostly requires
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filters such as a low-pass filter [29], [30], [31] or moving
average filter [32], [33] to attenuate the noise amplified
by the differentiation of the encoder measurements. As a
price for the noise attenuation, phase lag is imposed by
the filtering process, which may cause control instability
when the feedback gain increases to improve the accuracy
of the controller. A recent study has proposed a high-pass
rate limiter to implement a lag-free filtering process [16].
However, the effectiveness of this approach has been limited
by the assumption that each joint of the robot precisely tracks
the planned trajectory.

Another approach for velocity estimation is model-based
methods. Velocity observer [34], [35], [36], [37], [38] is one
of the most popular model-based approaches. It computes
the expected velocity response based on the encoder mea-
surement, robot model, and control input. When the model is
accurately designed, it can estimate the velocity with a small
phase lag. In addition, it can reflect the effect of external
disturbances. The Kalman filter also similarly operates as a
velocity observer [20], [39], [40]. However, these methods
are sensitive to the accuracy of the model.

There are several interesting attempts to estimate the
velocity through machine learning and neural network.
Previously developed methods [19], [41], [42], [43], [44]
estimate velocity and acceleration with a neural network
that is responsible for differentiation based on the encoder
signal. However, thesemethods are for imitating conventional
velocity estimators with a reduced computational burden
[19], [42], [43], [44] or for imitating in the sensorless
system [45], or they can only be applied for limited
motion that they are learned by the data set with specific
trajectories [41]. To the best of our knowledge, however,
a general approach with a learning-based method that can
provide better velocity estimation than conventional non-
learning-based methods cannot be found.

In this study, we developed a model-free joint velocity
estimator based on the neural network noting the potential
of the learning-based method. Although only the present and
past velocities are applied as inputs for a neural network,
noise filtering results of a small phase lag are achieved
thanks to offline learning of the weighted moving average
that includes a data set including future information. To mit-
igate overfitting and overlearning, a combined approach
involving cross-validation and early stopping techniques is
implemented. Additionally, if the dataset proves insuffi-
cient for comprehensive validation, this limitation can be
readily addressed. The dataset solely comprises encoder
joint velocity data, facilitating expedient and straightforward
acquisition. As a result, the proposed method has the
following advantages:

▶ it can improve the control performance of the feedback
controller by alleviating the limitations of conventional
model-free methods, i.e., phase lag and amplitude
loss,

▶ there is no burden on themodeling since it requires only
encoder signal measurements, and

▶ it is easy to collect data sets and train the neural
network.

Due to these advantages, our method makes a crucial
contribution in the practical aspect while it successfully
enhances the control performance of multi-DoFs robots.
To the best of our knowledge, no machine learning-based
velocity estimator has been proposed that can improve
the control performance of multi-DoF robots better than
the proposed method. In this light, the proposed method
represents a novel approach to learning-based joint velocity
estimation.

The performance and effectiveness of the proposedmethod
are verified through various real-robot control experiments
with comparisons. The proposed method is simple and
straightforward yet it shows noticeable improvements in the
robot feedback control performance. A detailed description
of the proposed method is described in Section II, and
analyses of the experimental results are shown in Section III.
Finally, the conclusions and future work are summarized in
Section IV.

II. PROPOSED METHOD
A. LEARNING & NEURAL NETWORK
A reflection of expected future joint behavior can be an
effective approach to overcome the model-free approach
limitations, i.e., phase lag and amplitude loss. From this
point of view, we developed a neural network that can
compute the velocity including the influence from the
expected future velocity in addition to the past and present
information. Although not precise, the tendency of future
joint behavior can be predicted by observing the pattern of
encoder measurements for a short time horizon from the
past to the present. However, since it is difficult to estimate
future behavior by analyzing noisy encoder measurements,
a learning method is utilized in this study. A neural network
is constructed and it is trained to compute the weighted
moving average (WMA). The WMA is selected to satisfy the
aforementioned considerations since WMA-filtered velocity
can include all the past, present, and future information.

