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ABSTRACT Consistency checking, as a key and challenging problem in the research field of qualitative
spatial reasoning with direction relations in 3D space, has received a lot of attention. It is widely used
in 3D spatial configuration and anomaly detection in urban planning. To enrich and enhance the ability
of reasoning and predict with 3D cardinal direction relations, a new approach for spatial projection on
each axis is proposed on the basis of the 3DR27 model for cardinal direction relations in 3D space
presented in our previous work. This paper divides the consistency checking of spatial direction relation
networks into two processes. Firstly, the projection method is employed to determine whether a network
with three-dimensional cardinal directional relations is a convex relation network. Then, by means of the
good calculation properties of interval algebra and the mapping between 3D rectangular cardinal direction
and 3-block algebra, an algorithm for consistency checking is proposed, which can be used to determine
whether one or more than one solution can be found to satisfy the given network constraints. The results of
theoretical analysis and verification show that our method is correct and complete. This method effectively
improves the ability of intelligent analysis and processing for complex 3D spatial direction relations.

INDEX TERMS Consistency checking, qualitative spatial reasoning, 3D cardinal direction relations, block
algebra, convex relation.

I. INTRODUCTION
As the premise of spatial cognition and reasoning, spatial
direction relation describes the order relation between spatial
objects, which is widely used in the field of spatial analysis
and processing [1], spatial-temporal database [2], [3], [4],
computer graphics [5], [6], [7] and natural language pro-
cessing [8], [9], [10]. With the application of spatial
direction relation, we are not satisfied with the simple
description and storage of spatial direction relation, and
it also requires that the spatial database system has the
ability to intelligent prediction, analysis, and qualitative
reasoning with directions [11], [12], [13]. The qualitative
spatial reasoning problem has recently been formulated as a
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constraint satisfaction problem and addressed using tradi-
tional algorithms, such as path consistency [14]. One of
the most important challenges in this field is the identifi-
cation of useful and tractable classes of spatial constraints,
as well as the research on effective consistency checking
algorithms, minimum network computation, and so on. Sev-
eral kinds of useful spatial constraints have been studied
so far, e.g., Topological constraints remain connectivity and
separateness constant when the spatial entities are under
the condition of topological relation transformation such as
rotating and scaling [15], [16]. Distance constraints describe
the distance size relations between two spatial object tar-
gets [9], [17]. The cardinal direction constraints describe
how regions of 3D space are placed relative to one another
utilizing a coordinate system (e.g., region a is northeast of
region b) [18], [19], [20], [21].
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In this paper, we focus on the problem of consis-
tency checking with cardinal direction constraints in 3D
space [22], [23], [24]. Currently, Themodels of Hao et al. [25]
and Li et al. [26] is the most expressive model for subdivi-
sion within 3D space. These models are able to divide the
spatial objects themselves so that they can have more pre-
cise expression. However, they have problems such as high
computational complexity and limited reasoning capabilities.
In this paper, we introduce the 3DR27 model for cardinal
direction relations in 3D space presented in our recent work,
which solves these problems by providing a computationally
efficient and formalized reasoning approach [27].

What’s more, interval algebra was proposed by Allen [28]
and further extended to n-dimensional space by Balbiani [29].
It has been widely utilized in the field of spatiotempo-
ral reasoning. Currently, interval algebra is predominantly
used in the research of two-dimensional spatial relations
and has not been extensively explored in three-dimensional
space [22], [30], [31]. Due to the good computational
properties of the interval algebra, so we combine it
as a constraint satisfaction problem (CSPs) and estab-
lish the mapping between three-dimensional block algebra
and three-dimensional rectangular cardinal relations. This
enables the consistency checking of 3D basic rectangular
relations.

We will study the problem of checking the consistency of
a given set of cardinal direction constraints in the 3DR27
model. Checking the consistency of a set of constraints in a
mode of spatial information is a fundamental problem and
has received a lot of attention in the literature [3], [7], [14],
[32], [33], [34]. Algorithms for consistency checking are of
immediate use in various situations as following.

• Propagating relations and detecting inconsistencies in a
given set of 3D spatial relations [3], [7].

• Preprocessing spatial queries so that inconsistent queries
are detected or the search space is pruned [14], [34].

• Study of 3D spatial configuration with consistency
checking [32], [33].

The major contributions of this paper can be summarized
as follows.

• The research gives several important definitions to intro-
duce the 3DR27 model. The model is currently one of
the most expressive models for qualitative reasoning
with 3D cardinal relations.

• Then, introducing Allen’s interval algebra theory and
extending the interval algebra to three dimensions.

• By the theoretical framework, the paper builds the
mapping between three-dimensional block algebra and
three-dimensional rectangular cardinal relations. Then,
we study the problem of checking the consistency of a
given set of cardinal direction constraints and propose
the algorithm for the problem.

• The algorithm includes two processes. Determine
whether it is a convex relation and conduct the path
consistency checking based on the convex relation.

Then, the paper gives examples to prove the algorithm’s
correctness and improve the powers of reasoning and
analysis for the complex 3D direction relations, and
then can better meet the complicated applications of 3D
spatial data.