For the given K -th sampling data, the WMA-filtered
actuator velocity θ̇wmaK is expressed as follows:

θ̇wmaK =

∑N
l=−N wK+l θ̇K+l∑N

l=−N wK+l
, (1)

where N is the number of data points in the past and future
observed based on the current sampling time, w• is the
non-negative weighting coefficient for •-th sampling data,
and θ̇• is the input velocity at •-th sampling data. In this study,
θ̇• is computed by numerical differentiation of the encoder
measurements. As a result, the above equation describes
2N + 1 data points. In order to increase the influence of the
K -th sampling velocity, which is the measured velocity at the
reference time, the weighting wK+l is set to be larger when
l is closer to zero.

A neural network is then trained to learn the WMA offline.
The weights and biases for the neural network are determined
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through learning with a linear regression approach. The data
set is obtained by random joint motion while the labels are
calculated by (1). For the learning of a fully connected neural
network, Keras Tensorflow is utilized with mean square error
loss function and the Adam for the optimizer. ReLU (Rected
Linear Unit) is adopted as an activation function while dense
is used in the process of deriving output.

A neural network is designed to have N + 1 input
nodes, two hidden layers with 100 hidden nodes each, and
a single output. The number of hidden layers and nodes is
empirically determined as the minimum number that can
provide sufficient performance. The number of input nodes is
determined to have the same number as the past and present
data for the learned WMA. The number N is determined as

N =
tw
1T

− 1, (2)

where tw is time horizon length, and 1T is sampling time
period of real-time system. In this study, tw is empirically
determined as 0.02 s since it showed the best performance.
For example, when the frequency of the real-time system
is 1 kHz, N = 19, and the number of input nodes is
20 accordingly. Note that the numberN inWMA equation (1)
for labeling has to be the same asN of the neural network. So,
39 data points are used to calculate (1) when tw = 0.02. The
output node then generates the velocity result.

The inputs of the proposed method consist of numeri-
cally calculated velocities instead of position measurements
from the encoder. This choice simplifies the constructed
neural network and facilitates easier training. The additional
preprocessing step for numerical differentiation incurs a
small cost compared to the benefits it offers. Moreover,
the preprocessing only requires computation for numerical
differentiation, which is relatively straightforward. It is worth
noting that employing a neural network with measured
position inputs to achieve similar results as the proposed
method may necessitate more extensive training data sets,
a more complex neural network structure, and a larger
number of hidden layers and nodes, thereby compromising
practicality. The trained neural network introduced in the
previous subsection additionally requires preprocessing and
post-processing. The overview of the entire process is shown
in Fig. 1.

B. ESTIMATION PROCESS
1) PREPROCESS
The velocity of the actuator is numerically computed as
the developed neural network requires velocity for input
nodes. The velocity can be simply calculated by 1st-order
approximation with the encoder measurement as follows:

θ̇K =
θK − θK−1

1T
, (3)

where θ• is the position of the actuator measured by encoder
at •-th sampling data. The above equation can be replaced
with more advanced numerical differentiation methods such
as the method in [23]. Here, the input velocity equation

for training and for the neural network should be the same.
To stack the present and past N data for neural network
computation, the calculated velocity is then recorded in the
buffer memory.

2) NEURAL NETWORK COMPUTATION
For neural network computation, the velocities in the buffer
are inserted into the input nodes. Then, the velocity is
calculated by computing the neural network introduced in
the previous subsection with nodes having weights and bias
parameters determined by offline learning.

3) POST PROCESS
The output of the neural network θ̇nnK is the estimated actuator
velocity. However, θ̇nnK might not be able to describe the rapid
velocity change since the time interval tw ofWMA learned by
the neural network is relatively long. Therefore, we modify
θ̇nnK by combining it with the velocity θ̇K calculated by (3)
at the same sampling time to regenerate high-frequency
response data.

θ̇estK = (1 − α)θ̇nnK + αθ̇K , (0 < α < 1) (4)

where α is a coefficient. When α becomes small, the velocity
can be smoothened while it cannot properly describe rapid
motion. However, it could be operated more effectively in
slow motion. In this study, α is set to 0.2. For the joint
with gear, estimated joint velocity q̇estK can be calculated as
follows:

q̇estK =
1

Ngear
θ̇estK , (5)

where Ngear is the gear ratio.