This article is structured as follows. Section II introduces
the related work about the consistency checking of cardi-
nal direction relations. Section III presents the 3D cardinal
direction relation model, the interval algebra, and builds the
connection between them with a unified formula. Section IV,
we propose an algorithm for convex relational network.
Section V and Section VI discusses the implementation of
the proposed consistency checking algorithms and presents
the results of analysis and verification. Finally, Section VII
concludes the paper.

II. RELATED WORKS
Consistency checking is an important component of qualita-
tive spatial direction relation inference [35], [36], [37], [38].
It ensures the logical coherence and integrity of the inferred
relations. When reasoning qualitatively about spatial direc-
tions, it is crucial to maintain consistency to avoid contradic-
tions and ensure reliable results [14]. Consistency checking
involves verifying that the inferred qualitative spatial rela-
tions adhere to a set of predefined rules or constraints. These
rules define the logical consistency between different direc-
tional relations and help maintain the coherence of the overall
spatial representation. By performing consistency checks,
we can identify and rectify any inconsistencies or contradic-
tions that may arise during the inference process [3], [7].

The consistency checking in the two-dimensional space
has been relatively mature. Initially, Ligozat [18] proposed
the binary constraint network (BCN) algorithm for consis-
tency checking of basic spatial directional relations between
points, based on the block algebra theory, and it was proven
to be NP-complete. Subsequently, The genetic algorithm
proposed by Liu et al. [19] has been widely used for con-
sistency checking of basic directional relations based on the
projection model. He represented the basic directional rela-
tions in two-dimensional space as points and applied them
to qualitative reasoning such as inversion, composition, and
intersection operations. However, Considering the practical
applications, spatial objects cannot always be treated as point
objects. For example, Spain is approximately northeast of
Portugal. But most people would agree that ‘‘northeast’’
does not accurately describe the relation between Spain and
Portugal. (see Fig. 1).

To reduce the influence of the size and shape of space
objects and to improve the accuracy of expression and reason-
ing with direction relations. Spiros Skiadopoulos et al. [20]
proposed an ad-hoc algorithm (which will be called
SK-CON) for consistency checking of a network of basic
cardinal constraints with variables ranging over REG∗ of
disconnected regions. The algorithm has a relatively high
complexity of O (n5), and it is not guaranteed to work when
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FIGURE 1. Problem with point approximations.

the domain is restricted to the set REG of connected regions.
Thereby, Navarrete et al. [21] devised a new REG-BCON
algorithm between connected regions based on the algorithm
of Skiadopoulos, which has the complexity of O(n4). As a
matter of fact, the consistency checking of a set of unre-
stricted cardinal directions is a NP hard problem [39].
The algorithm keeps the first 2 steps of the algorithm

SK-CON, and adds to the Helly’s topoliogical theorem [40],
which gives the key to decide if a solution can be obtained for
a set of basic cardinal constraints.

The aforementioned work focuses solely on the consis-
tency checking of basic directional relations between points
or regions in 2D space. The algorithms involved have rel-
atively high computational complexity and mostly rely on
path consistency under the assumption of a convex rela-
tion network, which has certain limitations. Considering
that Euclidean space is three-dimensional in our world.
Chen et al. [22] proposed a TCD model for cardinal direction
relation in three dimensional space. Based on the smallest
cubic TCD relations and original relations, explain the corre-
lations between basic TCD relations and block algebra. And
an O(n4) algorithm to check the consistency of a set of basic
TCD constraints over simple blocks is given. But through the
analysis and comparison found that the algorithm although
solved with a non-constructive method, the time complexity
of this algorithm is relatively high. Liu et al. [23] devised an
algorithm for consistency checking with 3D rectangular car-
dinal direction relation network by extending the 2D convex
relation network to 3D space, which laid the foundation for
further research on finding consistency consistent scenes in
the network of 3D cardinal direction relations.

In recent years, some researchers have also explored
the application of graph theory to consistency checking.
Liu et al. [24] researched on the consistency checking with
the network of cardinal direction relations between points
and regions by means of visual detection of the spatial graph
in vertical which is obtained by merging and condensing
the partition graph of the spatial constraints according to
certain rules. But this method determines the consistency by

checking whether there is a ring in the spatial graph in ver-
tical. For this approach, the spatial object considered is a
closed region, it can not deal with the object that has holes
or that is disconnected. Kong [41] present a graph model to
visually represent direction specifications, and perform a con-
sistency checking on the graph model rather than through a
constraint solver used by Skiadopoulos and Koubarakis [17].
As a matter of fact, in the field of graph-based consistency
checking, the consideration of spatial objects is not compre-
hensive enough, and the study of three-dimensional space is
largely blank, with a focus mainly on two-dimensional spatial
relations.

To sum up, the researches on the consistency checking
with the network of direction relations in 3D space are rare
at present. Most of the existing methods make use of the
composition operation to implement consistency checking on
the basis of the determination of convex relation. And the
consistency checking problem has been posed as a constraint
satisfaction problem and solved using traditional algorithms
like path consistency. But this kind of method has many
problems, such as complicated calculation and low efficiency
which to a certain extent hinders the deep application of
3Dspatial direction relations. In this paper, we will focus on
the work by incorporating interval algebra theory and estab-
lishing a one-to-one mapping between three-dimensional
rectangular directional relations and block algebra [342]
based on the previous work [23]. The aim is to generalize
the good computational properties of interval algebra theory
to 3D spaces. It facilitates analysis for consistency checking
of directional relations in three-dimensional space. Then, The
study examines the convexity of relations along each axis and
proposes an algorithm to search for path consistency under
the assumption of a convex relation network which can be can
be performed inO (n3). Theoretical analysis and experiments
prove that the algorithm is correct and complete, and these
detailed processes are described in later sections.

III. THREE-DIMENSIONAL CARDINAL DIRECTION
RELATION AND INTERVAL ALGEBRA
In this section, we provided a detailed overview of the
methodology used in the article. Firstly, we introduced the
3DR27 model for three-dimensional spatial direction rela-
tions, building upon our previous work. This model was
employed due to its computational feasibility and excellent
formal reasoning capabilities. Moreover, we introduced inter-
val algebra and extended it to three dimensions space, estab-
lishing a corresponding connection with three-dimensional
rectangular directional relations. This laid a solid founda-
tion for the subsequent proposal of a consistency checking
algorithm. The overall research technical route of our article
is depicted in Fig. 2.

A. THE MODEL OF THREE-DIMENSIONAL CARDINAL
DIRECTION RELATION
In recent years, many models for representing and reasoning
with direction relations in 3D space have been proposed
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FIGURE 2. The overall technical route.

in [25], [26], [43], and [44]. But these models are complicated
in calculation and poor in reasoning, which cannot meet the
demand of real applications. Our study starts with 3DR27
model which is easy to calculate and carry out formal rea-
soning [27]. Let us show this model formally through the
following definitions. Objects concerned in this study are
homogeneous to the closed box ({(x,y,z): x2 + y2 + z2 ≤1}).
The set of these objects will be denoted by Tbox . Let a ∈ Tbox .
The greatest lower bound of the projection of a on the x-axis
(respectively y-axis, z-axis) is denoted by infx(a) (respectively
infy(a), infz(a)). The least upper bound or the supremum of
the projection of a on the x-axis (respectively y-axis, z-axis)
is denoted by supx(a) (respectively supy(a) supz(a)). The
minimum bounding box of a object a, denoted by mbb(a),
is the cube formed by the straight lines x = infx(a), x =
supx(a), y = infy(a), y = supy(a) z = infz(a) and z = supz(a).
Definition 1: Let a ∈ Tbox and a be reference object. The

straight lines x = infx(a), x = supx(a), y = infy(a), y =
supy(a) z=infz(a) and z = supz(a) forming mbb(a) divide
the space into 27 areas (see Fig. 3) which we call tiles
of a. These tiles will be denoted by UNW(a), UN(a),
UNE(a), UW(a), UB(a), UE(a), USW(a), US(a), USE(a),
RNW(a), RN(a), RNE(a), RW(a), RB(a), RE(a), RSW(a),
RS(a), RSE(a), DNW(a), DN(a), DNE(a), DW(a), DB(a),
DE(a), DSW(a), DS(a) and DSE(a), respectively.
Let us now consider two arbitrary objects a and b in Tbox .

Let object b be related to object a through a cardinal direction
relation. Object b will be called the primary object while
object a will be called the reference object. If b is included
in tile UNW(a) of a then we say that b is up-northwest of
a and we write b UNW a. Similarly, we can define up-
north(UN), up-south(US), up-northeast(UNE), up-west(UW),

FIGURE 3. Reference object direction partition.

up-bounding box(UB), up-southwest(USW), up-east(UE),
up-southeast (USE), north (RN), south (RS),northeast (RNE),
west (RW), bounding box (RB), southwest (RSW), east (RE),
southeast (RSE), northwest (RNW), down-north(DN), down-
south(DS), down-northeast(DNE), down-west(DW), down-
bounding box (DB), down-southwest (DSW), down-east
(DE), down-southeast (DSE) and down- northwest (DNW)
relations.
Definition 2: A basic 3D cardinal direction relation is an

expression R1: . . . : Rk where R1,. . . , Rk ∈ {UNW, UN, UNE,
UW, UB, UE, USW, US, USE, RNW, RN, RNE, RW, RB, RE,
RSW, RS, RSE, DNW, DN, DNE, DW, DB, DE, DSW, DS,
DSE },1 ≤ k ≤ 27, and Ri ̸= Rj for every i, j such that 1 ≤ i,
j≤k and i ̸= j, and there exist objects a1,. . . , ak ∈ Tbox such
that a1 ∈ R1(b),. . . , ak ∈ Rk (b) and a1 ∪ · · ·∪ak ∈ Tbox . for
any reference object b ∈ Tbox . The set of basic 3D cardinal
direction relations in this model is denoted by TD.
For example, in Fig. 3, b lies partly in the tileUB (a), partly

in the tile US (a), partly in the tile USE (a), and partly in the
tile UE (a), then b UB:US:USE:UE a and we say that b is
partly up-bounding, partly up-south, partly up-southeast, and
partly up-east of a.
Definition 3: Let R ∈ TD, R is a rectangle iff there exist

two cubes a and b (the sides are both parallel to the x,y,z
axes) such that a R b, otherwise R is non-rectangular. There
are 216 sets of 3D rectangular cardinal direction relations is
denoted by TDrec.