III. EXPERIMENTAL VERIFICATION
A. ANALYSIS OF PROPOSED METHOD
In this subsection, the results of the proposed method are
analyzed to observe the characteristics of the proposed
method. First, the proposed velocity estimator is applied to
a known sine wave signal with Gaussian noise to clearly
compare with the ground truth data and the estimation result.
Data sets with a constant frequency and magnitude similar to
a sine wave are not used for learning to prevent over-fitting.
As can be seen in Fig. 2, high-frequency noise is drastically
reduced with a small delay compared to the reference data
that describes ground truth.

In addition, comparative experiments are conducted to
observe the effect and performance of the proposed method
in an actual actuator. The actuator is composed of a motor,
100:1 harmonic gear, and 2500 ppr optical encoder. In addi-
tion to the proposed method, the velocity calculated by the
numerical differentiation of the measured encoder signal, the
result of applying a first-order low-pass filter with 250 Hz
cutoff frequency to it, and the velocity observer [34] are also
implemented for the comparison. The cutoff frequency of the
low-pass filter is determined to generate a similar magnitude
to that of the proposed method. As can be seen in Fig. 3,
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FIGURE 1. Structure of the proposed velocity estimation method.

FIGURE 2. Velocity estimation result of the proposed method for a sine
wave with Gaussian noise. A magnified view in the plot shows details for
a wavelength.

FIGURE 3. Comparisons of velocity estimation results of real robot
actuator.

compared to the encoder measurements, the proposedmethod
presented in the red-colored line exhibits minimal delay
and effectively diminishes vibrations resulting from noise.
In contrast, the green-colored line representing the low-pass
filter demonstrates a reduction in magnitude compared to
the encoder measurements and introduces a notable delay.
The purple-colored line, representing the velocity observer
result, is a model-based method. It does not capture the
motor’s actual driving characteristics and incorporates a
robust smoothing process, which results in a distinctive trend.

FIGURE 4. Fast Fourier transform results of the velocity numerically
extrapolated.

The phase lag can be approximately known by comparing
the peak point of each phase. The proposed method has a
phase lag of less than 0.001 s while the low-pass filter has
approximately 0.02-0.03 s phase lag. The velocity observer
which is a model-based approach has a large difference
from the other results. From the result, one can notice that
the proposed method generates the intended effect. It can
estimate the noise-attenuated velocity with less phase lag and
less amplitude loss compared to the filtered result.

In order to analyze the filtering effect that the pro-
posed method generates, a fast Fourier transform (FFT)
is performed on the actual actuator experimental result.
As shown in Fig. 4, the blue-colored line representing the
encoder measurements exhibits substantial high-frequency
noise above 20 Hz. In contrast, the red-colored line, which
represents the proposed method, clearly demonstrates a
significant reduction in noise beyond 20 Hz.

B. EXPERIMENTS
1) ROBOT SETUP
Real robot experiments are conducted to evaluate how much
the proposed velocity estimator can contribute to improving
the performance of various types of robot controllers.

Two robotic platforms, a 14-DoFs dual-arm manipulator
shown in Fig. 5 and a 33-DoFs humanoid robot TOCABI [46]
shown in Fig. 6 are utilized for the experiments.

The feedback control tasks are implemented by varying the
joint velocity estimation methods for comparison. For this
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FIGURE 5. (a) Shape of a dual-arm manipulator utilized for experiments,
and (b) schematic kinematic structure and joint number of the robot.

FIGURE 6. Shape of a humanoid robot TOCABI utilized for experiment.

purpose, robot dynamics-based joint space and task space
controllers [47] are performed in the dual-arm manipulator,
and the whole-body controller [48] is performed in the
humanoid robot. Each joint of both robots is composed of a
brushless DC electric motor (BLDC motor), 100:1 harmonic
gear, and encoder. As for the motors of both robots, several
different motors from the same company (Kollmorgen) are
used. Motor current control-based joint torque control is
performed by the motor controller under the assumption that
input current to the motor is linearly proportional to output
torque. The desired torque is computed in the computer as
the high-level controller while communication is conducted
with EtherCAT. The encoders of the dual-arm manipulator
are 2500 ppr (pulse per revolution) optical encoder, and of
the humanoid are 13-bit magnetic incremental encoder. The
control frequency of the dual-arm and humanoid are 1 kHz
and 2 kHz, respectively. For the velocity estimation, a single
neural network is trained for each robot, and each joint

velocity is computed through the neural network in real-time.
For fast computation, the neural network is programmed in
the computer with C++.