B. INTERVAL ALGEBRA
In this study, we will employ block algebra to study the prob-
lem of consistency checking with cardinal direction relations
defined by 3DR27 model. Let us shortly introduce the block
algebra. Allen [28] firstly proposed the interval algebra which
defined 13 basic interval relations as:

Bint = {p,m, o, s, d, f , pi,mi, oi, si, di,fi, eq} (1)
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TABLE 1. Composing table of six interval relations.

FIGURE 4. 13 basic interval algebra relations.

to describe the relations between two finite intervals as shown
in Fig. 4. Allen’s interval algebra facilitates formal reasoning
which plays an important role in temporal relation reasoning
and spatial calculus.
Definition 4: Let R ∈ 2Bint , the inverse relation of R,

denoted by R−1, is another interval algebra relation which
satisfies the following. For arbitrary intervals a and b, if a
R−1 b holds, iff b R a also holds.
Definition 5: Let R1,R2 ∈ 2Bint , the composition of

R1 and R2, denoted by R1 ◦ R2, is another interval algebra
relation from 2Bint which satisfies the following. R1 ◦ R2 con-
tains all relationsQ∈ 2Bint such that there exists interval a, b, c
such that a R1 b, b R2 c and a Q c holds.
Thirteen relations in interval algebra can be divided

into 6 groups of basic relations k1 = {d, s, f , e}, k2 =
{m, b}, k3 = {mi, bi}, k4 = {fi, o}, k5 = {si, oi}
and k6 = {di}, which is defined formally shown as Fig. 5.
by means of the endpoints of primary object b and reference
object a.

According to the definition of interval algebra and Defi-
nition 5, an inference table for composing the six interval
algebra relations k1 = {d, s, f , e}, k2 = {m, b}, k3 = {mi,
bi}, k4 = {fi, o}, k5 = {si, oi} and k6 = {di} is presented as
Table 1.

FIGURE 5. 6 interval algebra relations.

C. ALGEBRA AND 3D RECTANGULAR CARDINAL
DIRECTION RELATIONS
Balbiani [29] introduced n-dimensional block algebra which
is the n-dimensional extension of the interval algebra. For
every integer n ≥ 1, a basic n-dimensional block algebra
relation is an n-tuple like (p1, p2,. . . . . . , pn) where pi ∈ {p, m,
o, s, d , f , pi, mi, oi, si, di, fi, eq}, for every i ∈ {1,2,. . . ., n},
and for arbitrary n –blocks a and b, a and b satisfy the algebra
relation (p1, p2,. . . . . . , pn) if and only if the two intervals
ai and bi satisfy the interval algebra relation pi where ai and
bi are the projection of a and b onto the i-th axis respectively,
for every i ∈ {1,2,. . . ., n}.
In this paper, we only focus on three dimensional block

algebra. The three dimensional block algebra will be used
to study the problem of consistency checking with the net-
work of the rectangular cardinal direction relations defined
by 3DR27 model. Therefore, it is necessary to establish
the equivalent relationship between three dimensional block
algebra relations and the rectangular cardinal direction rela-
tions defined by 3DR27model. As a matter of fact, there exist
a mapping between basic 3D rectangular cardinal direction
relations and 3-block algebra relations which presented in our
recent work [42] is shown as Fig. 6.

The Cartesian set of BTint is used in Fig. 5. to represent
a 3D algebra relation, and the operator ⊕ as defined in
equation (2) is used to express a basic 3D rectangular cardinal
direction.

m1 : . . . : mj ⊕ n1 : . . . : nk = m1n1 : . . .m1 nk : mjn1 :

. . . : mjnk (2)
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where m1:. . . : mj ∈ {B,S,SE,E,NE,N,NW,W,SW}, n1:. . . : nk ∈
{U,R,D},1 ≤ j ≤ 9,1≤ k ≤3. For instance, NW: N ⊕
U :R=UNW:UN:RNW:RN.
Theorem 1: Let R ∈ TDrec, xi, yi, zi ∈ BTint . If f (R) =

xi× yi× zi holds, then we say that the mapping between 3D
rectangular cardinal direction and 3-block algebra. We can
use the Cartesian product of block algebra to represent the
three dimensional rectangular direction relation.

Proof:According to the Fig. 6, we know that the 3D rect-
angular cardinal direction is transformed into an equivalent
three dimensional block algebra network. R ∈ TDrec, the set
of three-dimensional block algebra relation is represented by
the Cartesian product on each axis as shown in Fig. 6, the
three-dimensional block algebra is projected to the x, y and z
axes, where xi, yi, zi ∈ BTint , then f (R) = xi×yi×zi indicates
that the three-dimensional block algebra relation and thus the
theorem holds.

For instance, we know that the relation UN:UNE are 3D
rectangular direction relation. Next, we project it onto each
axis and represent it using interval algebra. This establishes a
one-to-one correspondence between three-dimensional direc-
tion relation and interval algebra. As shown in Fig. 6,
we have:

f (UN : UNE) = K5 × K3 × K3. (3)

Theorem 2: Let R ∈ TDrec, xi, yi, zi ∈ BTint . If f (xi× yi×
zi) = R holds, then we say that the mapping between 3-block
algebra and 3D rectangular cardinal direction.