2) DATA COLLECTION AND TRAINING
To train the developed neural network, random motions of
all the joints of a robot are generated by controlling the joint
positions. The goal position and time for each motion are
randomly selected to obtain various velocity profiles. In order
to avoid joint limits or self-collision during the random
motion, the boundaries of goal position and time are limited
to a conservatively determined narrow range. As learning is
only affected by joint velocity, the learning can be performed
well even with narrow-range position constraints. During the
motion, velocities computed by (3) of all joints are recorded.
Then, WMA expressed in (1) is computed and applied for
offline training.

In order to collect data in a time-efficient manner,
we generated motions of all the joints together and trained
a single neural network with the result data. As a result,
learning a neural network for each robot is completed with
the data collected from the random motion within 10 min.
In this study, the neural network of the dual-arm manipulator
and humanoid are trained separately with the data obtained
from the joints of each robot. For the learning, a batch size
of 2048, the number of epochs 4000, Adam optimizer with
β1 = 0.9, β2 = 0.999, and a learning rate 0.001 are used
for optimization. To avoid over-fitting, 80% of the random
motion data is used for training and 20% for the testing set.

3) COMPUTATION TIME
For a real-time control system, computation time to estimate
the velocity of all the joints should take less than the
sampling time period 1T . Since several calculations for
control are required during 1T , it is advantageous to shorten
the calculation time required for the velocity estimation. The
computation time is measured in the computer with Intel Core
i7-12700F CPU 4.9 GHz boost clocks with 32 GB memory.
The measured computation time includes the whole process
described in Fig. 1 for 14 joints. The average computation
time of 1million samples of the proposedmethod is 0.063ms.
One can notice that the joint velocity estimation does not
burden the real-time calculation for robots in this section
since 1T of robots are 1 ms and 0.5 ms. Therefore, the
proposed method has a very cheap computational cost that
can be applied in most robotic systems.

In the real-time control system, a computation time con-
straint arises from the number of joints in the robot system.
As the proposed neural network has to be computed as many
times as the total number of joints, the computational time
burden increases with the number of joints, potentially posing
challenges for real-time control. However, multithreading-
based parallel computing can be utilized as each estimate
of joint velocity is independent of the other joints, so all
joint velocity estimations are concurrently processed with
a single computational cost (0.063 ms on average) in the
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experimented robots. It is worth noting that the entire
operation is completed within 0.1 ms to successfully ensure
1 kHz to 2 kHz real-time. Therefore, the experiments
conducted do not result in lag or delay caused by joint velocity
operations.

4) JOINT SPACE CONTROL
The joint space control task is performed by a dual-arm
manipulator. To control the motions of joints, the following
dynamics-based joint space PD-control equation is utilized:

0 = A{kp(qd − q) + kv(q̇d − q̇)} + h, (6)

where 0 is the joint torque vector, A is the joint space
inertia matrix, q is the joint angle vector, qd is the desired
joint angle vector, h is the nonlinear force vector including
the Coriolis/centrifugal and gravity force, and kp, kv are
proportional and derivative gain, respectively.

All the joints are controlled to track the trajectory
generated by the cubic spline in the experiment. The joint
positions are obtained by the encoder and the joint velocities
are estimated by the proposed method. For the comparison,
the same task is performed with varying velocity estimators.
Numerical differentiation with the 20 Hz cutoff frequency
low-pass filter and the velocity observer are applied. The
cutoff frequency of the low-pass filter and the maximum
control gains are empirically explored and applied to achieve
the best control performance. The maximum gains adopted
are shown in Table 1.

TABLE 1. Joint space control gain.

FIGURE 7. Left arm shoulder joint control results: (a) Joint position
control errors and (b) joint velocity control errors of a dual-arm
manipulator. The red colored line is when the proposed method is
applied, the green colored line is when the numerical differentiation with
low-pass filter is applied, and the purple line is when the velocity
observer is applied.

Comparative experimental results can be seen in Fig. 7
and Table 2. In the figures, the control errors of the shoulder
pitch joint of the left arm are represented. Control results
of the other joints are not plotted since they have similar
tendencies. The best performance is obtained when the

proposed method is applied. Both gains are increased and the
control errors are reduced proportionally when the proposed
method is applied compared to the low-pass filtered result.
Although the velocity observer can also apply gains higher
than low-pass filtered result, it creates a larger control error
than the proposed method. In addition, the velocity from
the velocity observer bounces when each motion starts. It is
notable that although the D gain kv of the velocity observer is
the largest, the damping effect is smaller than the result of the
proposed method. This is presumably because the model for
the observer has an error so the difference between the actual
and the estimated velocity is large.

5) TASK SPACE CONTROL
The task space control experiment is also performed by the
dual-arm manipulator. To control the end-effector motion
in the Cartesian space x of the dual-arm manipulator, the
following operational space PD control equation is utilized:

0 = JT3{kp(xd − x) + kv(ẋd − ẋ)} + h, (7)

where J is the Jacobian matrix which describes the relation-
ship between the task space and the joint space as ẋ = Jq̇,
3 = (JA−1JT )−1 is the operational space inertia matrix, and
xd is the desired position vector at the operational space.

The task space x is defined to describe 12-DoFs (6-DoFs
for each arm) end-effectors Cartesian space position (x, y, z)
and orientation (roll, pitch, yaw). The task space velocity ẋ
is calculated by the equation ẋ = Jq̇ with estimated joint
velocities. The trajectory is designed by a cubic spline to
move the position and orientation of the end-effector during
5 s. Positions and orientations are commanded to move 0.1 m
and 20 deg, respectively for the first 2.5 s; and -0.1 m
and -20 deg, respectively for the rest of the time.

For the comparison, the same control task is performed
with varying velocity estimators. Numerical differentiation
with the low-pass filter, and the velocity observer are applied
for velocity estimation. As the maximum control gains
change according to the velocity estimator, we empirically
tuned gains with the largest number that is stable without
divergence of the controller as can be seen in Table 3. As a
result, the right arm end-effector control error can be seen in
Fig. 8. The left-arm control results are omitted since it has
practically the same result. Similar to the joint space control,
one can observe that the proposed method can achieve the
highest gains for PD control and accordingly, produce the
smallest control error. Compared to the low-pass filtered
result, the control performance of all the task components
tends to increase in proportion as the gains increase. This
is presumably because the proposed method has less phase
lag and amplitude loss than the low-pass filter. In the case
of the velocity observer, the maximum gains are the same
as the proposed method and accordingly, the control error
magnitude is smaller or similar to the proposed method.
However, it is notable that the directions of the velocity
observer result in x, y, z, yaw are opposite, which means
that they continuously overshoot. This causes the problem of
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TABLE 2. Joint space control error.

TABLE 3. Task space control gain.

FIGURE 8. Task space control results: control errors of the end-effector
position (a) X , (b) Y , (c) Z , and orientation (d) Roll, (e) Pitch, (f) Yaw. The
red-colored line is when the proposed method is applied, the
green-colored line is when the numerical differentiation with low-pass
filter is applied, and the purple line is when the velocity observer is
applied.

generating a motion that repeats moving and stopping within
a short period of time causing vibration. In addition, the error
of the x-axis is larger than the proposed method despite the
same gains. This is presumably because the velocity from
the velocity observer has a relatively large difference from
the actual velocity caused by the modeling error.

6) WHOLE-BODY CONTROL
To verify the proposedmethod in amore complex system, it is
also implemented in a hierarchical quadratic programming-
based whole-body controller [48] of a humanoid robot. The
pelvis position and orientation are controlled by a PD control
scheme as the highest priority task, and the joint angles are

controlled to keep posture as the second priority task while
the robot dynamics, kinematics, and contact constraints for
rigid contact are set as strict constraints.