Proof: According to the Fig. 6, we know that the
three dimensional block algebra network is transformed
into an equivalent 3D rectangular cardinal direction. The
three-dimensional block algebra is projected to the x, y, and z
axes, where xi, yi, zi ∈ BTint , R ∈ TDrec, and the set of
three-dimensional block algebra relation is represented by the
f (xi × yi × zi), as shown in Fig. 6, then f (xi × yi × zi) =
R indicates that the three-dimensional rectangular cardinal
direction relation and thus the theorem holds.

Given that the interval algebra projection on each axis
results in 6 algebra relations, there are a total of 216 possible
relations when projected onto all three axes, as shown in
Fig. 6. For example, if the interval algebra relation on the
x-axis is K2, the relation on the y-axis is K5, and the relation
on the z-axis is K2, we can determine that the 3D cardinal
rectangular direction relation is DW:DNW.We have:

f (K2 × K5 × K2) = DW : DNW (4)

IV. THE ALGORITHM OF CONVEX RELATIONS
The determination of convex relations is the basis and pre-
requisite of the consistency checking with direction relations.
Although different composition algorithms are used, the final
decision principle is mostly based on the theory of path con-
sistency [45], [46]. Therefore, the determination of convex
relations is a key problem in the consistency checking with
direction relations.

FIGURE 6. The mapping between 3D rectangular cardinal direction and
3-block algebra.

From Fig. 6, we can see that each rectangular cardinal
direction relation defined by 3DR27 model corresponds
to a 3-block Algebra relation which can be expressed as
the Cartesian product of the following six interval algebra
relations Pc = {k1 = {d, s, f , e}, k2 = {m, b}, k3 =
{mi, bi}, k4 = {fi, o}, k5 = {si, oi}, k6 = {di}}. It is
obvious that the six interval algebra relations are all convex
relations. A random combination of these six relations labeled
{1,2,3,4,5,6} yields the following convex relations network
of interval algebra {1}, {1,2,3},{1,2},{1,2,3,4,5},{1,2,4},
{1,2,3,4,5,6},{2},{2,3},{2,4} {2,3,4}, {2,3,4,5}, {2,3,4,5,6},
{3},{3,5},{3,5,6},{4},{4,5},{4,5,6},{5},{5,6},{6}. All the
convex rectangular algebra relations can be represented by
Fig. 7. Similarly, in three dimension space, we can get all the
convex three dimensional block algebra relations by using the
lattice presented in Fig. 8.
Definition 6: An interval relation p and q of the form p ≤

q, [p, q] satisfying the set of elements between all intervals
from the closed interval p to the closed interval q is a convex
interval relation [46].

For example, {p,m, o, fi, di} is a convex relation due to
that it corresponds to interval [p, di], but {o,d,s,f} is not a
convex relation because the interval [o, f ] is missing {fi, eq}
between them.
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FIGURE 7. 2D convex relation network.

FIGURE 8. 3D convex relation network.

Definition 7: Let (A,B,C)∈ TDcube, (D,E,F)∈ TDcube.
(A,B,C) ≤ (D,E,F) forms a convex three dimensional block
algebra relation network iff A≤ D, B≤E, C ≤ F. (TDcube, ≤)
defines an ordered grid of coordinate intervals.
Theorem 3: A convex region R of three dimensional block

algebra relations is a Cartesian product of its projections, and
the projection of its decomposition onto each axis is a convex
interval relation [47].
Theorem 4: The result of the composition operation and

the inverse operation on convex rectangular relations is also
a convex rectangular relation [47].
A convex interval is an interval with convex relations.

The three dimensional block algebra relation meet the def-
inition of convex relation which corresponds to a region in
Fig. 8. Let TDrec ={d1,. . .dn}(1≤n≤216) be a set of 3D
rectangular cardinal direction relation which equivalently
corresponds to three dimensional block algebra relations
TDcube = {d ′1,. . .d

′
n} (1≤ n ≤ 216) where d ′i ∈ TDcube

corresponds to a point in Fig. 7. In the following discussion,
the decomposition of d ′i in TDcube on the x-axis, y-axis and
z-axis are denoted by d ′ix , diy

′ and diz′ respectively. A convex
relation in the Fig. 8 includes all the points from theminimum
coordinate to the maximum coordinate.

For example, we can see that the region (1.1.1) ∼ (2.2.2)
contains (1.1.1), (1.1.2), (2.1.1), (2.1.2), (2.2.1) and (2.2.2)
from Fig. 8 which forms a convex region of three dimensional

block algebra relations. It is easy to see that a convex region of
three dimensional block algebra relations can be represented
by it projections on three axes.
Theorem 5: The projection of a convex region R in three

dimensional block algebra relations on x-axis (y-axis, and
z-axis respectively) is a convex interval relation.

Proof: According to the definition of convex region,
we have that a convex region R corresponds to a three dimen-
sional block algebra relation. By Theorem 3, we know that
the projection of R on x-axis (y-axis and z-axis respectively)
is a convex interval relation and the boundary relation of the
projection on each axis is also convex relation and thus the
theorem holds.
Theorem 6: Assume that Lc is the convex interval cor-

responding to the TDcube. The sets of boundary relations
corresponding to Lc are Dlx , Dly, Dlz on each axis, similarly,
The sets of boundary relations corresponding to TDcube are
Dx , Dy, Dz on each axis, If Dlx = Dx , Dly = Dy and
Dlz = Dz, TDcube is a convex interval algebra relation.
Equivalently, TDrec is also convex relation network of the
cardinal direction relation.

Proof: TDcube is transformed from TDrec. According to
the definition of (1), the 3D rectangular algebra relations
transformed from the 3DR27model are also convex relations.
According to Theorem 3, we can know that if the interval
relations on each axis is continuous interval, the TDcube also
is convex relation. If the boundary relations of the set of
rectangular relations TDcube are equal to the boundary rela-
tions of the convex relations it corresponds to, it is known
that the set of rectangular algebra relations TDcube is also
continuous interval in every dimension. Similarly, according
to Theorem 5, it is known that TDcube is convex. According
to the definition of equation (2), the mapping between 3D
rectangular cardinal direction and 3-block algebra, TDcube is
convex direction relation, so TDrec is also convex relation.

A cardinal direction relation R defined by 3DR27 model
can be transformed to an equivalent three dimensional block
algebra relations TDrec by means of Fig. 6. TDrec is in the
form of the Cartesian product of its projection on x-axis,
y-axis and z-axis. We firstly determine whether its projection
on x-axis (y-axis and z-axis respectively) is a convex relation.
If the three interval algebra relations are all convex relations,
then we need to further determine whether a cardinal direc-
tion relation corresponding to the Cartesian product of the
three interval algebra relations is rectangular. If it is rectan-
gular, then R is convex relation, otherwise it is not. Based on
the above discussion, using Theorem 5, Theorem 6 and the
mapping between three dimensional block algebra and 3D
rectangular cardinal direction relations presented in Fig. 5 as
our basis, an algorithm for determining whether a 3D basic
cardinal direction relation is convex relation is presented as
follows.

This algorithm is used to determine whether the 3D basic
directional relation is convex or not. Firstly, the 3D spatial
cardinal direction relation R is transformed into a 3D rect-
angular cardinal direction relation TDrec by Definition 3, and
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Algorithm CheckConvex( )
input: Direction relation R
output: true for convex relations, false for non-convex
relations
begin
While (R ̸= ∅)
TDrec ← R; /∗ transform of the 3D cardinal direction
relations into a rectangular cardinal direction relation by
definition 3 ∗/
xi × yi × zi ← f (TDrec)/∗ transform the 3D rectangular
cardinal direction relations into a Cartesian product of algebra
relation on the three axes using Theorem 1 ∗/
if (xi ∩ Pc = ∅)

return false;
if (yi ∩ Pc = ∅)

return false;
if (zi ∩ Pc = ∅) /∗ by definition 6, determine whether the
relation is convex on the x, y, z-axis ∗/
return false;

else if (f (xi× yi× zi) = TDrec) /∗ use Theorem 2 to
perform a Cartesian product operation on the interval algebra
relations on the three axes to see whether they can be trans-
formed into 3D rectangular cardinal direction relations ∗/

return true;
else

return false;
end

then TDrec is transformed into a Cartesian product of interval
algebra relations on the three axes (x, y, z) by using Defini-
tion 6 to determine whether the interval algebra relations on
each axis are the convex relation. Finally, we use Theorem 2
to perform a Cartesian product operation on the interval
algebra relations on the three axes to check whether they
can be transformed into 3D rectangular cardinal direction
relations.

V. NETWORK CONSISTENCY CHECKING FOR 3D SPATIAL
CARDINAL RELATIONS
The consistency checking with cardinal directions means
that given a series of spatial objects and cardinal direction
relations, determine whether the spatial network formed by
these cardinal direction relations are consistent, that is to
say, whether one or more than one solution can be found
to satisfy the network constraints. Liu et al. [19] researched
the problem of consistency checking with cardinal directions
defined by direction relation matrix model in 2D space the by
means of rectangular algebra. In this paper, we will employ
the three dimensional block algebra to solve the problem
of consistency checking with cardinal directions direction
3DR27 model in 3D space. Now, we give some definitions
and theorems for further research.
Definition 8: Let (n,R) be a three dimensional block alge-

bra. If Rij is convex relation for each i, j ∈ {1,. . . , n}, then we
say that (n,R) is a convex relation. If Rik ̸= ∅ ∧ Rik ⊆ Rij ◦

Rjk holds for each i, j, k ∈ {1,. . . , n}, then we say that (n,R)
is a path consistency network.
Theorem 7: A three dimensional block algebra constraint

network (n,R) is path consistent iff it is a convex relation
network and it is path consistent.

Proof: The 3D rectangular algebra constraint network is
known to be a convex relation network, indicating that the
projection of interval coordinates onto each axis satisfies the
convex relation that Rij is 2TDcube, and the convex relation
network is path consistent, i.e., there exists i, j, k ⊆ (n), and
satisfies Rik ̸= ∅, Rik ⊆ Rij ◦ Rjk , Therefore, the network is
a path consistent network.

From the above definitions and theorems, the path con-
sistency checking algorithm based on 3DR27 model for
3D rectangular cardinal direction relation is presented as
following.