The trajectory is designed by the quintic spline and the
trajectory tracking control is performed during 5 s. During
0-2.5 s, the pelvis is controlled to move 0.12 m along the
x-axis, and 0.05 m for the y-axis. During 0.25-5 s, the pelvis
is controlled to return to the initial position. The rest of task
components are controlled to keep the initial state.

In the humanoid robot controller, joint velocity is estimated
by numerical differentiation of the encodermeasurement with
a 60 Hz cutoff frequency low-pass filter. With the low-pass
filtered velocity, the maximum gains kp and kv are 80 and 5,
respectively; and 200 and 20, respectively with the proposed
method. The control results can be seen in Fig. 9. One can
observe that the control error is smaller when the proposed
method is applied since higher gains can be used. As already
mentioned in [16], [49], and [50], due to the influence of
large inertia, modeling error, limited control bandwidth, etc.,
the torque control-based whole-body control has difficulty
in increasing the PD control gains, but the proposed method
successfully improved. This supports that the estimation of
the velocity itself has become more accurate.

FIGURE 9. Whole-body control results with the humanoid robot TOCABI:
control errors of the pelvis position (a) X and (b) Y . The red-colored line
is when the proposed method is applied, and the green-colored line is
when the numerical differentiation with a low-pass filter is applied.

C. DISCUSSIONS
The proposed method is a model-free approach that requires
encoder measurements as input, and has low dependency on
robot systems. The advantage of this approach is verified by
showing that velocities of all joints can be estimated by a
single trained neural network with noticeable performance
improvements, even though the experimental robots have
complex dynamics and several different motor products.
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TABLE 4. Average control error.

In addition, the proposed method can be utilized in other
control schemes such as PID because the developed method
does not depend on the controller.

In addition to the performance, we highlight that the
proposed method can learn effectively with relatively small
data. The consumed time for data collection from the real
robot experiment in this study is completed in a short
time (less than 10 min). If the motion can be generated
effectively to represent various cases rather than random
motion, higher performance can be achieved with less data.
This is a crucial aspect as many learning-based methods
demand substantial effort and trial and error to gather
suitable data sets. The challenge is further compounded
when real-robot experiment data are necessary, increasing
the time and effort required for data collection. This obstacle
serves as a barrier to implementing learning-based methods,
hindering their reproducibility in other robotic systems.
In particular, the proposed method proves highly efficient
for robots with multiple joints, as it obviates the need to
train separate neural networks for each joint. This advantage
streamlines the implementation process and enhances the
method’s applicability across diverse robotic systems.

Meanwhile, although the number of nodes of the proposed
neural network is not large, it has to be carefully implemented
if a robot has low computation power and many joints since
neural network computation is required for each joint.

IV. CONCLUSION
This study presents a novel model-free learning-based joint
velocity estimation method. The effectiveness of the method
is analyzed and verified through real-robot experiments.
In particular, we showed that it can improve the control
performance of various types of robot controllers, i.e., joint
controller, task space controller, and whole-body controller.
The improvements are clearly shown through comparative
experiments with other well-known methods. The proposed
method facilitates an enhancement in control gain through
precise velocity estimation during PD control, leading to a
significant reduction in control error, as evidenced in Table 4.
The findings reveal control error reductions of 68.76% in joint
space control, 61.19% in task space position control, 56.75%
in task space rotation control, and 43.81% in pelvis position
control.

In addition, one can notice that machine learning can
effectively improve robot control performance when utilized
as a state estimator. This approach is differentiated from
the conventional neural network-based methods that merely

imitate conventional algorithm-based methods. From this
point of view, we expect to further improve robot control
performance in the future by extending the proposed
approach. Accordingly, we will explore a more optimal
structure of the neural network that can generate improved
performance with less computational time. In addition, a joint
acceleration estimation will be developed by advancing
the proposed approach. By estimating both velocity and
acceleration, the estimation method can be applied to various
types of controllers. As a result, the performance of the robot
controller can be drastically improved.
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