Algorithm Consistency(n,R)
input: direction relation network (n,R)
output: true for the direction relation is consistency network,
false for non-consistency network
begin
Boolean flag=true //performing the determination of convex
relational networks
begin
for i 1 to n
{for j 1 to n

{if(i ̸=j and Rij ̸= ∅)
{ flag=CheckConvex(R);

/∗call the CheckConvex() function to perform the determina-
tion of the convex relational network ∗/
if(flag=false)

return false;
end}}}
else push(stack) /∗judging path consistency while stack is not
empty do ∗/

{for i1 to n-2
{for j(i+1) to n-1

{for k(j+ 1) to n
Rij = pop(stack);

f (Q) = f (Rij) ∩ f (Rik ) ◦ f (Rkj)
/∗The composing operations of the algebra of the x-axis,
y-axis, z-axis interval are shown in Table 1 ∗/
Q = f (xQ× yQ× zQ) /∗Transformation of 3D
interval algebra into 3D rectangular cardinal direction
relations ∗/
if (Q ̸= ∅)

{if (Q ̸= Rij)
{Rij = Q;
push(Rij)}}
else return false;}

return true;
end

This algorithm performs the convex relation checking
firstly, and the time complexity is o(n2) for a direction relation
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constraint network (n,R). Then the consistency checking is
performed, and the time cost is o(n3) due that there are
n(n-1)(n-2)/6 triangles in the network (n,R). Therefore, the
total time complexity of our algorithm is o(n3).

VI. EXAMPLE ANALYSIS
In section V, we have presented an algorithm Consistency
(n,R) to solve the problem of the consistency checking with
the constraint network of cardinal direction relations based
on the 3DR27 model. The algorithm PathConsistency(n,R)
has been implemented in Java language programming which
runs on Intellij IDEA 2022.1.1 platform. In this section,
we will verify the correctness of the proposed algorithm
PathConsistency(n,R) by comparing the execution result of
this algorithm with the result of manual checking.

Let us consider the following problem. Given a direction
relation constraint network a RE b, b RE:RSE c and a RE c,
where a, b, c ∈ Tbox , please determinewhether this constraint
network is consistent.

Firstly, by using our algorithm, the cardinal direction rela-
tion constraint network RE, RSE:RE and RE is transformed
into an equivalent three dimensional block algebra network
by means of the mapping between 3D rectangular cardinal
direction and 3-block algebra shown in Fig. 6.
Equivalently, we have:

f (RE) = {pi,mi} × {eq, s, d, f } × {eq, s, d, f } (5)

f (RE : RSE) = {pi,mi} × {fi, o} × {eq, s, d, f } (6)

According to Definition 6, we have that the interval algebra
relations {pi, mi},{eq, s, d, f },{eq, s, d, f } and {fi, o} are
all convex relations, which appeared in the Cartesian product
corresponding to the cardinal direction relations of the given
constraint network. On this occasion, it will return true by
calling algorithm CheckConvex().

According to theorem 9, it is necessary to further verify
whether the network is path consistent. By Definition 8,
we need to determine whether Rac ⊆ Rab ◦ Rbc holds.
The composition of Rab and Rbc can be computed by the
composition of the equivalent algebra relations of Rab and
Rbc, as follows.

{pi,mi} ◦ {pi,mi} = {pi}, {eq, s, d, f } ◦ {fi, o}

= {p,m, o,fi, eq, s, d, f }, {eq, s, d, f }

◦ {eq, s, d, f } = {eq, s, d, f }

According to the definition of block algebra,we have that

({pi,mi} × {eq, s, d, f } × {eq, s, d, f }) ◦ ({pi,mi} × {fi, o}

× {eq, s, d, f }) = {{pi,mi} ◦ {pi,mi}}

× {{eq, s, d, f } ◦ {fi, o}} × {{eq, s, d, f } ◦ {eq, s, d, f }}

= {pi} × {p,m, o,fi, eq, s, d, f } × {eq, s, d, f }

Then, we have the following equation holds by means of
the composition table of interval algebra shown as Table 1.

({pi,mi} × {eq, s, d, f } × {eq, s, d, f }) ◦ ({pi,mi} × {fi, o}

FIGURE 9. Example 1.

× {eq, s, d, f }) = {pi} × {p,m, o,fi, eq, s, d, f }

× {eq, s, d, f }

By looking up the mapping table between 3D rectangular
cardinal direction and 3-block algebra shown as Fig. 4, we
know that the 3-block algebra {pi}×{p,m, o, fi, eq, s, d, f }×
{eq, s, d, f } correspond to the cardinal direction relation
{RSE, RE:RSE, RE}.

Therefore, we have Rab ◦ Rbc={RSE, RE:RSE,RE} and
thus Rac ⊆ Rab ◦ Rbc holds. Then,we have that the given
constraint network is path consistence and thus we get
that the given constraint network is consistence by using
our algorithm.

In reality, there exists objects a, b, c ∈ Tbox , such that a RE
b∧b RE:RSE c∧a RE c holds which is shown as Fig. 9. By
the definition of the consistence of constraints network, we
have that the direction relation constraint network formed by
the spatial constraints a RE b, b RE:RSE c and a RE c is
consistence, and thus the result of our algorithm is correct
for this spatial constraint network.

Then, let us consider the another problem. Given a direc-
tion relation constraint network a UW b, b USW:UW:UNW
c and a RSE c, where a, b, c ∈ Tbox , please determine
whether this constraint network is consistent by Algorithm
PathConsistency(n,R).
We first use our algorithm to analyze the three cardinal

direction relations that are not empty and the determina-
tion of the convex relations is carried out by transforming
UW, USW:UW:UNW and RSE into 3D rectangular direction
relations. Then by Theorem 1 and Fig. 6, we transform
the mapping between 3D rectangular cardinal direction and
3-block algebra. Let us project them separately on the x, y
and z axes, and we give a representation of the Cartesian
product. Equivalently, we have:

f (UW ) = {p,m} × {eq, s, d, f } × {pi,mi}

(7)

f (USW : UW : UNW ) = {p,m} × {di} × {pi,mi} (8)

f (RSE) = {pi,mi} × {p,m} × {eq, s, d, f }
(9)
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FIGURE 10. Example 2.

By Definition 6, we know the convex relation of the
one-dimensional interval is satisfied on each axis. While
output the judge=true, the Rac into the stack.

In addition, the stack is not empty, Rac is delivered from
the stack. We combine the 6 interval relations composition in
Table 1 for each axis on Rab ◦ Rbc. We know that:

{p,m} ◦ {p,m} = {p}, {eq, s, d, f } ◦ {di}= all

{pi,mi} ◦ {pi,mi} = {pi}

Then by Definition 5, therefore we have that:

{p,m} × {eq, s, d, f } × {pi,mi} ◦ {p,m} × {di} × {pi,mi}

= {{p,m} ◦ {p,m} × {eq, s, d, f } ◦ {di} × {pi,mi} ◦ {pi,mi}}

= {{p} × all × {pi}} = {{p,m} × {eq, s, d, f }

× {pi,mi} ∪ {p,m} × {p,m} × {pi,mi} ∪ {p,m} × {pi,mi}

× {pi,mi} ∪ {p,m} × {fi, o} × {pi,mi} ∪ {p,m} × {si, oi}

× {pi,mi} ∪ {p,m} × {di} × {pi,mi}}

Then by Theorem 2, we have the mapping between 3D
rectangular cardinal direction and 3-block algebra. We have:

f ({p,m} × {eq, s, d, f } × {pi,mi}) ∪ f ({p,m} × {p,m}

× {pi,mi}) ∪ f ({p,m} × {pi,mi} × {pi,mi}) ∪ f ({p,m}

× {fi, o} × {pi,mi}) ∪ f ({p,m} × {si, oi}

× {pi,mi} ∪ f ({p,m} × {di} × {pi,mi})

= {{UW } ∪ {USW } ∪ {UNW } ∪ {UW : USW }

∪ {UW : UNW } ∪ {UW : UNW : USW }}holds.
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Finally, we compare with the path consistency checking
f (Q) = f (Rij) ∩ f (Rik ) ◦ f (Rkj). By Theorem 2, the 3D rect-
angular algebra is transformed with the 3D cardinal direction
relation, we can get Q = ∅, while Q = ∅ jumps out of the
loop and outputs false. By performing our algorithm, we have
that the consistency network is inconsistent.

In reality, we showed that the spatial objects a, b, c ∈
Tbox , such that a UW b∧b USW:UW:UNW c which is shown
as Fig. 10. But according to the definition of consistency
network, there are none of these 6 cases belong to the above
a RSE c of spatial layout. Therefore, we decide that the con-
straint network does not satisfy the consistency checking of
the 3D spatial direction relations. The results of the algorithm
execution are compared with the results of manual reasoning,
we find that the results are consistent, so the algorithm is also
correct.

In summary, these examples prove that the consistency
checking algorithm for 3D spatial cardinal direction relations
is correct, and the algorithm combines the good computa-
tional properties of block algebra with easy formal reasoning.
Although we only quote two aspects of the algorithm path
consistency (n, R) in the example analysis, the results are
consistent in both theoretical analysis and algorithm verifi-
cation. Therefore, the algorithm Consistency (n, R) is used to
solve the problem of consistency checking with the constraint
network of cardinal direction relations based on the 3DR27
model.

VII. CONCLUSION
In this paper, we discussed these questions, including
describing the 3D cardinal direction relations model, the
three-dimensional block algebra relations and the rectangular
direction relations defined by the 3DR27 model, and build-
ing the mapping between 3D rectangular cardinal direction
and 3-block algebra. Then, we provided several theorems
for determining convex relation networks. In addition, block
algebra has good computational abilities. Finally, we pro-
vided our algorithm for verifying the convex relation network
and consistency checking by means of the interval algebra
and the method of the spatial projection based on these theo-
rems and definitions. The verification was carried out by the
comparing the result of our algorithm with that of manual
reasoning. The results of comparison also demonstrate that
our algorithm can work correctly.

Notice that our algorithm used the spatial projection
method to decide whether a network of 3D rectangular direc-
tion relations is a convex relation. The algorithm improved the
ability of intelligent reasoning and prediction of the 3DR27
model and then enhanced the usability of this model. This
work is of great significance for enhancing the practical
application requirements of consistency checking.

However, due to the inherent complexity of 3D spatial
direction relations, the spatial target objects considered in
this paper are only closed and connected regions. In future
research, the algorithm will be improved so that it can han-
dle spatial objects with holes and non-connections, and this

paper only considers a single spatial relation, and combining
multiple spatial relations for consistency checking will be the
top priority in the future. What’s more, it is worth observing
that we have used interval algebra only to represent the 3D
rectangular direction relation. For future work, we can use
algebraic theory to express the 3D cardinal direction relation
so that the representation of spatial relations is more special
and comprehensive.
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